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Simplified Semantics for Further Relevant Logics I:

Unreduced Semantics for E and Π′

Abstract. This paper shows that the relevant logics E and Π′ are strongly
sound and complete with regards to a version of the “simplified” Routley-
Meyer semantics. Such a semantics for E has been thought impossible.
Although it is impossible if an admissible rule of E  the rule of restricted
assertion or equivalently Ackermann’s δ-rule  is solely added as a primitive
rule, it is very much possible when E is axiomatized in the way Anderson
and Belnap did.

The simplified semantics for E and Π′ requires unreduced frames. Con-
tra what has been claimed, however, no additional frame component is
required over and above what’s required to model other relevant logics such
as T and R. It is also shown how to modify the tonicity requirements of the
ternary relation so as to allow for the standard truth condition for both fu-
sion  the intensional conjunction ◦ as well as the converse conditional←.

Keywords: converse conditional; E; fusion; γ; relevant logics; simplified
Routley-Meyer semantics; unreduced frames

1. Introduction

The purpose of this paper is to ever so slightly expand upon the simplified
semantics first set forth in (Priest and Sylvan, 1992) and then extended
so as to cover a range of relevant logics (as well as some related non-
relevant ones) in (Restall, 1993). Notably lacking from Restall’s paper is
the characteristic axiom ((A → A) ∧ (B → B) → C) → C of Anderson
and Belnap’s favorite logic E as well as the “γ-rule” {A,∼A ∨ B} 
 B
characteristic of Ackermann’s closely related logic Π′. This paper shows
how to model these logical principles within the simplified semantics so
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as to make the semantics strongly sound and complete with regards to
the standard relation of derivability.

E has suffered at least two misconceptions which are worth setting
aright. These pertain to the very identity of the logic E and the com-
plexity involved in its frame semantics  simplified or not.

Identity: It is claimed in (Restall, 1993) that the simplified semantics
cannot model E’s set of logical theorems. Although the claim actually
made is correct, it is a claim which turns out to be about a different logic
than Anderson and Belnap’s E: Restall’s E has the rule called restricted

assertion, {A} 
 (A → B) → B, as its characteristic principle, which,
although admissible, fails to be derivable in Anderson and Belnap’s E.
This mishap is further laid out in section 3.

Complexity: Priest  one of the original inventors of the simplified
semantics  has claimed that there is a ternary semantics for E, “though
of a more complicated kind” (Priest, 2008, p. 202). Priest does not
give any clues as to what this complication amounts to, but it seems
likely that he either intended to imply that E doesn’t have a simplified

semantics altogether  which, as we’ll see, it does  or that he alluded
to is the frame element P of the original Routley-Meyer semantics for
E. That version of the Routley-Meyer semantics is found in the first
appendix of (Routley et al., 1982), entitled The semantics of entailment

– IV: E, Π′ and Π′′ which I’ll refer to as SE4 in this paper. In SE4, P
was utilized so as

to get round the problems raised by the fact that it is impossible to
obtain, [. . . ], a prime regular theory T which validates the rule of ne-
cessitation. [. . . ]
Admittedly, the presence of P, and its apparent uneliminability, makes
the semantics of E

=
1 more cumbersome and less attractive than that of

some of its relevant rivals such as R and T.
(Routley et al., 1982, p. 407)

The rule of necessitation alluded to here is that which yields �A :=
(A→ A)→ A from A. That rule, like Restall’s rule of restricted asser-
tion, is merely admissible in E. The notion of derivability most proba-
bly alluded to in SE4 simply does not allow derivations from arbitrary
premise sets, however. The SE4-calculus, then, merely yields the set of

1 SE4’s logic ‘E’ is formulated with a propositional constant. E
=

is the constant-

free fragment of it, and is, modulo minor equivalent details, identical to E as specified
in this paper.
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logical theorems of E. Restall’s rule of restricted assertion, on the other
hand, applies to non-theorems and allows one to derive, then, �p from
the premise set {p}, where p is any propositional variable. Since the
goal of SE4 is merely to establish weak soundness and completeness,
the failure to distinguish derivable rules from admissible ones doesn’t
materialize into technical errors. However, it easily engenders such in
the more broader context where derivations from arbitrary assumptions
are permitted. When only this is clarified, however, it will be shown
that the “simplified” version of the SE4-semantics actually allows for a
definable set Z  a variant of that suggested in (Anderson et al., 1992) 
which does in fact eliminate the need for Sylvan and Meyer’s P . Nothing
of additional complexity, then, is needed to model E. Not even when the
goal is to model the full consequence relation of E and not merely its set
of logical theorems.

The notion of a reduced frame is set forth in subsection 4.1 wherein
it is shown that E and Π′ really require unreduced frames. Both the
original Routley-Meyer semantics, as well as the simplified version of
these, come in two variants. To avoid further confusion regarding E,
subsection 4.2 give a short explanation of some key aspects which set
these apart. Subsection 4.3, then, gives the relevant background of the
definition of the set Z.

Sections 5–6 then show that the characteristic axiom of E and the
characteristic rule of Π′ correspond to particular frame requirements.
This, then, suffices for proving strong soundness and completeness for
any logic with these principles. This paper shows for the first time how
to modify tonicity requirements to the ternary relation so as to to deal
with fusion and the converse conditional within the simplified semantics.
As a corollary of the strong soundness and completeness result, it will
follow that the addition of such connectives is strongly conservative.

Section 7 provides a short summary, before the appendix deals with
the logic EM  E augmented by the restricted mingle axiom

(A→ B)→ ((A→ B)→ (A→ B)).

Relevant logics are often equipped with propositional constants. The
sequel to this paper  (Øgaard, 2024)  will deal with their simplified
semantics, as well as to show how such constants may be used to define
various modal and negation connectives, enthymematical conditionals,
and to capture propositions expressing various infinite conjunctions and
disjunctions.
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2. Initial definitions

defn 2.1 (Parenthesis conventions and defined connectives). ∨, ∧, and
◦ are to bind tighter than→ and ←, and so I’ll usually drop parenthesis
enclosing conjunctions and disjunctions whenever possible. Association
is otherwise to the left and so ∼A ∧ B ∧ C → D ∨ E ∨ (F ◦ G ◦ H) is
simply shorthand for ((∼A ∧B) ∧ C)→ ((D ∨ E) ∨ ((F ◦G) ◦H).

�A := (A→ A)→ A

A
C
→ B := A ∧ C → B

A↔ B := (A→ B) ∧ (B → A)

An axiomatization of a logic will in this paper be thought of as a set
of axioms and rules. Any such axiomatization can be used to define a
derivability relation. The only derivability relation which will be used in
this paper is the “standard” Hilbertian one:

defn 2.2 (The Hilbert consequence relation). A Hilbert proof of a
formula A from a set of formulas Γ in a logic L is defined to be a finite
list A1, . . . , An such that An = A and every Ai≤n is either a member of
Γ , a logical axiom of L, or there is a set ∆ ⊆ {Aj | j < i} such that
∆ 
 Ai is an instance of a rule of L. The existential claim that there is
such a proof is written Γ ⊢L A.

It is rather trivial that two axiomatizations can beget the same deriv-
ability relation. What is less trivial is the criteria of identity for a logic.
In the context of relevant logics it is not uncommon to regard two lists of
axioms and rules as axiomatizations of the same logic provided they gen-
erate the same set of logical theorems. The aim of this paper is a strong
soundness and completeness proof. As such it is the full consequence
relation which is the proper object of study. The following definition is
therefore warranted:

defn 2.3 (Identity criteria for logics). Let L, L1 and L2 be lists of
axioms and rules.

• The logic L denotes the set {〈Γ, A〉 | Γ ⊢L A}, where Γ ∪ {A} is any
subset of the set of well-formed formulas.2

2 Relevantists often state philosophical reasons for thinking that the Hilbertian
consequence relation  even for relevant logics  fails to capture true logical conse-
quence since it fails ensure that premises are relevant to the conclusion: If A is an
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• L1 and L2 are equivalent axiomatizations if and only if {〈Γ, A〉 |
Γ ⊢L1

A} = {〈Γ, A〉 | Γ ⊢L2
A}.

• L1 and L2 are theoremwise identical if {A | ∅ ⊢L1
A} = {A |

∅ ⊢L2
A}.

defn 2.4. For any logic L and axioms/rules θ1, . . . , θn: L[θ1, . . . , θn] is
the logic obtained by adding θ1, . . . , θn as axioms/rules and expanding
the language to include any connective occurring in θ1, . . . , θn which is
not already present in L.

Unless otherwise specified, I will consider the language of a logic to
be determined by the connectives which explicitly occurs in its axioms
and rules.

defn 2.5 (Derivable vs. admissible rules).
• A rule ∆ 
 A is said to be derivable in a logic L just in case

∆σ ⊢L Aσ for every uniform substitution σ.
• A rule ∆ 
 A is said to be admissible in a logic L just in case

for every uniform substitution σ, if (∅ ⊢L δσ for every δ ∈ ∆), then
∅ ⊢L Aσ.

defn 2.6. A logic L2 extends a logic L1 just in case every well-formed
formula (wff) of L1 is a wff of L2 and that for every set of L1-wffs
Γ ∪ {A}, if Γ ⊢L1

A, then also Γ ⊢L2
A.

It follows from the above definitions that if a rule is derivable in a
logic, then it is also admissible in it.

Except for A13, R7, the fusion and converse conditional principles,
all axioms and rules in the following list are found in (Restall, 1993).3

(A1) A→ A
(A2) A→ A ∨B and B → A ∨B
(A3) A ∧B → A and A ∧B → B
(A4) A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧C)

axiom of the logic of L, and p is any propositional variable not occurring in A, then
{p} ⊢L A will true (cf. Priest, 2015, § 5.4). I have elsewhere argued that the best
account of the philosophy of Anderson-Belnap type relevance is a pluralists account
of logical consequence where the Hilbertian relation is but one legitimate notion of
consequence  what they called enthymematical entailment. See (Øgaard, 2021b) for
more on this.

3 To be entirely precise, Restall (1993) doesn’t consider the pre- and suffixing
rules, but rather the interderivable affixing rule {A → B, C → D} 
 (B → C) →
(A→ D).
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(A5) (A→ B) ∧ (A→ C)→ (A→ B ∧ C)
(A6) (A→ C) ∧ (B → C)→ (A ∨B → C)
(A7) ∼∼A↔ A

(A8) (A→ B)→ (∼B → ∼A)
(A9) (A→ B)→ ((C → A)→ (C → B))
(A10) (A→ B)→ ((B → C)→ (A→ C))
(A11) (A→ (A→ B))→ (A→ B)
(A12) (A→ ∼A)→ ∼A
(A13) ((A→ A) ∧ (B → B)→ C)→ C
(A14) A→ ((A→ B)→ B)
(A15) A ∨ ∼A
(A16) A ∧ (A→ B)→ B

(R1) {A, B} 
 A ∧B adjunction (α)
(R2) {A, A→ B} 
 B modus ponens (β)
(R3) {A→ B} 
 (C → A)→ (C → B) prefixing rule
(R4) {A→ B} 
 (B → C)→ (A→ C) suffixing rule
(R5) {A→ B} 
 ∼B → ∼A contraposition rule
(R6) {A} 
 (A→ B)→ B restricted assertion
(R7) {A,∼A ∨B} 
 B disj. syllogism (γ)

(A◦) A→ (B → A ◦B)
(R◦) {A→ (B → C)} 
 A ◦B → C

(A←) A→ ((B ← A)→ B)
(R←) {A→ (B → C)} 
 B → (C ← A)

Every logic considered in this paper will be an extension of the rel-
evant logic B, the definition of which, along with some of the more
standard relevant logics, is set forth in the following definition:

B A1–A7; R1–R5
TW A1–A10; R1–R2
T TW[A11, A12]
E T[A13]
Π′ E[R7]
R T[A14]

In logics with both A8 and A14 one can define the fusion connective using
A ◦ B := ∼(A → ∼B). In logics weaker than E-type logics, however,
fusion is often regarded as an optional extra connective. This is also
the case in this paper. It is easy to verify that the axiom A◦ is in fact



Simplified semantics for further relevant logics I 7

interderivable with the converse of R◦, namely the rule

{A ◦B → C} 
 A→ (B → C).

These two ◦-rules are often called the residuation rules and is the most
common way to axiomatize fusion. → is the left residual of ◦, whereas the
converse conditional ← is often called the right residual. In logics with
A14 it is easily seen that (A→ B)↔ (B ← A) is a logical theorem, and
so the two conditionals become notational variants of each other. Like
◦, however, ← is undefinable in logics like E. Although ◦ is often added
as a connective to relevant logics, the converse conditional is rarely con-
sidered. ← does play a prominent role in Lambek-type calculi, however,
in which slashes are often used instead of arrows with B/A := A → B
and A\B := B ← A (cf. Ono, 2003). Note, then, that A← A fails to be
a theorem of Ed[A←, R←].4

That ◦ and← are undefinable follows from the fact that E augmented
with either of these loose, as we shall see, an important property, namely
that of being disjunctive, which is the topic of the following subsection.

2.1. Disjunctive logics

The simplified Routley-Meyer semantics is a frame semantics in which
every point of evaluation is required to make a disjunction A∨B true if
and only it makes either A or B true. The semantics will be set up with
a base point g with the notion of truth in a model being defined as being
true at g and a rule being regarded as holding in a model if it is truth
preserving over g. If, then, a rule {A1, . . . , An} 
 B is truth preserving
over g, then it’s disjunctive version will also be truth preserving over g.

defn 2.7. The disjunctive version of a rule ∆ 
 A is the rule

∆ ∨B 
 A ∨B,

where ∆∨B := {δ∨B | δ ∈ ∆}. ‘Rdi’ is to be a name for the disjunctive
version of any rule Ri.

The proof-theoretic property which corresponds to truth preservance
is derivability. In order to obtain a strong completeness theorem it must
therefore be the case that the disjunctive version of any derivable rule

4 A counter-model is found in figure 6. Nor is it a theorem of the logic called
Lambek Associative Calculus (L) in (Restall, 2000, p. 40), although it is a theorem of
LI  L augmented with a propositional constant t satisfying A ↔ (t → A). ◦ is fully
associative in figure 6, and so the model validates all of L.
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is derivable. Note, however, that it is not required that the disjunctive
version of every admissible rule be admissible. In fact, we shall later see
that there are admissible rules of E and Π′ which are such that their
disjunctive versions are not admissible.

defn 2.8. A consequence relation ⊢ that is a logic  is called disjunc-

tive provided for every set of formulas ∆ ∪ {A, B},

∆ ⊢ A =⇒ ∆ ∨B ⊢ A ∨B.

In other words, a logic is disjunctive just in case the disjunctive version
of every derivable rule is derivable.

Many logics fail to be disjunctive. Logics between B and TW[R7] are
examples of such: B is in all such obviously derivable from A ∧ (A →
B), and also from A ∧ (∼A ∨ B) if R7 is a derivable rule of the logic.
However, C ∨B fails to be derivable from both C ∨ (A ∧ (A→ B)) and
C∨(A∧(∼A∨B)) in the logic TW[R7].5 The consequence relation of such
logics as TW[R7] and B, therefore, cannot be modeled by the simplified
Routley-Meyer semantics set forth in this paper. As shown in (Priest
and Sylvan, 1992), however, there is a neat way to strengthen a logic so
as to ensure disjunctiveness: by simply adding to the axiomatization the
disjunctive version of every primitive rule of the original logic.6

defn 2.9. The axiomatization L
d[θ1, ..., θn] is obtained from L[θ1, ..., θn]

by adding the disjunctive version of every primitive rule of L[θ1, ..., θn].

5 Figure 1 shows forth a model which verifies this. The model, as is the case for all
of the algebraic models displayed in this paper, was found using Slaney’s MaGIC  an
acronym for Matrix Generator for Implication Connectives  which is an open source
computer program created by John K. Slaney (1995). The Hasse diagram displays
the partial order � which conjunction and disjunction are interpreted as, respectively,
greatest lower bound and least upper bound over. The other connectives are evaluated
according to the displayed matrices. The subset T is the set of designated elements.
A formula is true in such a model just in case it is evaluated to one such designated
element, and a rule holds in a model just in case it is truth preserving.

6 A popular alternative within the relevant literature has been to add so-called
“meta-rules.” The notion of such a rule was introduced in (Brady, 1984) where the
propositional meta-rule is stated as “if A ⇒ B, then C ∨ A ⇒ C ∨ B,” where ‘⇒’
is the symbol used to state ordinary rules. Just how to cash out this is at times a
bit unclear, but (Brady, 2006, p. 6)  in which the notion of meta-rule is credited to
Meyer  states that the idea of such meta-rules is that they allow one to introduce
subproofs just as in natural deduction calculi. A precise account of this, one which
basically hard-codes reasoning by cases into the notion of a Hilbert derivation, was
given in (Øgaard, 2017, df. 2).
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T = {x | 3 � x} = {3}

2 ∨ (1 ∧ (1→ 0)) = 3
2 ∨ 0 = 2

1 ∨ (2 ∧ (∼2 ∨ 0)) = 3
1 ∨ 0 = 1

3

1

@@✁✁✁✁
2

^^❂❂❂❂

0

^^❂❂❂❂
@@✁✁✁✁

→ 0 1 2 3 ∼

0 3 3 3 3 3

1 1 3 1 3 1

2 1 1 3 3 2

3 1 1 1 3 0

Figure 1. A non-prime TW[R7]-model

Theorem 2.1. A consequence relation ⊢ given by an axiomatization L

is disjunctive if and only if L and L
d are equivalent axiomatization; if

and only if, then, ⊢L = ⊢Ld .

Proof. Assume that ⊢L is disjunctive. Then the disjunctive version of
every primitive rule of L is derivable, and so ⊢L = ⊢Ld .

Assume that ⊢L = ⊢Ld , and let ∆ 
 A be a derivable rule of L. To
complete this proof we must show that ∆∨B 
 A∨B is also a derivable
rule of L. Let C1, . . . , Cn be a derivation of A from ∆ in L

d. The proof,
now, is to the effect that ∆ ∨ B ⊢Ld Ci ∨ B, for every i ≤ n. For any
i ≤ n, if Ci is either an axiom of L

d or a member of ∆, then obviously
it is the case that ∆ ∨ B 
 Ci ∨ B. Assume that the claim is true for
every j < i and that Ci is obtained from some ∆′ ⊆ {Cj | j < i} using
some rule of L

d. Since, then, the disjunctive version of the rule used is
a primitive rule of L

d, it follows, therefore that Ci ∨B can be obtained
from ∆′ ∨B using this rule, and so ∆ ∨B ⊢Ld Ci ∨ B also in this case.
Since every Ci must be obtained in one of these three ways, it follows,
therefore that ∆ ∨ B ⊢Ld A ∨ B. Since ⊢L = ⊢Ld , it therefore follows
that ∆ ∨B ⊢L A ∨B. ⊣

An easy consequence of the above definition of a disjunctive logic is
that the “meta-rules” of reasoning by cases and its one-premise sibling
hold true of the consequence relation:

Corollary 2.1. If L is disjunctive, then

• {A} ⊢L C and {B} ⊢L C, then {A ∨B} ⊢L C.
• {A} ⊢L B, then {A ∨ C} ⊢L B ∨ C.

The weakest logic that will be considered in this paper which is fit
for the simplified semantics, then, is Bd. Even though B must be ex-
tended so as to become disjunctive, this is far from always the case. The
axiomatizations set forth in both (Priest and Sylvan, 1992) and (Restall,
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1993) are all disjunctive, in the sense that the disjunctive version of
every primitive rule is yet another primitive rule of the axiomatization.
This will not be the case in this paper. The simple reason for this is
that logics such as E and Π′ are prime despite being axiomatized using
only R1 and R2, as well as R7 in the case of Π′. Note, then, that it
is the consequence relation generated by an axiomatization which must
be disjunctive  that is it is the logic, as here defined, which must be
disjunctive  in order for the simplified semantics to have a chance of
capturing it. The following two lemmas show forth two sets of sufficient
criteria for a logic being disjunctive.

Lemma 2.1. If L extends B, has no primitive rule other than R1 and
R2, and is such that there is a formula D such that ∅ ⊢L D and that

for every formula A, B, ∅ ⊢L A ∧ (A→ B)
D
→ B, then L = L

d.

Proof. We must show that the disjunctive version of both R1 and R2
are derivable rules of L.

(R1): We must show that {A∨C, B ∨C} ⊢L (A∧B)∨C. That this
is so follows by basic applications of R1 and R2 using axioms A2–A6.
Details are left for the reader.

(R2): We must show that {A ∨ C, (A → B) ∨ C} ⊢L B ∨ C. By

assumption of the lemma, A∧ (A→ B)
D
→ B is a logical theorem. A bit

fiddling, then, yields that so is
(

(A ∨ C) ∧ ((A→ B) ∨ C) ∧ (D ∨ C)
)

→ (B ∨ C).

Since D ∨ C is also a logical theorem, we can use R1 to adjunct the
formulas A∨C, (A→ B) ∨C and D ∨C so as to obtain the antecedent
of the displayed conditional. R2 does the rest. ⊣

Corollary 2.2. Any logic which has no primitive rule other than R1
and R2 and extends TW[A16] is disjunctive. Hence, T, E, and R are
disjunctive.7

Proof. From lemma 2.1 with D = p → p for some p. That A16 is a
theorem given A11 is well-known, and so the hence-claim follows. ⊣

Lemma 2.2. If L extends B[A15, R7] and has no more primitive rules
than R1, R2, and R7, and is such that there is a D such that ∅ ⊢L D

and that for all A, B, ∅ ⊢L A ∧ (A→ B)
D
→ B, then L is disjunctive.

7 That these logics are disjunctive is an obvious corollary of the proof of reasoning
by cases in (Meyer and Dunn, 1969, pp. 461f).
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Proof. The proof is an extension of the above, and so I’ll only consider
Rd7. We need, then, to show that {A∨C, (∼A∨B)∨C} ⊢L B∨C. The
premises adjunct together to form (A ∨ C) ∧ ((∼A ∨ B) ∨ C). Fiddling
yields (A∧ (∼A∨B))∨C and then (A∧∼A)∨ ((A∧B)∨C). Since A15,
i.e. excluded middle, is an axiom, ∼(A ∧ ∼A) is a logical theorem, and
so (A ∧B) ∨ C follows using R7. B ∨ C follows, then, by fiddling. ⊣

Corollary 2.3. Any logic which has no more primitive rules than R1,
R2, and R7 and extends TW[A15, A16, R7] is disjunctive. Hence, T[R7],
Π′(= E[R7]), and R[R7] are disjunctive.

Proof. Same as above corollary with the additional note that it is well-
known that A15 is a logical theorem given A12. ⊣

Notice also that if L is any logic extending B and contained in Π′,
then L[A◦, R◦, A←, R←] fails to be disjunctive: any logic with the ◦-
principles yield that

{A ∧ (A→ (B → (C → D)))} ⊢L B ◦ C → D

but the Π′[A◦, R◦, A←, R←]-model depicted in figure 2 shows that

{∼A ∨ (A ∧ (A→ (B → (C → D))))} 0L ∼A ∨ (B ◦ C → D).

Similarly, any such logic yield that

{B ∧ (A→ (B → C))} ⊢L C ← A,

but the Π′[A◦, R◦, A←, R←]-model depicted in figure 2 shows that

{A ∨ (B ∧ (A→ (B → C)))} 0L A ∨ (C ← A).

Generally, adding an axiom to a disjunctive logic will result in a disjunc-
tive logic, but adding a new rule, as is the case in the examples above,
need not.

2.2. Two easy lemmas

In order to show that the suggested frame condition for A13 truly does
capture this axiom, we need to have ready two easy derivational facts
regarding the axiom A13.

Lemma 2.3. The rule {�A,�B} 
 �(A ∧B) is derivable in B[A13].
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3

1

@@✁✁✁✁
2

^^❂❂❂❂

0

^^❂❂❂❂
@@✁✁✁✁

→ 0 1 2 3 ∼

0 3 3 3 3 3

1 0 3 0 3 2

2 1 1 3 3 1

3 0 1 0 3 0

← 0 1 2 3

0 3 2 0 0

1 3 3 1 1

2 3 2 2 2

3 3 3 3 3

◦ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 1 2 3

3 0 1 2 3

T = {x | 3 � x} = {3}

∼1 ∨ (1 ∧ (1→ (2→ (1→ 0)))) = 3
∼1 ∨ (2 ◦ 1→ 0) = 2

2 ∨ (1 ∧ (2→ (1→ 0))) = 3
2 ∨ (0← 2) = 2

Figure 2. A non-prime Π′[A◦, R◦, A←, R←]-model

Proof.

(1) (A→ A)→ A assumption
(2) (B → B)→ B assumption
(3) (A→ A) ∧ (B → B)→ A ∧B 1, 2, fiddling
(4) (A ∧B → A ∧B)→

((A→ A) ∧ (B → B)→ A ∧B) 3, suffixing rule (R4)
(5) ((A→ A) ∧ (B → B)→ A ∧B)→ A ∧B A13
(6) (A ∧B → A ∧B)→ A ∧B 4, 5, transitivity ⊣

Lemma 2.4. {A→ B} 
 �(A→ B) is a derivable rule in B[A13].

Proof. Let C := A→ B.

(1) A→ B assumption
(2) (B → B)→ (A→ B) 1, R4
(3) (A→ A) ∧ (B → B)→ (A→ B) 2, fiddling
(4) (C → C)→ ((A→ A) ∧ (B → B)→ C) 3, R4
(5) ((A→ A) ∧ (B → B)→ C)→ C A13
(6) (C → C)→ C 4, 5, transitivity ⊣

The next task is to set forth the semantic machinery. Before doing
so, however, a digression is given on a rather unfortunate feature of E,
namely that several distinct logics have been thus named.
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3. Several logics named ‘E’

Great confusion can arise when distinct objects go by the same name.
The is the case with E and has resulted in the impression that E fails
to be even weakly complete with regards to the simplified semantics.
This section gives an account of why the confusion arose to begin with.
The section is divided into two subsection. The first shows that certain
suggestions for how to axiomatize E are too weak  even when the target
notion is restricted to logical theoremhood  whereas the second subsec-
tion deals with axiomatizations which utilize primitive rules which fail
to be derivable in E.

3.1. Too weak axiomatizations

Meyer (1970, fn. 3) noted that “E has been around long enough to have
picked up several alternative sets of axioms.” Anderson and Belnap’s
first axiomatization of E used A13 as the characteristic axiom of E (cf.
Anderson and Belnap, 1958). In a quest to separate the purely condi-
tional features of E from its conjunctive features, however, they later
came to prefer an axiomatization which replaces A13 by the following
two axioms (cf. Anderson and Belnap, 1975, § 21.1):

(A17) �A ∧�B → �(A ∧B)
(A18) ((A→ A)→ B)→ B

It is well-known that both A17 and A18 are logical theorems of E

and that A13 is a logical theorem of T[A17, A18]. Note, however, that
A17 fails in general to be derivable in logics with A13, but without the
pre- and suffixing axioms A9 and A10. A counter-model for Bd[A13] is
displayed in figure 3.

There is, however, a way of separating the implicational and con-
junctive parts of A13 which works also for logics without the pre- and
suffixing axioms:

Theorem 3.1. A13 is a logical theorem in any logic extending B if and
only if A18 is a logical theorem and A17r below is an admissible rule.

(A17r) {�A,�B} 
 �(A ∧B)

Proof. A18 is evidently a theorem if A13 is, and lemma 2.3 showed
that A17r is in fact derivable given A13 which entails that it is also
admissible. To complete the proof it therefore suffices to show that A13
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T = {x | 2 � x} = {2, 4, 5}
�2 ∧�3→ �(2 ∧ 3) = 0

5

4

OO

2

@@✁✁✁✁
3

^^❂❂❂❂

1

^^❂❂❂❂
@@✁✁✁✁

0

OO

→ 0 1 2 3 4 5 ∼ �

0 4 4 4 4 4 4 5 0

1 0 4 4 4 4 4 4 0

2 0 1 2 1 4 4 3 2

3 0 0 0 2 4 4 2 1

4 0 0 0 1 4 4 1 4

5 0 0 0 0 0 4 0 4

Figure 3. A Bd[A13] counter-model to A17

is a logical theorem given the admissibility of A17r and the theoremhood
of A18. Let D in the following be (A→ A) ∧ (B → B)

(1) �(A→ A) A18, def. of �
(2) �(B → B) A18, def. of �
(3) (D→ D)→ D 1, 2, A17r, def. of �
(4) (D→ C)→ ((D→ D)→ C) 3, suffixing rule
(5) ((D→ D)→ C)→ C A18
(6) (D→ C)→ C 4, 5, transitivity ⊣

Belnap noted in his PhD thesis that the logic P, which amounts to
T[A18], is “apparently inadequate” for deriving A17 (cf. Belnap, 1959,
1960, ch. 6.1). From the above results it follows that A17 is a logical
theorem of P if and only if A17r is admissible in P if and only if A13 is
a logical theorem of P, if and only if P is the same logic as E. That P is
a proper sublogic of E follows, then, from the fact that the P-model dis-
played in figure 4 verifies the P-theorems �(A→ A) and �(B → B) for
every formula A and B, but fails to make true �((A→ A)∧ (B → B)).8

Theorem 3.2. The logical theorems of P is a proper subset of the logical
theorems of E.

This, then, shows that the logic called ‘E’ in the supplement to
(Mares, 2024b) is rather the logic P. Furthermore, the logic called ‘E’ in
(Mares, 2024a) is axiomatized in a way which amounts to T[A19], where

8 Note also that the logic T was on occasion referred to using the letter ‘P’ (see,
e.g., Kron, 1973) although this naming convention is long since obsolete.
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T = {x | 2 � x} = {2, 3, 4, 5}
�((1→ 1) ∧ (2→ 2)) = 0 6∈ T

5

3

@@✁✁✁✁
4

^^❂❂❂❂

1

OO

2

gg◆◆◆◆◆◆◆◆

OO

0

^^❂❂❂❂
@@✁✁✁✁

→ 0 1 2 3 4 5 ∼ �

0 5 5 5 5 5 5 5 0

1 0 4 0 5 0 5 4 0

2 0 0 3 3 5 5 3 0

3 0 0 0 3 0 5 2 3

4 0 0 0 0 4 5 1 4

5 0 0 0 0 0 5 0 5

Figure 4. A P-model in which A17r fails

A19  called specialised assertion therein (cf. Mares, 2024a, § 9.9)  is
the axiom

(A19) (A→ B)→ (((A→ B)→ C)→ C).

T[A19] is, as the following theorem shows, identical to P, and therefore
a proper sublogic of Anderson and Belnap’s E.9

Theorem 3.3. P and T[A19] are the same logic.

Proof. It is evident that A18 is a logical theorem of T[A19]. That A19
is a logical theorem of P is seen from the following derivation, where for
readability α is used as a stand-in for A→ B:

(1) α→ ((B → B)→ α) A10
(2) ((B → B)→ α)→ ((α→ C)→ ((B → B)→ C)) A10
(3) ((B → B)→ C)→ C A18
(4)

(

(α→ C)→ ((B → B)→ C)
)

→ ((α→ C)→ C) 3, R3
(5) α→ ((α→ C)→ C) 3–5, trans. ⊣

This subsection started with Meyer’s note regarding E’s many ax-
iomatizations. He himself made use

(A20) (A→ (B� → C))→ (B� → (A→ C))

rather than A13, where B� is any formula on the form D → E or
conjunctions thereof.10 It is easy to see that this yields A13 as a logical

9 Mares has pointed out to me in private communication that both the semantics
and the natural deduction calculus set forth in (Mares, 2024a) do yield A17. The best
interpretation, then, is that the axiomatizations provided in (Mares, 2024a,b) fail to
yield the intended target and thus ought to be supplemented by A17.

10 Note that if the “conjunctions thereof” part is left out, the resultant axiom is
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T = {x | 1 � x} = {1, 2}
0→ ((0→ 2)→ 0) = 1 ∈ T
(0→ 2)→ (0→ 0) = 0 6∈ T

(0→ 2)→ ((0→ 2)→ 1)→ 1) = 0 6∈ T

2

1

OO

0

OO

→ 0 1 2 ∼

0 1 1 2 2

1 0 1 1 1

2 0 0 1 0

Figure 5. A Bd[A13]-model in which A19 and A20r fail

theorem. A20, although a logical theorem of E, fails to be derivable
in many logics with A13. The model displayed in figure 5 validates
all of B[A13], but fails to make even the rule version of Meyer’s axiom
truth preserving, nor does it validate Mares’ specialised assertion axiom.
Whether there are frame conditions which capture these axioms in any
ternary semantics is, to my knowledge, an open question.

This subsection has shown that Anderson and Belnap’s separation of
the implicational and conjunctive features of A13 can also be achieved
in weaker logics. However, since the frame conditions corresponding
to A17r, A17 and A18 are at the time of writing unknown  if indeed
such even exist  the current choice of an axiomatization of E will retain
A13 as the characteristic axiom. We have also seen that P is indeed a
proper sublogic of E, as indeed was hypothesized in Belnap’s PhD thesis.
The next section looks at axiomatizations which beget logics which are
properly stronger than E. As we shall see, the main underlying issue
here is that these axiomatizations beget logics which are theorem-wise
identical, but which have different derivability relations.

3.2. Too strong axiomatizations  the δ-rule

and the rule of restricted assertion

Ackermann stated his logic Π′ with R1, R2, and R7 as its primitive
rules which he named ‘α,’ ‘β,’ and ‘γ,’ respectively. However, rather
than Anderson and Belnap’s axiom A13, Ackermann made use of a forth
primitive rule, namely the “δ-rule”:

(δ) {B, A→ (B → C)} 
 A→ C.

a logical theorem of P. This is, however, the characteristic axiom of E as set forth in
both (Dunn, 1966, p. 4) and (Galatos et al., 2007, p. 104) which shows, then, that
also these axiomatizations of E are too weak.
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T = {x | 1 � x} = {1, 3}
(1→ 1)→ 1 = 0 6∈ T
2← 2 = 2 6∈ T

3

1

@@✁✁✁✁
2

^^❂❂❂❂

0

^^❂❂❂❂
@@✁✁✁✁

→ 0 1 2 3 ∼

0 3 3 3 3 3

1 0 3 0 3 2

2 0 0 3 3 1

3 0 0 0 3 0

← 0 1 2 3

0 3 0 0 0

1 3 1 1 1

2 3 2 2 2

3 3 3 3 3

◦ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

Figure 6. A Π′d[A◦, R◦, A←, R←]-model in which δ and restricted assertion
fail

Ackermann explicitly stated that the first three rules are applicable also
in the context of non-logical axioms, but argued that that cannot be the
case with the δ-rule, since it would allow one to infer that A is neces-
sary from the assumption that it is merely true (cf. Ackermann, 1956,
pp. 125f). Ackermann therefore restricted the rule to be applicable only
if B is a logical theorem.11 Although noted countless times before, it
is worth reminding that the unrestricted δ-rule is interderivable with
R6, and that it is the case that for L ∈ {E, Π′}, that if ∅ ⊢L B, then
{A → (B → C)} ⊢L A → C. A13 is obviously a logical theorem given
such a restricted δ-rule, and so it seems a fair judgement that the cur-
rent Anderson-Belnap type axiomatization of Π′ captures Ackermann’s
intended logic. Since it only involves one type of rule, it is also the
preferable axiomatization of it.

Restall (1993) showed how to adequately model restricted assertion
within the simplified semantics. Although not a new observation, it is
for present purposes important to stress that that rule is not derivable
in either E or Π′. Figure 6 shows forth a model for the logic Π′ as here
defined in which the δ-rule and the interderivable restricted assertion
rule fail to hold. To obtain a strongly sound and complete semantics for
E and Π′, then, the correct frame condition for the characteristic axiom
of E  axiom A13  must be obtained.

11 The same type of restriction is intended with regards to Ackermann’s ε-rule
which, unlike rules α, β, and γ, is stated using the notion of provability: “If A→ B and
(A → B) ∧ C → f are both provable, then so is C → f” (Ackermann, 1956, p. 124)
(my own translation). ‘f’ was Ackermann’s symbol for his propositional constant.
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Despite that the above remarks are not new, E is sometimes thought
of as including the δ-rule or the interderivable rule of restricted assertion.
One such example is found in Slaney’s computer program MaGIC in which
the logic E is defined as T[R6] (with two sets of propositional constants).
If one is only interested in logical theorems, this is fine since R6 is ad-
missible in E. If the semantics is to be strongly complete, however, it
cannot treat a non-derivable rule as being truth preserving.12

All rules dealt with in SE4  wherein the original Routley-Meyer sem-
antics for E was first laid out  are formulated using the locution “from
__to infer . . . ”. It is worth underlining, then, that the notion of deriv-
ability intended in SE4 is that specified in (Routley et al., 1982, pp. 286f)
which does not allow derivations from arbitrary premises.13 Their claim,
then, that E as defined here, but augmented with a propositional con-
stant t axiomatized using t → (A→ A) and (t→ A)→ A as axioms, is
such as to make it the case that “the rule of Necessitation (NR): From
A to infer t → A, is a derived rule of E” (Routley et al., 1982, p. 408) is
true. It is so, however, because of their restrictive notion of derivability
which makes the rules applicable only to logical theorems. That the
necessity rule is admissible in E augmented with t is well-known. So is

12 Let me stress that Slaney seems quite aware of this as he notes that one can
model Anderson and Belnap’s E by loading T and manually add to it the characteristic
axiom of E (cf. Slaney, 1995, p. 54).

MaGIC is a brilliant tool. What makes it truly wonderful is the fact that Slaney
has even given instructions for how to hard-code further axioms and rules into the
program. One can, therefore, write ones one test routines which generally will speed
up the processing time significantly. A test-routine fit for A13 is the following “group-3
test” (MaGIC is written in C):

/∗ ∗∗ ( ( ( a −> a ) & ( b −> b ) ) −> c ) −> c ∗∗∗/
boolean characterAxE_test ( t r s T)
{

int a , b , c ;

FORaLL( a ) FORaLL(b) FORaLL( c )
i f ( ! ord [C[K[C[ a ] [ a ] ] [ C[ b ] [ b ] ] ] [ c ] ] [ c ] ) {

Ref ( impindex [ a ] [ a ] , T) ;
Ref ( impindex [ b ] [ b ] , T) ;
Ref ( impindex [K[C[ a ] [ a ] ] [ C[ b ] [ b ] ] ] [ c ] , T) ;
return f a l s e ;

}
return t rue ;

}
13 SE4 is found in (Routley et al., 1982, pp. 407–424).
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its nonderivability.14 I should also like to note that SE4 lacks a definition
of semantic consequence which would correspond to the notion of deriv-
ability used in this paper. The goal of SE4, then, is proof-theoretically
and semantically only to specify logical theoremhood and logical truth
along with the corresponding result of weak soundness and completeness.

I should stress that the E-claims pointed to are not incorrect. How-
ever, by using different definitions of E, or different accounts of conse-
quence, what is claimed is easily misunderstood. This paper is intended
to ever so slightly expand upon the results in (Restall, 1993). First of
all, then, it is pertinent to note that although no formal definition of
derivability is therein set forth, it is rather evident that his “provability
relation” is what is captured by the current definition of a Hilbert proof
(cf. Restall, 1993, fn. 1). Like MaGIC, Restall (1993) also defines E as
T[R6]. Rather than discussing whether this is correct, however, Restall
points to the fact that T[R6] fails to be disjunctive:

It is to be noted that the simplified semantics given can only model
disjunctive systems. That is, systems such that the disjunctive form of
every truth preserving rule is truth preserving. Not every logic satisfies
this criterion  a notable candidate is E, for the disjunctive form of its
characteristic rule, from α to (α→ β)→ β, fails to be truth preserving.
The reason for this is that α ∨ ¬α is a theorem of E, but ¬α ∨ ((α →
β)→ β) is a non-theorem. (Restall, 1993, p. 482)

This, then, is correct provided E is identified as T[R6]. That E as defined
in this paper, however, is disjunctive, was shown in lemma 2.2.15 Note
that Restall’s justification for why disjunctive restricted assertion isn’t
truth preserving yields more information that what is strictly speaking

14 For a model verifying this, let JtK = 3 in the model in figure 6. It is then easy
to verify that the model also makes the t-axioms true, but that the rule {A} 
 t→ A

fails to preserve truth.
15 Restall’s claim that E fails to be disjunctive is repeated in (Restall, 2000,

p. 305) in which E is identified as T augmented by a truth constant t governed by the
axiom (t → A) → A and the rules {A} 
 t → A and {t → A} 
 A (as well as rules
for the residuation for the fusion connective) (cf. ibid. p. 40). It is easy to show that
restricted assertion is a derivable rule of such a logic, but that the resultant logic fails
to be disjunctive, essentially due to the primitive t- and ◦-rules.

I should also note that it is pointed out in (Anderson et al., 1992, p. 172) that
the frame condition which is adequate for the δ-rule  Raga for every a in the type-2
setting where g, then, is the base point of the frame (cf. sect. 4.2)  is too strong to
yield completeness in the case of E (as therein and herein defined), since it “would
verify the nontheorem ∼A ∨ (A→ A→ A).” The point is therein credited to Meyer.
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necessary. To show that the rule isn’t truth preserving it is necessary to
show that ((A → B) → B) ∨ C isn’t derivable from A ∨ C, something
which follows from a strongly sound semantics in which it is possible
to make the premise true while the conclusion not true. Instead of
this, however, Restall points to the fact that there are even instances
in which the premise is a logical truth, while the conclusion is not true.
This, obviously, suffices, but it also shows more: Anderson and Belnap’s
axiomatization of E has restricted assertion as an admissible rule, and so
is theorem-wise identical to Restall’s T[R6]. His example, then, shows
that there are admissible rules of E such that the disjunctive version of
the rule fails to be admissible. What is emphatically not claimed in the
above quote, then, is that the simplified semantics can only be given for
logics which are such that the disjunctive version of every admissible rule
is admissible. The justification given for Restall’s claim simply shows
more than is needed to support it.

I have shown forth three instances in which E has either been iden-
tified as a strictly stronger logic than E as defined in this paper, or
defined with a restricted notion of derivability which simply disallows
non-logical premises. Although the latter is not uncommon (see, e.g.,
Mares, 2000; Mares and Standefer, 2017) and in some cases makes for a
smoother proof theory, it also makes it indeterminate what the intended
unrestricted consequence relation for the logic is.

That T[R6] isn’t disjunctive and therefore cannot be modeled using
the simplified semantics is interesting. So is the fact that T[R6]’s set of
logical theorems is properly contained in that of Td[R6]. The more philo-
sophically interesting question, however, is whether restricted assertion
ought to be a derivable rule of a logic of entailment, which, after all, is the
philosophically most interesting notion pertaining to E. Note, then, that
E and Π′ were from their very conceptions thought of as modal logics.
Anderson and Belnap stressed that E’s conditional should be thought of
as expressing the modal notion of entailment. Ackermann, on the other
hand, stressed that a necessity operator could be defined in his logic
if it was but extended with the propositional constant f. Anderson
and Belnap (1959) showed that such a constant isn’t needed for this
purpose, and that the current definition of � has S4-properties in both
E and Π′. As emphasized in both (Ackermann, 1956) and in Anderson
and Belnap’s discussion of the δ-rule (cf. Anderson and Belnap, 1975,
§ 8.2), this modal feature is thwarted if the unrestricted δ-rule is added.
One might, of course, hope to find a different definition of � in T[R6]
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for which the necessity rule is merely admissible. Thus Ackermann’s
goal might be satisfied in such a logic. Reading a conditional for which
the δ-rule is derivable as expressing entailment, however, seems out of
the question since it yields that any contingent truth A is entailed by
the necessary truth that A entails itself  (A → A) → A follows from
A in T[R6]. Neither T[R6] nor its disjunctive extension Td[R6], then,
are good replacements for E given Anderson and Belnap’s programmatic
ideas of what the conditional is meant to express.

Restricted assertion is admissible in E, whereas its disjunctive version
fails to be. The referee pointed to the possibility of interpreting the notion
of truth-preservation found in (Restall, 1993) as covering not only deriv-

able rules but also admissible, and so to the possibility of taking Restall
as therein claiming that the disjunctive version of merely admissible rules
must also be admissible for the simplified semantics to be able to model
the logic, and that restricted assertion is to be interpreted as a merely
admissible rule in Restall’s axiomatization of E. This would indeed make
Restall’s axiomatization of E equivalent to that of Anderson and Belnap.
First of all, Restall’s (1993) wording of every rule is uniform, and so there
is nothing explicit which indicates that the rule is to be interpreted dif-
ferently. This contrasts, then, to what is the case in (Ackermann, 1956).
Secondly, when Restall’s frame condition for restricted assertion is in
place, his semantics yields that ((p→ p)→ p) ∨ q is true in any model,
if {p∨q} is, and so strong completeness would be lost if the proof theory
only sanctions using the rules upon logical theorems. It is, in any case, a
fact that E augmented with admissible disjunctive restricted assertion 
E[Rd

a 6], let’s say  does properly extend Anderson and Belnap’s E even
theoremwise, seeing as ∼A∨�A is a logical theorem of E[Rd

a 6], but not
of E. No “decent modal logic,” as Restall (2000, p. 305) put it, has such
a logical theorem, and thus even though E[Rd

a 6] might be interesting to
investigate, it is the purpose of this paper to show that the simplified
semantics can indeed model at least two decent modal logics  E and Π′.
Furthermore, it is not merely the logical theorems of these logics which
can be captured using the semantics; their full consequence relations are
captured if the semantics is set up in the way detailed in the next section.

To sum up: There are several logics that have gone by the name of
‘E.’ One of these  T[R6]  fails to be even weakly complete with regard
to the simplified semantics. Nor is it disjunctive. However, Anderson
and Belnap’s version of E  the only logic that will be so called going for-
ward  is disjunctive. That there is a version of the simplified semantics
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E is strongly sound and complete with regard to is shown in the following
three sections. From this result it follows, then, that a logic can have
admissible rules the disjunctive version of which fail to be admissible,
yet be adequately modeled using the ternary semantics.

4. Interpretations

The following accounts for the semantics as it is presented in (Restall,
1993). The only significant difference is the latter three requirements
in def. 4.1(8) which are needed to allow the standard truth conditions
for the converse conditions (condition iii) and fusion (condition iv) to
work.16 There are three subsection trailing the account of the simplified
semantics. The first such accounts for the notion of a reduced frame
within the current version of the simplified semantics. The second gives a
short presentation of the two main differences regrding how the Routley-
Meyer semantics is set up before the third subsection accounts for the
origins of the definition of the set Z which will be used to capture the
characteristic axiom of E.

defn 4.1. A frame is a quintuple F = 〈g, W, R, ∗,⊑〉 such that for all
a, b, x, y, z ∈W ,

1. g ∈W
2. R ⊆W 3

3. Rgxy ⇔ x = y
4. ∗ : W →W 17

5. x∗∗ = x18

16 As we shall see, these are needed for the proof of lemma 4.3 to go through.
The requirements are new to this paper. The latter, I would like to note, is, however,
a restricted version of that set forth in (Routley et al., 1982, pp. 365f) which reads

p6. a ≤ d & Rbca >. Rdcd

There is an obvious typo in the consequent here, which ought to have been Rbcd.
Although it is sufficient for strong soundness, the requirement is too strong for com-
pleteness within the simplified semantics as it would force c = d if b = g or both c = g

and permutation is in force.
17 ∗(a) will be written a∗ and is called the star-mate of a.
18 As the referee pointed out, this frame condition can be weakened. One pos-

sibility would be to rather require x∗∗ ⊑ x & x ⊑ x∗∗, where the first conjunct
would correspond to the axioms ∼∼A → A and the latter to A → ∼∼A. Since ⊑
is in general not antisymmetric, this would amount to a properly weaker demand.
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6. a ⊑ a
7. a ⊑ b & b ⊑ c⇒ a ⊑ c
8.

a ⊑ b⇒



























b∗ ⊑ a∗ (i)

Rbxy ⇒ Raxy if a 6= g (ii.a)
Rbxy ⇒ x ⊑ y if a = g (ii.b)

Rxby ⇒ Rxay if x 6= g (iii)

Rxya⇒ ∃z(y ⊑ z & Rxzb) if x 6= g (iv)

defn 4.2. A function v : W × PropVar → {0, 1}19 is an evaluation

function for a frame I = 〈g, W, R, ∗,⊑〉 provided it satisfies the condi-
tion that

a ⊑ b⇒ (v(a, p) = 1⇒ v(b, p) = 1)

for every p ∈ PropVar.
If v is an evaluation function on a frame F , then M = 〈F , v〉 is called

a model.

defn 4.3. For every model there is a “true at”-relation � generated as
follows, where a is any element in W :

(i) a � p ⇔ v(a, p) = 1
(ii) a � A ∧B ⇔ a � A & a � B
(iii) a � A ∨B ⇔ a � A OR a � B
(iv) a � ∼A ⇔ a∗

2 A
(v) a � A→ B ⇔ ∀x∀y(Raxy & x � A⇒ y � B)
(vi) a � B ← A ⇔ ∀x∀y(Rxay & x � A⇒ y � B)
(vii) a � A ◦B ⇔ ∃x∃y(Rxya & x � A & y � B)

• A formula A is true in a model, just in case g � A.
• A rule {A1, . . . , An} 
 B preserves truth in a model, just in case

it is truth preserving at g: (∀i ≤ n : g � Ai)⇒ g � B.
• Semantic consequence in a model: for any set Θ ∪ {A},

Θ �M A⇔ (g � B for every B ∈ Θ⇒ g � A).

It would, however, complicate the issue of deciding when the ⊑-reduct of a frame 
〈g, W, R, ∗〉 suffices such as is the case with for instance TWd-frames. Also, one can
model logics with weaker double negation principles: For instance, by simply requiring
that g∗∗ ⊑ g (g ⊑ g∗∗), one would obtain a semantics fit for the rule {∼∼A} 
 A

({A} 
 ∼∼A). It is beyond the scope of this paper to go further into this issue,
however.

19 That is, v is a propositional assignment function which for every point w ∈W

and propositional variable p, assigns either the truth value 0 (false) or 1 (true).
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• An L-model is a model which satisfies all the frame conditions cor-
responding to the axioms and rules of L.

• Semantic consequence for a logic L: for any set Θ ∪ {A},

Θ �L A⇔ Θ �M A for every L-model M.

Lemma 4.1. g � A→ (B → A ◦B)

Proof. Let Rgab with a � A. To show that b � B → A ◦ B, let c, d be
any points such that Rbcd with c � B. Since Rgab, it follows that a = b
and therefore that d � A ◦B. ⊣

Lemma 4.2. g � A→ ((B ← A)→ B)20

Proof. To show that g � A → ((B ← A) → B), let a, b be any points
such that Rgab and a � A. To show that b � (B ← A)→ B, let c, d be
any points such that Rbcd with c � B ← A. We must show that d � B.
Since Rgab, it follows that a = b and therefore that b � A. The truth
condition for ← now yields that d � B. ⊣

Lemma 4.3. For any model M, with a, b ∈W and A any formula,

a ⊑ b & a � A =⇒ b � A.

Proof. The proof is an induction on the complexity of formulas. The
base case is immediate from the criteria for being an evaluation function.

Inductive hypothesis (IH):
Assume that B and C are any two formulas such that for every

a, b ∈W and D ∈ {B, C}:

a ⊑ b & a � D =⇒ b � D.

(∼) If a � ∼D, then a∗
2 D, and since b∗ ⊑ a∗ follows from the

assumption that a ⊑ b, it follows from IH that b∗
2 D and therefore that

b � ∼D.
(∨&∧) Immediate from IH.
(→) See (Restall, 1993, thm. 16).
(←) Let a ⊑ d with a � C ← B. To show that d � C ← B, let b, c be

such that Rbdc with b � B. The proof ends if we can show that c � C.

20 One of the modally relevant properties of E and Π′ is the so-called Ackermann
property  that no logical theorem is on the form A→ (B → C) unless A has a least
one subformula D → E (see Anderson and Belnap, 1975, § 22.1). Note, then, that
any logic with either ◦ or ← cannot satisfy the Ackermann property.
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• Assume that b = g. Since b � B, g � (C ← B) → C by lemma 4.2.
Since Rgaa and a � C ← B, it follows that a � C, and so IH yields
that d � C. Since b = g and Rbdc, it follows that d = c and therefore
that c � C.

• Assume that b 6= g. It follows from def. 4.1(8)(iii) that Rbac. Since
a � C ← B and b � B, it then follows that c � C.

In either case, then, c � C. Since b and c were arbitrary, it follows that
d � C ← B.

(◦) Let a ⊑ d with a � B ◦ C. Then there are b, c such that Rbca
with b � B and c � C. From lemma 4.1 above we have that g � B →
(C → B ◦ C) and since Rgbb, it follows that b � C → B ◦ C.

• Assume first that b = g. Then c = a, and since a ⊑ d it follows from
IH that d � C. Since Rgdd it therefore follows that d � B ◦ C.

• If b 6= g, then by def. 4.1(8) there is some e such that c ⊑ e with
Rbed. It follows from IH that e � C and therefore that d � B ◦C. ⊣

defn 4.4. For any frame 〈g, W, R, ∗,⊑〉 with a, b, c, d,∈W ,

1. Z := {a | ∀x∀y(Raxy ⇒ x ⊑ y)}
2. R2abcd := ∃x(Rabx & Rxcd)
3. R2a(bc)d := ∃x(Rbcx & Raxd)

Lemma 4.4. For any frame 〈g, W, R, ∗,⊑〉 with a, b, c ∈W ,

1. g ∈ Z
2. a ∈ Z & Rabc⇒ b ⊑ c
3. a ∈ Z & a ⊑ b⇒ b ∈ Z

Proof. 1. If Rgab, then a = b by def. 4.1(3), and since a ⊑ a by
def. 4.1(6), it follows that g ∈ Z.

2. This follows trivially from the definition of Z.
3. Assume that a ∈ Z & a ⊑ b. In order to show that b ∈ Z, let

c, d ∈ W be such that Rbcd. Since a ⊑ b and Rbcd, it follows from
def. 4.1(8) that either Racd or c ⊑ d. If the first, then also c ⊑ d since
a ∈ Z. The assumption that Rbcd, then, yields the conclusion that
c ⊑ d, and so it follows that b ∈ Z. ⊣

Restall (1993) showed that any logic extending the positive fragment
of the weak relevant logic B with any collection of the axioms A11–A12
and A14–A16 (and many more) as well as the rule of restricted asser-
tion, will be strongly sound and complete with regards to models which
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Frame condition

F(A8) Rabc⇒ Rac∗b∗

F(A9) R2abcd⇒ R2a(bc)d
F(A10) R2abcd⇒ R2b(ac)d
F(A11) Rabc⇒ R2abbc
F(A12) Raa∗a for a 6= g, and g∗ ⊑ g
F(A14) Rabc⇒ ∃x(a ⊑ x & Rbxc)
F(A15) g∗ ⊑ g
F(A16) Raaa
F(R6) Raga

Table 1. Restall’s frame conditions

Frame condition

F(R7) g ⊑ g∗

F(A13) ∃x(x ∈ Z & Raxa)

Table 2. Frame conditions for R7 and A13

satisfies the corresponding frame conditions, provided, that is, that the
logic in question is disjunctive  either because the missing disjunctive
rules are added, or that it is provably disjunctive from the get-go. The
goal of the rest of this paper is to show that this is also the case with
regards to the frame conditions listed in table 2. As easy corollaries,
then, it will follow that also logics such as E and Π′ are indeed strongly
sound and complete with regards to the simplified semantics.

Restall (1993) defined frames in a slightly different way. For logics
such as Bd and TWd, Restall used ⊑-free frames, and only added this
frame component so as to model certain axioms and rules. The following
theorem makes up for the current unnecessary frame clutter:

Theorem 4.1. 1. If L is a logic without ←, then frame condition 8.iii
can be dropped.

2. If L is a logic without ◦, then frame condition 8.iv can be dropped.
3. If L is a logic without ∼, then frame conditions 4, 5, and 8.i can be

dropped.
4. 8.i can be dropped in any frame in which F(A8) holds.
5. If L is a logic which is such that neither of its specific frame conditions

(those listed in tables 1&2) do no involve ⊑, then the ⊑-reduct of any
frame suffices for validating every axiom and rule of the logic.
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Proof. By simply inspecting the above proofs it is readily seen that
8.iii is only needed in connection with ←. Similarly for ◦ and ∼. Re-
garding ⊑: Note that = satisfies all the basic requirements on ⊑. Thus
if no additional requirements are set forth, any frame 〈g, W, R, ∗,⊑〉 can
be replaced by 〈g, W, R, ∗, =〉, and since identity is definable for any
frame, it follows that the reduct frame 〈g, W, R, ∗〉 does the same job as
〈g, W, R, ∗,⊑〉.21 ⊣

4.1. Reduced frames

The following explains the notion of a reduced frame, and thus in part
why this paper is named as it is.

defn 4.5. A frame/model in which Z = {x | g ⊑ x} is called reduced,
and unreduced if not.

In order to obtain a strong completeness proof for logics like E we
need to be able to set the semantics up so that A13 holds, but the rule
of restricted assertion does not. The frame condition F(A13) is, as we
shall see, correct for modeling A13. As the following result shows, this
isn’t possible if we demand reduced frames.

Proposition 4.1. {A} �M (A → B) → B in any reduced model M in
which the underlying frame satisfies F(A13).

Proof. Assume that M is reduced, and let A be any formula such that
g � A. To show that g � (A→ B) → B it suffices to show that for any
a, if a � A → B, then a � B. Assume, then, that a � A → B. F(A13)
yields that Raba for some b ∈ Z, and since M is reduced it follows that
g ⊑ b. Lemma 4.3 yields that b � A, and so a � B. ⊣

It follows, then that since restricted assertion isn’t a derivable rule
of either E or Π′, that we need to allow for unreduced models in order
to obtain a strong completeness proof for these logics.

Note that Z-points do not necessarily verify every logical theorem.
We saw in lemma 2.4 that every true→-formula is necessarily true given
A13. However, not every logical truth need be validated at Z-points. In
TW[A11, A13, A15]  E but with the “reductio” axiom (A→ ∼A)→ ∼A
replaced by the strictly weaker axiom of excluded middle  for instance,

21 This is a somewhat informal proof, but I trust that it suffices for convincing
the reader of the truth of the theorem.
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W := {g, g∗}
R := {〈g, g, g〉, 〈g, g∗, g∗〉, 〈g∗, g∗, g∗〉}
⊑ := {〈g∗, g〉}

v(g, p) := 1 for every prop. variable p
v(g∗, p) := 0 for every prop. variable p

Figure 7. A TW[A11, A13, A15]-model with an irregular Z-point

there can be Z-points at which neither A nor ∼A hold true. In short, Z-
points need not be regular in the sense of making every logical theorem
true. The TW[A11, A13, A15]-model displayed in figure 7 is easily seen
to yield Z = W .22 However, even though g∗ ∈ Z and excluded middle is
a logical axiom, g∗

2 p ∨∼p for every propositional variable p. In logics
like E, however, one can prove that the rule {A} 
 �A is admissible.23

Models for E will therefore only have Z-points which verify every logical
theorem of E, although such points in unreduced models need not verify
everything true at the base point g.

As we shall see (lemma 5.2), g � A → B if and only if z � A → B
for every z ∈ Z. In short, then, any Z-point, regardless of the logic at
hand, must validate every true “inference tickets,” but need not, as we
saw, validate merely true formulas, nor, assuming that the logic isn’t too
strong, even logical truths. This, then, tells against Slaney’s argument
agains excluded middle by showing that unreduced models allow for the
needed place wherein inference tickets can be differentiated from mere
material truths:

Presumably the motivation for excluded middle is semantic, that it
comes out true “no matter what”; but logic is supposed to sort out what
follows from what, and as such has surely no place for these material
tautologies which just sit around being true and are no inference tickets
at all. (Slaney, 1984, p. 161)

4.2. Four versions of the Routley-Meyer semantics

The Routley-Meyer semantics can be set up in various ways. The most
important difference, however, pertains to how semantical consequence

22 I leave it as an exercise to verify that this is in fact a model for
TW[A11, A13, A15].

23 For a proof, see for instance (Mares and Standefer, 2017, § 3) or (Øgaard,
2021a, thm. 1).
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is defined. Here there are two approaches. The main difference between
these is whether a single base point is required  in which case semantic
consequence is defined as truth preservation of it  or a non-empty set of
regular points all closed under logical consequence is used in which case
semantic consequence is defined as truth preservation over all such.24

The “unsimplified” original Routley-Meyer semantics set forth in (Rout-
ley et al., 1982, ch. 4) as well as in (Méndez, 2009), is of the latter kind.
This is also the case for the simplified semantics presented in (Priest,
2008, ch. 10). Let’s call this the a type-1 semantics. A frame is called
“reduced” in the type-1 semantics just in case it contains but a single
such normal point.25

The definition of semantical consequence in (Restall, 1993) as well as
in this paper makes use of a single base point g. Let’s call this a type-2
semantics. A reduced type-1 frame, then, is evidently a type-2 frame,
although not necessarily a reduced type-2 frame. Although SE4 lacks
a definition of semantical consequence corresponding to Hilbert conse-
quence, the one belonging to it is the type-2 version which employs a
single base point. This, then, is the reason why the current version of the
Routley-Meyer semantics ought to be viewed as SE4’s simplified edition.

There is nothing to indicate that the choice between a type-1 and a
type-2 set-up has any impact on which logical principles can be modeled.
It is worth pointing out, however, that a frame condition adequate for
a given logical axiom or rule may need some tinkering when moving
between the two types.

4.3. The origins of the definition of Z

In the semantics set forth in SE4, a primitive frame component P is
required which is defined to satisfy the property corresponding to frame
condition lemma 4.4(2), namely

∃x(Px & Rxab)⇒ a ⊑ b,

for any points a, b. The true-at condition for the propositional constant t
therein used is then specified as a � t⇔ ∃x(Px & x ⊑ a). Furthermore,

24 Such points are called normal in (Priest, 2008, ch. 10). Note, then, that that
term is most often used to refer to points a for which a = a∗  points which are
consistent and complete.

25 That ∼A ∨ ((A→ A)→ A holds in reduced type-1 frames was pointed out in
(Maksimowa, 1973, p. 20).
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the frame condition for the characteristic axiom of E  A13  was, to my
knowledge, first set forth in SE4 (cf. Routley et al., 1982, p. 411) and
therein specified as

∀x∃y(y ∈ P & Rxyx).

The authors of SE4  Sylvan (né Routley) and Meyer  state that

P is required to cope with E in view of the way E introduces necessity
as part of the logic of entailment [. . . ]. Admittedly, the presence of
P, and its apparent uneliminability, makes the semantics of E

=
more

cumbersome and less attractive than that of some of its relevant rivals
such as R and T. (Routley et al., 1982, p. 407)

A way to define such a set P within the unsimplified type-2 semantics,
however, was suggested in (Anderson et al., 1992), where it is noted that

a semantics can be given for E which is based on no elements other than
those required for the nonmodal calculus R. The following is due to
Meyer (unpublished), though we have played with the details. [. . . ] we
add a key definition, answering to the modal character of E, describing
a set-up a as verifying all those entailments verified at the base set-up
0: Za iff, for every x, y, if Raxy then R0xy.

(Anderson et al., 1992, p. 171)

Defining Z this way within the simplified semantics would yield that
Raxy only if x = y for any a ∈ Z. Although this suffices for soundness,
the completeness proof does not seem to go through if this is required.
Note, however, that the original Routley-Meyer semantics of the above
quote makes use of a defined binary relation a ≤ b := R0ab rather than
the primitive ⊑ of the simplified semantics. It is, then, the intent, rather
than the character, of the above quote which is the backdrop of the
current definition of Z.

5. Soundness

The following lemma allows for slightly shorter proofs in that in order to
establish that g � A → B it suffices to show that a � B for any a ∈ W
such that a � A. I will in the following do so without reference to the
lemma obtained given def. 4.1(3) and def. 4.3(v).

Lemma 5.1. g � A→ B ⇐⇒ ∀x ∈W (x � A⇒ x � B).

The above lemma is often glossed as entailment in a model being
representable as truth preservation over all points. Note, then, that
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entailment is also representable as “supertruth” at Z-points:

Lemma 5.2. In any model: g � A→ B ⇐⇒ ∀z(z ∈ Z ⇒ z � A→ B).

Proof. (⇒): Assume that z ∈ Z and that g � A → B. Let Rzab
with a � A. By definition of Z it follows that a ⊑ b, and so b � A by
lemma 4.3. Since Rgbb it then follows that b � B and therefore that
z � A→ B. (⇐): This follows from the fact (lemma 4.4) that g ∈ Z. ⊣

It follows from the above lemma that A→ A holds at every Z-point:

Corollary 5.1. In any model with z ∈ Z: z � A→ A.

Lemma 5.3 (F(R7)  R7). R7, as well as its disjunctive version, pre-
serves truth in any model which satisfies F(R7).

Proof. Assume that g � A and g � ∼A ∨ B. Then either g � ∼A or
g � B. If g � ∼A, then it follows form def. 4.3(iv) that g∗

2 A. However,
since g � A and g ⊑ g∗ by F(R7), it follows from lemma 4.3 that g∗

� A.
Contradiction. Thus it must be the case that g � B.

The case for the disjunctive version of R7, the rule

{A ∨ C, (∼A ∨B) ∨ C} 
 B ∨ C,

is similar and left for the reader. ⊣

Lemma 5.4 (F(A13)  A13). A13 holds in any model which satisfies
F(A13).

Proof. In order to show that g � (((A → A) ∧ (B → B)) → C) → C,
assume that a � ((A → A) ∧ (B → B)) → C. By F(A13), let b be
such that b ∈ Z and Raba. That b � (A → A) ∧ (B → B) follows from
corollary 5.1, and so by the true-at clause for the conditional it follows
that a � C. ⊣

Lemma 5.5. The axioms and rules of Bd are true / preserve truth in
any model. Moreover, R6, as well as it’s disjunctive version, preserves
truth in any model, and A8–A12 and A14–A16 hold true in any model
in which the corresponding frame condition holds.

Proof. For A14, see (Restall and Roy, 2009); for the rest, (Restall,
1993). ⊣

Lemma 5.6. A◦, R◦, and Rd◦ hold in any model.

Proof. (A◦) See lemma 4.1.
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(R◦) Assume that g � A → (B → C). Let c be any point such that
c � A ◦ B. Then there are points a, b such that Rabc with a � A and
b � B. Since Rgaa, it follows that a � B → C from which it follows that
c � C and therefore that g � A ◦B → C.

(Rd◦) Similar to the non-disjunct version. ⊣

Lemma 5.7. A←, R←, and Rd← hold in any model.

Proof. (A←) See lemma 4.2.
(R←) Assume that g � A → (B → C). In order to show that

g � B → (C ← A), let b be any point such that b � B. To show that
b � C ← A, let a, c be any points such that Rabc with a � A. It follows
that a � B → C, and since b � B that c � C. It follows, then, that
b � C ← A and therefore that g � B → (C ← A).

(Rd←) Similar to the non-disjunct version. ⊣

We have now seen that the axioms and rules all hold true provided
the corresponding frame conditions are enforced. As an easy corollary,
then, we have the following result:

Theorem 5.1 (Strong soundness). Σ ⊢L A =⇒ Σ �L A, where L is any
disjunctive logic obtainable from B by adding any number of the axiom
and rules (along with their disjunctive versions) listed in section 2.

6. Completeness

The goal of this section is to prove that for any set of formulas Σ ∪{A},

Σ �L A =⇒ Σ ⊢L A,

where L is as in the above soundness theorem. Most of what is needed
to make the proof go through was provided either in (Routley et al.,
1982), Priest and Sylvan (1992), Restall (1993), or in (Restall, 2000).
As previous such proofs, the current one will use the assumption that
Σ 0L A to make a model in which each element of W is a set of formulas.

defn 6.1. • For any set Π of formulas, Π→ is the set of all members
of Π on the form A→ B.

• Σ ⊢Π A := Σ ∪Π→ ⊢ A.
• Σ is a Π-theory :=

(a) A, B ∈ Σ ⇒ A ∧B ∈ Σ
(b) ∅ ⊢Π A→ B ⇒ (A ∈ Σ ⇒ B ∈ Σ)
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• Σ is prime := A ∨B ∈ Σ ⇒ (A ∈ Σ or B ∈ Σ).
• If X is any set of sets of formulas, then R ⊆ X3 is defined thus:

RΣΛΘ ⇔ ∀A∀B(A→ B ∈ Σ ⇒ (A ∈ Λ⇒ B ∈ Θ))

• Σ is Π-deductively closed := Σ ⊢Π A⇒ A ∈ Σ.
• Σ is non-trivial := A 6∈ Σ for some formula A, and Σ 6= ∅.
• Σ is Π-canonical := Σ is a prime and non-trivial Π-theory.

From (Priest and Sylvan, 1992, p. 224) we have:

Lemma 6.1. If Σ 0 A then there is a Π ⊇ Σ such that:

• A 6∈ Π.
• Π is a prime Π-theory.
• Π is Π-deductively closed.

The points of the canonical model will consists of the set of Π-
canonical theories. Note that I’ve required that each such be non-trivial.
The relevant lemmas in (Priest and Sylvan, 1992) and (Restall, 1993)
support this, but the requirement can for present purposes be lifted.

Although Π itself may in many cases play the role of the base point
g, Restall (1993) noted that one needs a copy of Π to make the frame
condition corresponding to the contraction axiom A11 hold true in the
canonical model. It was pointed out in (Restall and Roy, 2009) that
this is still insufficient when the logic in question additionally satisfies
permutation-type principles such as

A→ ((A→ B)→ B)
(A→ (B → C))→ (B → (A→ C))

I’ll follow the second adequate fix suggested in (Restall and Roy, 2009)
with, then, one copy of Π, and one copy of Π’s star-mate Π∗.

defn 6.2 (The canonical frame & model). If Π is a prime, non-trivial,
and deductively closed theory of a logic L, then the canonical frame

CΠ = 〈g, W, R, ∗,⊑〉 is defined as follows:

1. W := {〈Σ, 0〉 | Σ is Π-canonical} ∪ {〈Π, 1〉, 〈Π∗, 1〉}
2. g := 〈Π, 1〉
3. R〈Π, 1〉〈Γ, j〉〈∆, k〉 ⇔ 〈Γ, j〉 = 〈∆, k〉
4. For 〈Σ, i〉 6= 〈Π, 1〉:

R〈Σ, i〉〈Γ, j〉〈∆, k〉 ⇔ ∀A∀B(A→ B ∈ Σ ⇒ (A ∈ Γ ⇒ B ∈ ∆))
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5. Σ∗ := {A | ∼A 6∈ Σ}
6. 〈Σ, i〉∗ := 〈Σ∗, i〉
7. 〈Σ, i〉 ⊑ 〈∆, j〉 ⇔ Σ ⊆ ∆

The canonical model for a canonical frame CΠ is given by the evalu-
ation function

v(〈Σ, i〉, p) = 1⇔ p ∈ Σ.

To avoid too much notational clutter, I will simple use uppercase
Greek letters to refer to members of W . To avoid confusion, then, I’ll
write ‘Π’ for 〈Π, 1〉, ‘Π∗’ for 〈Π∗, 1〉.

Lemma 6.2. For any Π-canonical sets Σ, ∆, Θ such that Σ 6= Π,

RΣ∆Θ ⇔ RΣ∆Θ

Lemma 6.3. For any Π-canonical sets Σ, ∆, Θ,

RΣ∆Θ ⇒ ∀A∀B(A→ B ∈ Σ ⇒ (A ∈ Γ ⇒ B ∈ ∆))

Proof. By definition in the case where Σ 6= Π, and in virtue of ∆ = Θ
being a Π-theory in the case Σ = Π. ⊣

Theorem 6.1. If Π is a non-trivial, prime and Π-deductively closed
Π-theory, then the canonical frame CΠ is a frame.

Proof. We need to check that CΠ satisfies def. 4.1(1–8).

(1–4) That Π ∈ W , R ⊆ W 3, RΠ∆Θ ⇔ ∆ = Θ, and that ∗ is a
function on W is obvious.

(5) For any ∆ ∈ W , A ∈ ∆ ⇔ ∼∼A ∈ ∆ (since ⊢Π ∼∼A ↔ A).
Furthermore, ∼∼A ∈ ∆⇔ ∼A 6∈ ∆∗ ⇔ A ∈ ∆∗∗, and so ∆ = ∆∗∗.

(6–7) Reflexivity and transitivity are basic properties of subsethood.

(8) Assume that Γ, ∆ ∈W are such that Γ ⊆ ∆.

(a) ∆∗ ⊆ Γ ∗. Indeed, assume that A ∈ ∆∗. By definition of ∗ in CΠ

it follows that ∼A 6∈ ∆. But then since Γ ⊆ ∆ also ∼A 6∈ Γ , and so
A ∈ Γ ∗.

(b) Γ 6= Π ⇒ (R∆ΘΨ ⇒ RΓΘΨ). Indeed, assume that Γ 6= Π and
let ∆, Θ, Ψ ∈ W be such that R∆ΘΨ . Let A, B be any formulas such
that A → B ∈ Γ and A ∈ Θ.Since Γ ⊆ ∆, it follows that A → B ∈ ∆,
and since R∆ΘΨ that B ∈ Ψ by the definition of R in CΠ . By the same
definition it finally follows that RΓΘΨ .
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(c) Γ = Π ⇒ (R∆ΘΨ ⇒ Θ ⊆ Ψ). Indeed, assume that Γ = Π and
let Θ, Ψ ∈ W be such that R∆ΘΨ . Let A ∈ Θ. A → A ∈ Π ⊆ ∆, and
so by the definition of R it follows that A ∈ Ψ . Thus Θ ⊆ Ψ .

(d) Θ 6= Π ⇒ (RΘ∆Ψ ⇒ RΘΓΨ). Indeed, assume that Θ 6= Π and
that RΘ∆Ψ . To show that RΘΓΨ , let A → B ∈ Θ and A ∈ Γ . Since
Γ ⊆ ∆, it follows that A ∈ ∆, and since RΘ∆Ψ that B ∈ Ψ .

(e) Ψ 6= Π ⇒ (RΨΘΓ ⇒ ∃Ξ(Θ ⊆ Ξ & RΨΞ∆)). Indeed, assume
that RΨΘΓ with Ψ 6= Π. We have to find a Ξ such that Θ ⊆ Ξ
and RΨΞ∆. The following definition of Ξ is so as to avoid forcing Ψ
to be identical to ∆ in case Θ = Π and a frame condition yielding
Ragb⇒ Rgab is in effect:

Ξ :=

{

Θ if Θ 6= Π
Π if Θ = Π

Π and Π are identical in terms of the subset-relation, and so it will be
the case that Θ ⊆ Ξ for every Θ.26 Let A, B be any formulas such that
A → B ∈ Ψ and A ∈ Ξ. Then A ∈ Θ, and since RΨΘΓ it follows that
A ∈ Γ ⊆ ∆. By the definition of R in the canonical model, then, it
follows that RΨΞ∆. ⊣

Lemma 6.4. For any Π-canonical theory Σ of any canonical model,

A ∈ Σ ⇔ Σ � A.

Proof. The base case holds by definition of the valuation function of
the canonical model. The inductive case for any connective different
from fusion and the converse conditional is covered in (Restall, 1993,
thm. 8). Fusion is covered in (Routley et al., 1982, pp. 365f).

(←): Assume that C ← B ∈ Σ. In order to show that Σ � C ← B,
let ∆, Γ be any canonical Π-theories such that R∆ΣΓ with ∆ � B.
We may for inductive hypothesis assume that the claim holds for B and
C, and therefore that B ∈ ∆. Since ∆ is a Π-theory it follows that
(C ← B) → C ∈ ∆ which by definition of R then yields that C ∈ Γ .
The inductive hypothesis then yields that Γ � C, and so it follows that
Σ � C ← B.

Assume that Σ � C ← B, and for contradiction that C ← B 6∈ Σ.
By (Restall, 2000, lem. 11.29) there are then Π-canonical theories ∆ and

26 Note, then, that one can strengthen the frame requirement of def. 4.1.8(iv) to

a ⊑ b⇒ ((x 6= g & Rxya)⇒ ∃z(y ≡ z & Rxzb)),

where a ≡ b := a ⊑ b & b ⊑ a.
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Γ such that R∆ΣΓ with B ∈ ∆ and C 6∈ Γ . By the inductive hypothesis
we then have that ∆ � B and Γ 2 C. However, this is impossible since
Γ � C ← B. ⊣

The next task is to prove that the canonical model satisfies the frame
conditions provided the logic in question satisfies the corresponding log-
ical principle.

Lemma 6.5 (R7  F(R7)). If R7 is a derivable rule of the logic, then
any canonical frame CΠ satisfies F(R7).

Proof. Π is by its very construction non-trivial, so let B 6∈ Π. Suppose
that A is any formula such that A ∈ Π. A ∈ Π∗ ⇔ ∼A 6∈ Π by defi-
nition. Assume for contradiction that ∼A ∈ Π. Since Π is deductively
closed it follows that ∼A ∨ B ∈ Π, and since R7 is a derivable rule of
the logic and, again, Π is deductively closed, B ∈ Π. Contradiction.
It follows, then, that ∼A 6∈ Π, and therefore that A ∈ Π∗. It follows,
therefore, that Π ⊆ Π∗. ⊣

Lemma 6.6 (A13  F(A13)). If A13 is a logical theorem of the logic,
then any canonical frame CΠ satisfies F(A13).

Proof. We need to show that for all Π-canonical theories Σ, that there
is a Π-canonical theory ΛΣ such that RΣΛΣΣ, and that ΛΣ satisfies
the Z-clause  that for every Π-canonical theories Φ, Θ

RΛΣΦΘ ⇒ Φ ⊆ Θ.

For Σ = Π we can simply let ΛΣ = Π. The case for Π-canonical
theories Σ 6= Π is a bit more involved.

Let Ψ := {A | �A ∈ Π}.27

Sublemma 6.6.1. Ψ is a non-trivial Π-theory for which RΣΨΣ for every

Π-theory Σ.

Proof. Non-triviality: Since Π is non-trivial, A 6∈ Π for some A. Since
Π is Π-deductively closed, it follows that �A 6∈ Π, and so A 6∈ Ψ .

Π-theory: From lemma 2.3 we obtain that Ψ is closed under con-
junction. Assume that ∅ ⊢Π A → B and A ∈ Ψ . We must show that
B ∈ Ψ . The following derivation shows that ∅ ⊢Π (B → B)→ B:

27 This definition of Ψ is mere variant of the definition used in (Routley et al.,
1982, p. 414).
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(1) A→ B assumption

(2) (B → B)→ (A→ B) 1, suffixing rule (R4)

(3) (A→ A)→ A assumption (A ∈ Ψ)

(4) ((A→ A) ∧ (A→ A))→ A 3, fiddling

(5) (A→ B)→ (((A→ A) ∧ (A→ A))→ B) 4, suffixing rule

(6) (((A→ A) ∧ (A→ A))→ B)→ B A13

(7) (B → B)→ B 2, 5, 6, transitivity

Since Π is deductively closed, it follows that �B ∈ Π, and therefore
that B ∈ Ψ .

RΣΨΣ: Let Σ be any Π-theory, and assume that A → B ∈ Σ and
A ∈ Ψ . By definition of Ψ , then, �A ∈ Π. The following derivation
shows that ∅ ⊢Π (A→ B)→ B:

(1) (A→ A)→ A assumption (A ∈ Ψ)
(2) ((A→ A) ∧ (A→ A))→ A 1, fiddling
(3) (A→ B)→ (((A→ A) ∧ (A→ A))→ B) 2, suffixing rule
(4) (((A→ A) ∧ (A→ A))→ B)→ B A13
(5) (A→ B)→ B 3, 4, transitivity

Since Σ is assumed to be a Π-theory, it follows that B ∈ Σ, and therefore
that RΣΨΣ. ⊣

Ψ need not be prime. However, (Restall, 1993, lem. 4) states that
if RΣΓ∆, and ∆ is a prime Π-theory, then there is a prime Π-theory
Λ ⊇ Γ such that RΣΛ∆. Since RΣΨΣ for every Π-theory Σ, it follows
that for every Π-canonical theory there is a prime Π-theory ΛΣ ⊇ Ψ such
that RΣΛΣΣ. That ΛΣ is non-trivial is an easy corollary of Restall’s
lemma. All ΛΣ are therefore Π-canonical. It now follows from lemma 6.2
that for every Π-canonical theory Σ 6= Π that RΣΛΣΣ.

That ΛΣ satisfies the Z-condition: Let ∆, Θ be any Π-theories such
that RΛΣ∆Θ. We need to show that ∆ ⊆ Θ, so assume that A ∈
∆. Since A13 is an axiom of the logic, it follows from lemma 2.4 that
⊢Π �(A→ A), and so A → A ∈ Ψ , and therefore A → A ∈ ΛΣ. By
the definition of R it therefore follows that A ∈ Θ. That Π satisfies the
Z-condition is trivial. ⊣

We have now seen that the frame conditions hold in the canonical
model provided the logic in question validates the corresponding logical
axiom/rule. As an easy corollary, then, we have the following result:
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Theorem 6.2 (Strong completeness). Θ �L A =⇒ Θ ⊢L A, where L

is any disjunctive logic obtainable from B by adding any number of the
axiom and rules (along with their disjunctive versions) listed in section 2.

We end by noting the rather obvious corollary of strong completeness
due to the fact that no additional requirements are needed to model the
“optional” connectives ◦ and ←, namely conservativeness:

defn 6.3. A logic L2 is a strong conservative extension of a logic L1

just in case L2 extends L1, and for every set of L1-formulas Θ ∪ {A},

Θ ⊢L2
A⇒ Θ ⊢L1

A.

Corollary 6.1. If L is a logic which is strongly sound and complete
with regards to the simplified semantics set forth in this paper, then
L

d[A◦, R◦], L
d[A←, R←], and L

d[A◦, R◦, A←, R←] are strong conser-
vative extension of L.

Proof. Assume that Θ ∪ {A} are L-formulas and that Θ 0L A. Then
Θ 2L A by strong completeness. The L-counter-model allows for the
standard truth conditions for ◦ and ←, and so extends to a model for
all of

L
′ ∈ {Ld[A◦, R◦], L

d[A←, R←], L
d[A◦, R◦, A←, R←]}

in which A fails to hold, yet all formulas in Θ do. Thus Θ 2L′ A, and so
by strong soundness for L

′ it then follows that Θ 0L′ A. ⊣

7. Summary

This paper shows that Anderson and Belnap’s favorite logic E of en-
tailment as well as Ackermann’s logic Π′ are both strongly sound and
complete with regards to the “simplified” version of the Routley-Meyer
semantics. This issue has been vex with confusion since E has often
been regarded as having the so-called δ-rule or the equivalent rule of
restricted assertion as primitive rules. However, Anderson and Belnap’s
axiomatization of E only validates these as admissible rules.

The semantics of E has been accused of being more complicated than
the corresponding one for T and R. It was shown, however, that E does
not need any extra frame component, compared to what T and R do. It
does, however, require “unreduced” models  models in which there are
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points at which all the true inference tickets hold but which may fail to
be closed under logical consequence.

Finally, it was shown that the simplified semantics could deal with
the intensional conjunction known as fusion and the converse condi-
tional provided additional tonicity requirements, which are put on the
ternary relation. Such requirements are not needed if these connectives
are absent. However, since strong soundness and completeness do hold
even with these enforced, it shows that the connectives can be added
conservatively even in the context of arbitrary theories.

Acknowledgments. I would very much like to thank an anonymous ref-
eree for their diligence and patience with what started out as a rather
different project. Their suggestions  and requirements  for how to im-
prove the paper partly explains its length, but more importantly its
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References

Ackermann, W., 1956, “Begründung einer strengen Implikation”, Journal of

Symbolic Logic, 21(2): 113–128. DOI: 10.2307/2268750

Anderson, A. R., and N. D. Belnap, 1958, “A modification of Ackermann’s “rig-
orous implication” ”, Journal of Symbolic Logic, 23(4): 457–458. DOI: 10.

2307/2964046

Anderson, A. R., and N. D. Belnap, 1959, “Modalities in Ackermann’s “rigorous
implication” ”, Journal of Symbolic Logic, 24(2): 107–111. DOI: 10.2307/

2964754

Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance

and Necessity, volume 1, Princeton University Press, Princeton.

Anderson, A. R., N. D. Belnap, and M. J. Dunn, 1992, Entailment: The Logic

of Relevance and Necessity, volume 2, Princeton University Press, Princeton.
DOI: 10.1515/9781400887071

Belnap, N. D., 1959, “A formalization of entailment”, PhD thesis, Yale Univer-
sity.

Belnap, N. D., 1960, “A formal analysis of entailment”, Technical Report No. 7,
Contact No. SAR/Nonr-609(16), Office of Naval Research, New Haven.

https://doi.org/10.2307/2268750
https://doi.org/10.2307/2964046
https://doi.org/10.2307/2964046
https://doi.org/10.2307/2964754
https://doi.org/10.2307/2964754
https://doi.org/10.1515/9781400887071


40 Tore Fjetland Øgaard

Brady, R. T., 1984, “Natural deduction systems for some quantified relevant
logics”, Logique et Analyse, 27(108): 355–377. http://www.jstor.org/

stable/44084099

Brady, R. T., 2006, Universal Logic, CSLI Publication, Stanford.

Dunn, J. M., 1966, “The algebra of intensional logics”, PhD thesis, Univer-
sity of Pittsburgh. https://www.proquest.com/dissertations-theses/

algebra-intensional-logics/docview/302201330/se-2

Galatos, N., P.Jipsen, T. Kowalski, and H. Ono, 2007, Residuated Lattices: An

Algebraic Glimpse at Substructural Logics, Elsevier. DOI: 10.1016/S0049-

237X(07)80005-X

Kron, A., “Deduction theorems for relevant logics”, 1973, Mathematical Logic

Quarterly, 19(3-6): 85–92. DOI: 10.1002/malq.19730190306

Maksimowa, M., 1973, “A semantics for the calculus E of entailment”, Bulletin

of the Section of Logic, 2(1): 18–20.

Mares, E. D., 2000, “CE is not a conservative extension of E”, Journal of Philo-

sophical Logic, 29(3): 263–275. DOI: 10.1023/A:1004731401855

Mares, E., 2024a, The Logic of Entailment and its History, Cambridge Univer-
sity Press. DOI: 10.1017/9781009375283

Mares, E., 2024b, “Relevance logic”, in E. N. Zalta (ed.), The Stanford En-

cyclopedia of Philosophy, Metaphysics Research Lab, Stanford University,
Summer 2024 edition. https://plato.stanford.edu/archives/sum2024/

entries/logic-relevance/

Mares, E., and Sh. Standefer, 2017, “The relevant logic E and some close
neighbours: A reinterpretation”, IfCoLog Journal of Logics and Their

Applications, 4(3): 695–730. https://www.collegepublications.co.uk/

downloads/ifcolog00012.pdf#page=155

Méndez, J. M., 2009, “A Routley-Meyer semantics for Ackermann’s logics of
“strenge implication”,́’, Logic and Logical Philosophy, 18(3–4): 191–219.
DOI: 10.12775/LLP.2009.010

Méndez, J. M., G. Robles, and F. Salto, 2011, “Ticket Entailment plus the
mingle axiom has the variable-sharing property”, Logic Journal of the IGPL,
20(1): 355–364. DOI: 10.1093/jigpal/jzr046

Meyer, R. K., 1970, “E and S4”, Notre Dame J. Formal Logic, 11(2): 181–199.
DOI: 10.1305/ndjfl/1093893935

Meyer, R. K., and J. M. Dunn, 1969, “E, R and γ”, Journal of Symbolic Logic,
34: 460–474. DOI: 10.2307/2270909

http://www.jstor.org/stable/44084099
http://www.jstor.org/stable/44084099
https://www.proquest.com/dissertations-theses/algebra-intensional-logics/docview/302201330/se-2
https://www.proquest.com/dissertations-theses/algebra-intensional-logics/docview/302201330/se-2
https://doi.org/10.1016/S0049-237X(07)80005-X
https://doi.org/10.1016/S0049-237X(07)80005-X
https://doi.org/10.1002/malq.19730190306
https://doi.org/10.1023/A:1004731401855
https://doi.org/10.1017/9781009375283
https://plato.stanford.edu/archives/sum2024/entries/logic-relevance/
https://plato.stanford.edu/archives/sum2024/entries/logic-relevance/
https://www.collegepublications.co.uk/downloads/ifcolog00012.pdf#page=155
https://www.collegepublications.co.uk/downloads/ifcolog00012.pdf#page=155
https://doi.org/10.12775/LLP.2009.010
https://doi.org/10.1093/jigpal/jzr046
https://doi.org/10.1305/ndjfl/1093893935
https://doi.org/10.2307/2270909


Simplified semantics for further relevant logics I 41

Ono, H., 2003, “Substructural logics and residuated lattices – an introduction”,
pages 193–228 in V. F. Hendricks and J. Malinowski (eds.), Trends in Logic:

50 Years of Studia Logica, Springer Netherlands, Dordrecht. DOI: 10.1007/

978-94-017-3598-8_8

Øgaard, T. F., 2017, “Skolem functions in non-classical logics”, Australasian

Journal of Logic, 14(1): 181–225. DOI: 10.26686/ajl.v14i1.4031

Øgaard, T. F., 2021a, “Non-Boolean classical relevant logics I”, Synthese, 198:
6993–7024. DOI: 10.1007/s11229-019-02507-z

Øgaard, T. F., 2021b, Non-Boolean classical relevant logics II: Classical-
ity through truth-constants”, Synthese, 199: 6169–6201. DOI: 10.1007/

s11229-021-03065-z

Øgaard, T. F., 2024, “Simplified semantics for further relevant logics II: Propo-
sitional Constants”, Logic and Logical Philosophy. DOI: 10.12775/LLP.

2024.022

Priest, G., 2008, An Introduction to Non-Classical Logic. From If to Is,
Cambridge University Press, Cambridge, 2nd edition. DOI: 10.1017/

CBO9780511801174

Priest, G., 2015, “Fusion and confusion”, Topoi, 34(1): 55–61. DOI: 10.1007/

s11245-013-9175-x

Priest, G., and R. Sylvan, 1992, “Simplified semantics for basic relevant logic”,
Journal of Philosophical Logic, 21(2): 217–232. DOI: 10.1007/BF00248640

Restall, G., “Simplified semantics for relevant logics (and some of their ri-
vals)”, 1993, Journal of Philosophical Logic, 22(5): 481–511. DOI: 10.1007/

BF01349561

Restall, G., 2000, An Introduction to Substructural Logics, Routledge, London.
DOI: 10.4324/9780203016244

Restall, G., and T. Roy, 2009, “On permutation in simplified semantics”, Jour-

nal of Philosophical Logic, 38: 333–341. DOI: 10.1007/s10992-009-9104-

z

Robles, G., 2022, “The logic E-mingle and its Routley-Meyer semantics”, Bul-

letin of Symbolic Logic, 28(4): 599–600. DOI: 10.2307/27187036

Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, 1982, Relevant Logics

and Their Rivals, volume 1, Ridgeview Publishing Company, Atascadero,
California.

Slaney, J. K., 1984, “A metacompleteness theorem for contraction-free relevant
logics”, Studia Logica, 43(1): 159–168. DOI: 10.1007/BF00935747

https://doi.org/10.1007/978-94-017-3598-8_8
https://doi.org/10.1007/978-94-017-3598-8_8
https://doi.org/10.26686/ajl.v14i1.4031
https://doi.org/10.1007/s11229-019-02507-z
https://doi.org/10.1007/s11229-021-03065-z
https://doi.org/10.1007/s11229-021-03065-z
https://doi.org/10.12775/LLP.2024.022
https://doi.org/10.12775/LLP.2024.022
https://doi.org/10.1017/CBO9780511801174
https://doi.org/10.1017/CBO9780511801174
https://doi.org/10.1007/s11245-013-9175-x
https://doi.org/10.1007/s11245-013-9175-x
https://doi.org/10.1007/BF00248640
https://doi.org/10.1007/BF01349561
https://doi.org/10.1007/BF01349561
https://doi.org/10.4324/9780203016244
https://doi.org/10.1007/s10992-009-9104-z
https://doi.org/10.1007/s10992-009-9104-z
https://doi.org/10.2307/27187036
https://doi.org/10.1007/BF00935747


42 Tore Fjetland Øgaard

Slaney, J., 1995, “MaGIC, matrix generator for implication connectives: Re-
lease 2.1 notes and guide”, Technical Report TR-ARP-11/95, Automated
Reasoning Project, Australian National University. http://users.cecs.

anu.edu.au/~jks/magic.html

A. E-mingle

As pointed out in (Robles, 2022), the logic called E-mingle (EM), ob-
tained from E by adding the restricted mingle axiom

(Mr) (A→ B)→ ((A→ B)→ (A→ B))

is rather understudied, despite it being mentioned in (Anderson and
Belnap, 1975) as one of the interesting neighbors of E. One of the main
unresolved question with regards to EM is whether it satisfies the vari-
able sharing property. What I want to address here, however, is rather
the problem raised in both (Méndez et al., 2011, p. 363) and (Robles,
2022), namely of finding the correct frame condition for restricted min-
gle. Now (Routley et al., 1982, p. 344) does in fact state that the correct
condition is

Rabc & Rbcde =⇒ Rade & Rbde.

This, however, is incorrect as it stands, but this is probably simply due
to a typesetting error. The correct condition is displayed in table 3.

Frame condition

F(Mr) Rabc & Rcde =⇒ Rade OR Rbde

Table 3. Frame condition for restricted mingle

Lemma A.1 (F(Mr) Mr). Restricted mingle holds in any model which
satisfies F(Mr).

Proof. Assume that a frame satisfies F(Mr). Assume that a � A→ B,
and for contradiction that a 2 (A→ B)→ (A→ B). Then there are b, c
such that Rabc with b � A → B, but c 2 A → B. It follows that there
are d, e such that Rcde with d � A and e 2 B. From F(Mr) it follows
that either Rade or Rbde, but since a � A → B and b � A → B and
d � A it must be the case that e � B. Contradiction. ⊣
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Lemma A.2 (Mr  F(Mr)). If Mr is an axiom of the logic, then any
canonical model CΠ satisfies F(Mr).

Proof. Assume that the logic in question has Mr as an axiom. Let Σi

for 1 ≤ i ≤ 5 be prime Π-theories such that RΣ1Σ2Σ3 and RΣ3Σ4Σ5.
We must show that either RΣ1Σ4Σ5 or RΣ2Σ4Σ5. Assume for contra-
diction that neither is the case. By definition of R in CΠ it follows that
there are formulas A, B, C, D such that A→ B ∈ Σ1, A ∈ Σ4, B 6∈ Σ5,
and C → D ∈ Σ2, C ∈ Σ4, D 6∈ Σ5. Since all these Σ’s are prime
Π-theories it follows that A ∧ C ∈ Σ4 and that B ∨ D 6∈ Σ5. Since
(A→ B) ∨ (C → D)→ (A∧C → B ∨D) is a logical theorem of B, and
Σ1 and Σ2 are prime Π-theories, it follows that α ∈ Σ1 and α ∈ Σ2,
where α := A ∧ C → B ∨D. Since α→ (α→ α) is an axiom, it follows
follows that α → α ∈ Σ1. Since RΣ1Σ2Σ3 and α ∈ Σ2 it then follows
that α ∈ Σ3. But since RΣ3Σ4Σ5 and A ∧ C ∈ Σ4 it then follows that
B ∨D ∈ Σ5. Contradiction. ⊣

Corollary A.1. L[Mr] is strongly sound and complete with regards
to the simplified semantics, where L is any disjunctive logic obtainable
from B by adding any number of the axiom and rules (along with their
disjunctive versions) listed in section 2.
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