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On Some Meta-Theoretic Topological Features

of the Region Connection Calculus

Abstract. This paper examines several intended topological features of the
Region Connection Calculus (RCC) and argues that they are either under-
determined by the formal theory or given by the complement axiom. Condi-
tions are identified under which the axioms of RCC are satisfied in topolog-
ical models under various set restrictions. The results generalise previous
results in the literature to non-strict topological models and across possible
interpretations of connection. It is shown that the intended interpretation of
connection and the alignment of self-connection with topological connection
are underdetermined by the axioms of RCC, which suggests that additional
axioms are necessary to secure these features. It is also argued that the
complement axiom gives RCC models much of their topological structure.
In particular, the incompatibility of RCC with interiors is argued to be
given by the complement axiom.
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1. Introduction

The Region Connection Calculus (henceforth RCC), initially proposed
in [33, 34, 35] and subsequently developed in [3, 9, 12, 13, 14, 15, 16,
17, 24, 26], is a mereotopological theory that aims to model spatial re-
lations between regions in topological terms. RCC has been used as a
formal theory for Qualitative Spatial Reasoning [10, 11, 12, 15], which
has applications to, among other things, document classification [22],
geographic informational systems [4, 21, 39, 40], natural language pro-
cessing [1, 2, 8, 28], robot navigation [27], and visual representation [23].
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RCC is typically associated with several meta-theoretic features.
Some of these features distinguish RCC from other mereotopological
theories: for instance, it is sometimes thought that RCC, contra the
theories of Clarke [6, 7] and Whitehead [38], is inconsistent with a
definition of interiors [1, 35], and consequently does not countenance
distinctions between open, semi-open, and closed regions [13, 24, 34].
Other meta-theoretic features are thought to capture our intuitions
regarding spatial reasoning: for instance, the intended interpretation of
the connection predicate is typically given as intersection of closures,
which is sometimes thought to agree with the way ordinary objects come
into contact [16, 33, 34, 35]. Yet other features would align RCC with
related theories: for instance, the self-connection predicate in RCC is
presumably intended to align with the property of topological connection
in topological models of RCC. Insofar as these meta-theoretic features
are determined by RCC’s formal theory, this would validate RCC as a
theory of spatial reasoning over alternatives.

However, it will be argued in this paper, some of RCC’s intended
features are underdetermined by its axioms, such as the intended inter-
pretation of connection and the alignment of self-connection with topo-
logical connection, which suggests that supplementary axioms might be
required to secure such features. It will also be argued that in many
cases where the intended features are determined by the axioms of RCC,
such as meta-theoretic properties involving interiors, these features are
determined only by a particular axiom regarding complements. This
suggests that the complement axiom plays a crucial role in determining
the topological structure of RCC’s models.

The argument in this paper will involve examining topological models
of RCC. Previous work has shown that set-theoretic topological spaces
can provide such models. Gotts [25] showed that the non-empty regular
closed sets of any connected regular space are a model of RCC. Düntsch
and Winter [20], as well as Li and Ying [29], later showed that the regu-
larity property can be replaced with weaker stipulations (to be discussed
below). Recent work on models of RCC has moved away from a topologi-
cal perspective and focused more on the algebraic structure of the models
in question [29, 30, 31, 32, 36, 37, 41].1 This is mainly because RCC was
intended to model spatial relations between regions without the need for

1 For a study on various ways of representing region-based theories like RCC, see
[18, 19].
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reference to points, so some aspects of point-set topology would seem
to be at odds with the theory’s motivation. Nevertheless, given that
many meta-theoretic properties associated with RCC models are typi-
cally stated in topological terms (with examples above), there remain
reasons to investigate models of RCC from a topological perspective.

Previous work on models of RCC has also largely focused on strict

models, in which the coincidence relation aligns with identity. As will
be seen, investigations into topological models of RCC typically adopt
an interpretation of parthood that assumes the models in question to be
strict [25, 30, 36]. Indeed, Düntsch and Winter [20] in their formulation
of RCC included an axiom requiring that models be strict. From a
practical perspective, this focus on strict models is justified since the
applicability of non-strict models is somewhat doubtful. Nevertheless,
it has been observed that non-strict models of RCC are possible [29,
36]. With meta-theoretic considerations in view, non-strict topological
models might be worth investigating, to see how much room the formal
aspect of RCC leaves for non-standard topological features.

Section 2 reviews the axioms and definitions of RCC, and relevant
ideas from set-theoretic topology. Section 3 identifies, for a range of
possible interpretations of connection, the implied topological interpre-
tation of the parthood relation. This will be done without assuming the
topological models in question to be strict, and without assuming the
intended interpretation of connection. Section 4 investigates topological
models of RCC comprising the non-empty regular closed sets of a topo-
logical space. It will be shown that a relatively simple set of constraints
on the interpretation of connection are necessary and sufficient for the
non-empty regular closed sets of any topological space to be a model
of RCC less the complement axiom. Additional necessary and sufficient
conditions will also be identified for the complement axiom to be satis-
fied in these models. Section 5 discusses the significance of the results
in Section 4, noting in particular that the interpretation of connection
is underdetermined by RCC’s axioms. Section 6 investigates topologi-
cal models comprising the non-empty regular open sets of a topological
space and observes that despite their formal similarity to the models
considered in Section 4, a significant meta-theoretic difference exists be-
tween the two classes of models. Section 7 turns to topological models
comprising all the non-empty sets of a topological space. It will be
observed that although this class of models do not provide non-trivial
models of RCC, they can provide models of RCC less part of the comple-
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ment axiom. This observation suggests the notion of a deep topological
property, which (roughly) is a property that depends heavily on RCC’s
topological structure. Section 8 argues that the incompatibility of RCC
with interiors is a deep property.

2. RCC and topology

RCC has as its only primitive the connection relation C, a binary relation
between regions stipulated to be reflexive and symmetric:

(1) C(x, x) (Reflexivity)
(2) C(x, y) → C(y, x) (Symmetry)

In terms of C, other relations between regions are defined, including

P (x, y) := ∀z(C(x, z) → C(y, z)) (Parthood)
PP (x, y) := P (x, y) ∧ ¬P (y, x) (Proper parthood)
EQ(x, y) := P (x, y) ∧ P (y, x) (Coincidence)
O(x, y) := ∃z(P (z, x) ∧ P (z, y)) (Overlap)
DR(x, y) := ¬O(x, y) (Discreteness)
EC(x, y) := C(x, y) ∧ ¬O(x, y) (External connection)
NTPP (x, y) := PP (x, y) ∧ ¬∃z(EC(z, x) ∧ EC(z, y))

(Non-tangential proper part)

RCC posits that there is a universal region u, to which every region is
connected:

(3) C(x, u) (Universe)

For every non-universal region x, RCC posits the existence of x’s com-
plement, denoted compl(x). Complements are governed by the following
axioms:

(4a) ¬EQ(x, u) → (C(y, compl(x)) ↔ ¬NTPP (y, x))
(Complement connection)

(4b) ¬EQ(x, u) → (O(y, compl(x)) ↔ ¬P (y, x))
(Complement overlap)

In the discussion to come, axioms (4a) and (4b) will at some points be
considered separately, though formulations of RCC typically give these
axioms in conjunction. Henceforth, ‘axiom (4)’ will refer to the conjunc-
tion of axioms (4a) and (4b).
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Every pair of regions x and y has a sum, product, and (relative) dif-
ference, denoted sum(x, y), prod(x, y), and diff(x, y) respectively. These
are governed by the following axioms:

(5) C(z, sum(x, y)) ↔ C(z, x) ∨ C(z, y) (Sum)
(6) C(z, prod(x, y)) ↔ ∃w(P (w, x) ∧ P (w, y) ∧ C(z, w)) (Product)
(7) C(z, diff(x, y)) ↔ C(z, prod(x, compl(y))) (Difference)

The characterisations in axioms (3)–(7) only determine u, complements,
sums, products, and differences up to coincidence—if two regions x and
y are universal, for instance, then EQ(x, y). In strict models, where
coincidence is identity, u is unique, and compl(x), sum(x, y), prod(x, y),
and diff(x, y) are functions. However, this may not be the case in non-
strict models—for instance, u is not unique in Example 3.1 below.2

In terms of C and sum, the property CON, corresponding to self-
connection, is defined:

CON(x) := ∀y∀z(EQ(x, sum(y, z)) → C(y, z)) (Self-connection)

The product mapping is partial on the domain of regions, in that a
product of two regions is not always a region. The mapping can be
made total if its range is permitted to include non-regions. RCC defines
the NULL predicate to indicate that a member of the domain, extended
to be closed under prod, is not a region. The following axiom asserts
conditions under which a product of regions is a non-region:

(8) NULL(prod(x, y)) ↔ DR(x, y) (Non-Overlap)

RCC is the theory comprising axioms (1)–(8). Early formulations of
RCC included a Non-Atomicity axiom saying that all regions have a
non-tangential proper part

∃y NTPP (y, x) (Non-Atomicity)

It was later found that Non-Atomicity follows from the above axioms.

Theorem 2.1 ([12, 29, 36]). Axioms (3) and (4) imply Non-Atomicity.

Proof. (3) implies that every region overlaps u, hence no region is
externally connected to u and every proper part of u is non-tangential.
If a non-universal x lacks non-tangential proper parts, (4a) implies
that every region is connected to compl(x). In particular, every region

2 Thanks to a reviewer for clarification on this point.
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connected to x is connected to compl(x), so x is a part of compl(x) and
the two overlap. But this violates (4b) because x is a part of itself. ⊣

Another consequence of axiom (4a) is that Non-Atomicity is equiva-
lent to

¬EQ(x, u) → ∃y ¬C(y, compl(x)) (Non-Atomicity*)

In later sections, Non-Atomicity* will feature in some results.
Since this paper is interested in topological models of RCC, it might

be helpful also to review a few definitions from set-theoretic topology.
A topology on a set of points X is a collection T of subsets of X that
includes ∅ and X , and that is closed under finite intersection and arbi-
trary union. A set with an associated topology (X, T ) is a topological

space, in which the members of T are the open sets of (X, T ) and their
set-theoretic complements are the closed sets of (X, T ). The interior of
a set is the union of all open subsets of that set, and the closure of a
set is the intersection of all closed supersets of that set. The topological
interior and closure of a set A will be denoted Int(A) and A respectively.
A set x is regular closed if x = Int(x) and regular open if x = Int(x).
A set x is topologically connected if it cannot be partitioned into two
subsets y ∪ z = x with y ∩ z = y ∩ z = ∅.3

Properties may also be stipulated of topological spaces entailing that
some sets in those spaces are, in some sense, separated or non-separated
by open sets. A topological space (X, T ) is connected if it cannot be par-
titioned into two disjoint open subsets Y and Z with Y ∪Z = X . A topo-
logical space is regular if, for every open set U and p ∈ U , there is an open
set V with p ∈ V ⊆ V ⊆ U . Notably, the characteristic property of regu-
lar topological spaces makes reference to points, which for reasons noted
earlier is somewhat at tension with RCC’s motivation. Düntsch and Win-
ter [20] defined a similar weak regularity property that avoids reference
to points. A topological space is weakly regular if, for every non-empty
open set U , there is a non-empty open set V with V ⊆ U .4 It is known
that all regular topological spaces are weakly regular, but not conversely.

3 The typical term for this property is ‘connected’, modified here to avoid ambi-
guity.

4 Also see [18] for the use of the weak regularity property. Relatedly, Li and Ying
[29] defined the inexhaustibility property for Boolean algebras, which in topological
terms entails that every non-empty open set U admits a non-empty open set V such
that (X − V ) ∪ U = X. In topological models, inexhaustibility is equivalent to weak
regularity.
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3. Interpreting parthood

Gotts [25] showed that the non-empty regular closed (henceforth NERC )
sets of any connected regular topological space are a model of RCC under
the standard interpretation of connection as set-theoretic intersection;
that is, C(x, y) ≡ x ∩ y 6= ∅. In regular topological spaces, the inter-
pretation of parthood entailed by this interpretation of connection is
P (x, y) ≡ x ⊆ y. This interpretation of parthood is typical: previous in-
vestigations into topological models of RCC have also made stipulations
that entail the same interpretation of parthood [30, 36]. However, this
interpretation constrains consideration to strict topological models, in
which the coincidence relation EQ aligns with =. At the same time, the
standard interpretation of connection admits non-strict topological mod-
els comprising the NERC sets of a topological space, in which parthood
diverges from ⊆. The following is an example.

Example 3.1. Let X = {1, 2, 3} and T = {∅, X, {1}, {3}, {1, 3}}. Then
(X, T ) is a topological space in which the NERC sets are {1, 2}, {2, 3},
and X . Any NERC set in (X, T ) intersecting {1, 2} also intersects {2, 3},
and vice versa. {1, 2} is thus a part of {2, 3} under the standard inter-
pretation of connection; but {1, 2} * {2, 3}. Moreover, {1, 2} and {2, 3}
are coincident despite being non-identical.

The goal of this section is to identify the topological interpretation
of parthood entailed by the standard interpretation of connection, with-
out making any stipulation about the topological spaces in question.
The resulting interpretation will thus hold even in non-strict topological
models. Moreover, toward a generalisation over interpretations of con-
nection, the interpretation of parthood to be identified will follow from
only a few properties of the standard interpretation of connection. We
note that connection, when interpreted as set-theoretic intersection, has
the following properties:

(i) C is reflexive and symmetric
(ii) x ⊆ y → P (x, y)
(iii) C(x, y ∪ z) → C(x, y) ∨ C(x, z)

Any interpretation of connection bearing these properties will entail an
interpretation of parthood similar to the one to be identified below. The
focus for now will be on topological models comprising the NERC sets of
a topological space; sections 6, 7 will consider how the results to follow
translate to topological models given by other kinds of set restrictions.
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We first note that the coincidence relation EQ(x, y), which is equiv-
alent to ∀z(C(x, z) ↔ C(y, z)), is an equivalence relation. Under this
relation, the equivalence class containing x is the class of all NERC sets
connected to the same NERC sets as x. Let [x] denote the smallest
closed set containing all members of this equivalence class. Namely,

[x] :=
⋃

{y : EQ(y, x)}

Since the closures of arbitrary unions of NERC sets are NERC, [x] is
NERC whenever x is. In strict models, where EQ is identity, [x] = x.
In the general case, coincident regions are in the same equivalence class,
so the topological interpretation of EQ(x, y) is [x] = [y].

We will show that P (y, x) may be interpreted [y] ⊆ [x]. Toward this
result, we prove the following lemma.

Lemma 3.1. If connection bears properties (i)–(iii), then P (y, x) ↔
EQ(y ∪ x, x).

Proof. (ii) implies that x is always a part of y ∪x, so it suffices to show
that y is a part of x iff y ∪ x is a part of x. Assume that y is a part of
x and let z be connected to y ∪ x. (iii) implies that z is connected to
either y or x. In the former case, P (y, x) implies that z is connected to
x, so either way, z is connected to x, which shows that y ∪ x is a part of
x. Conversely, if y is not a part of x, some region is connected to y but
not x. (ii) implies that this region is also connected to y ∪ x, so y ∪ x is
not a part of x. ⊣

The interpretation of parthood now follows:

Theorem 3.1. If connection bears properties (i)–(iii), then P (y, x) ≡
[y] ⊆ [x].

Proof. We have P (y, x) ↔ EQ(y∪x, x) ↔ [y∪x] = [x] ↔ [y] ⊆ [x]. ⊣

Several corollaries of this result will be helpful in the proofs to come.
First, given the interpretation of parthood, the interpretation of overlap
follows:

Corollary 3.1. If connection bears properties (i)–(iii), O(x, y) ≡
Int([x]) ∩ Int([y]) 6= ∅.

Second, we note that [x] is the union across all equivalence classes
containing NERC subsets of x.



Meta-theoretic topological features of RCC 647

Corollary 3.2. If connection bears properties (i)–(iii), then [x] =
⋃

{[y] : y ⊆ x}

Proof. The left-to-right inclusion follows from the observation that x ⊆
x. For the converse: y ⊆ x implies P (y, x) by property (ii), which implies
[y] ⊆ [x] by Theorem 3.1. ⊣

Given this perspective on [x], parthood can be shown to be equivalent
to another topological relation.

Corollary 3.3. If connection bears properties (i)–(iii), then P (y, x) ↔
y ⊆ [x].

Proof. If y is a part of x, then y ⊆ [y] ⊆ [x] by Theorem 3.1. Con-
versely, if y is not a part of x, by Corollary 3.2, we have

⋃

{[z] : z ⊆ y} *
⋃

{[z] : z ⊆ x}. Then
⋃

{[z] : z ⊆ y} −
⋃

{[z] : z ⊆ x} is a non-empty
union, disjoint from [x], of equivalence classes containing subsets of y.
Those subsets of y are disjoint from [x], implying y * [x]. ⊣

An implication of Corollary 3.3 is that since [x] ⊆ [x], [x] is a part of
x. Indeed, since x ⊆ [x], we have coincidence.

Corollary 3.4. If connection bears properties (i)–(iii), then EQ([x], x).

4. NERC models

We may now investigate the conditions under which the NERC sets of a
topological space are a model of RCC. The main result to be shown in
this section is the following:

Theorem 4.1. If connection bears properties (i)–(iii), the NERC sets of
any topological space

(a) are a model of RCC less axiom (4),
(b) are a model of axiom (4b) iff Non-Atomicity* is satisfied, and
(c) given Non-Atomicity*, are a model of axiom 4a) iff C(x, compl(x))
holds for non-universal regions.

We first show (a). Let a topological space (X, T ) be given, and
assume that connection bears properties (i)–(iii). Axioms (1) and (2)
follow immediately from property (i). For axiom (3), we interpret u as
X and note that all NERC sets in (X, T ) are subsets of X . Axiom (3)
then follows from (ii) and the reflexivity of C.
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Turning to axioms (5)–(8), we interpret the complement, sum, prod-
uct, and difference mappings like so:

compl(x) ≡ X − [x]
sum(x, y) ≡ [x] ∪ [y]
prod(x, y) ≡ Int([x] ∩ [y])

diff(x, y) ≡ Int([x] ∩ X − [y])

Since the finite union of NERC sets is NERC, sum(x, y) is NERC when-
ever x and y are. And since the closure of any non-empty open set is
NERC, compl(x), prod(x, y), diff(x, y) are also NERC whenever x and y
are. Then, for axiom (5), we note that (ii) is equivalent to the converse
of (iii).5 Hence:

C(z, sum(x, y)) ↔ C(z, [x] ∪ [y])

↔ C(z, [x]) ∨ C(z, [y])

↔ C(z, x) ∨ C(z, y)

The last equivalence follows from Corollary 3.4.
For axiom (6), we note that prod(x, y) ≡ Int([x] ∩ [y]) ⊆ [x] ∩ [y] =

[x] ∩ [y] ⊆ [x], and likewise prod(x, y) ⊆ [y]. So by Corollary 3.3, any
region connected to prod(x, y) is thereby connected to a part of both x
and y. Conversely, if P (w, x)∧P (w, y)∧C(z, w) for some NERC w, then
[w] is a subset of both [x] and [y] by Theorem 3.1. Hence [w] = Int([w]) ⊆
Int([x] ∩ [y]) = prod(x, y) and C(z, w) implies C(z, prod(x, y)).

Axiom (7) follows immediately from the observation that diff(x, y) =
prod(x, compl(y)). For axiom (8), we interpret NULL(x) as Int(x) = ∅
and have

DR(x, y) ↔ ¬O(x, y)

↔ Int([x]) ∩ Int([y]) = ∅

↔ Int([x] ∩ [y]) = ∅

↔ Int(Int([x] ∩ [y])) = ∅

↔ NULL(prod(x, y))

Thus, we have shown that whenever connection bears properties (i)–(iii),
the NERC sets of any topological space are a model of RCC less axiom
(4). Furthermore, properties (i)–(iii) are all necessary: an interpretation

5 This follows from the observation that x = x ∪ y iff y ⊆ x. The equivalence
between properties (ii) and (iii) was also proved in [36].
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of connection lacking property (i) would not satisfy axiom (1), and an
interpretation lacking either property (ii) or (iii) would not satisfy (5).

We note the following corollary of (a), which will be used in the proof
of (b).

Corollary 4.1. If connection bears properties (i)–(iii), then [[x]∩[y]] =
[x] ∩ [y].

Proof. The right-to-left inclusion is trivial, so we show just the con-
verse. Let z be coincident with [x] ∩ [y] and let w be connected to z
and hence [x] ∩ [y]. Now w is connected to [x] by axiom (6) and x by
Corollary 3.4; likewise, w is connected to y. z is hence a part of both x
and y, and z ⊆ [x] ∩ [y] follows from Corollary 3.3. ⊣

Turning to (b), we assume Non-Atomicity* and note that regions do
not overlap their complements.

Lemma 4.1. If connection bears properties (i)–(iii) and Non-Atomicity*
holds, ¬EQ(x, u) implies ¬O(x, compl(x)).

Proof. Suppose toward a contradiction that x is non-universal and
overlaps compl(x). Axiom (8) implies that prod(x, compl(x)) is a (non-
universal) region, and Non-Atomicity* implies that some y is not con-
nected to compl(prod(x, compl(x))). Now

compl(prod(x, compl(x))) = X − [[compl(x)] ∩ [x]]

= X − ([compl(x)] ∩ [x])

= X − [compl(x)] ∪ X − [x]

= compl(compl(x)) ∪ compl(x)

The second equation follows from Corollary 4.1. Then, by (5), y is
connected to neither compl(compl(x)) nor compl(x). But compl was
interpreted in such a way that compl(compl(x)) and [compl(x)] cover X ,
so all regions are connected to either (compl(x)) or compl(x), a contra-
diction. ⊣

Lemma 4.1 implies the following property regarding complements.

Lemma 4.2. If connection bears properties (i)–(iii) and Non-Atomicity*
holds, ¬EQ(x, u) implies [compl(x)] = compl(x).

Proof. The right-to-left inclusion is trivial. Toward the converse,
Lemma 4.1 and the interpretation of overlap imply that the interiors
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of compl(x) and [x] are disjoint. Since X − [x] is the largest open
set not intersecting Int([x]), we have Int([compl(x)]) ⊆ X − [x] and
[compl(x)] ⊆ X − [x] = compl(x). ⊣

The proof of axiom (4b) now follows:

¬P (y, x) ↔ [y] * [x]

↔ ∃z([z] ⊆ [y] ∧ [z] * [x])

↔ ∃w([w] ⊆ [y] ∩ compl(x))

↔ ∃w([w] ⊆ [y] ∩ [compl(x)])

↔ ∃w(P (w, y) ∧ P (w, compl(x)))

↔ O(y, compl(x))

The second equivalence follows from Corollary 3.2, and the third equiv-
alence holds with w = z ∩ compl(x). For the necessity direction of (b),
we note that if Non-Atomicity* fails, there is a NERC set x to whose
complement all NERC sets are connected. x would then overlap its
complement, violating axiom (4b).

For (c), we first show the sufficiency. If y is a non-tangential proper
part of x, any region not overlapping x is not connected to y, otherwise
that region would be externally connected to both x and y. In particular
since compl(x) does not overlap x (as a consequence of Lemma 4.1), y
is not connected to compl(x). And if y is not a non-tangential proper
part of x, either some z connected to y does not overlap x, or y is not
a proper part of x. In the former case, z ⊆ compl(x), so C(y, z) implies
C(y, compl(x)). And if the former case does not hold, every region con-
nected to y is connected to x, so y is a part of x, and y is not a proper
part of x only if x and y coincide. C(y, compl(x)) then follows from
C(x, compl(x)), and we have axiom (4a). The necessity direction of (c)
follows from the observation that a failure of C(x, compl(x)) would vio-
late axiom (4a) because x is not a (non-tangential) proper part of itself.

(a)–(c) in conjunction identify sufficient conditions for the NERC
sets of a topological space to yield a model of RCC. In particular, under
the standard interpretation of connection as set-theoretic intersection, a
significant class of topological spaces can provide models of RCC.

Corollary 4.2 ([20, 29]). With C(x, y) interpreted as x ∩ y 6= ∅, the
NERC sets of a connected weakly regular topological space are a model
of RCC.
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Proof. It is clear that this interpretation of connection bears properties
(i)–(iii). The weak regularity property implies Non-Atomicity* under
this interpretation: given any non-universal NERC x, weak regularity
implies that there is an open y with y ⊆ Int(x); y is then a NERC set not
connected to compl(x). And, the connectedness property implies that
non-universal regions are connected to their complements: for any non-
universal NERC x, X − [x] and X − compl(x) are open and disjoint, and
hence by connectedness cannot cover X ; [x] and compl(x) thus intersect
and are connected. ⊣

5. Discussion

We make three remarks on the results shown in Section 4. First, part
of the goal of the present investigation is to examine topological mod-
els of RCC without assuming that these models are strict. One might
thus wonder if the conditions of Theorem 4.1 leave room for non-strict
topological models. To see that they do, consider again Example 3.1.
The standard interpretation of connection bears properties (i)–(iii), and
the additional conditions in (b) and (c) are trivially satisfied because
all regions are universal in a model comprising the NERC sets of this
topological space. By Theorem 4.1, then, this model is a model of RCC.
But it was observed earlier that this model is not strict.

However, there are (even non-pragmatic reasons) reasons to give more
attention to strict models than to non-strict ones. For one, non-strict
NERC models of RCC can easily be turned into strict models. Corol-
lary 3.4 implies that any RCC relation between x and y is mirrored
between [x] and [y]—for instance, Pxy implies P [x][y]. Also, the inter-
pretations of compl, sum, prod, and diff are such that they are indifferent
between x and [x]—for instance, compl(x) = compl([x]). So if the NERC
sets of a topological space satisfy the axioms of RCC, so do the class
of sets of the form [x] in that space (under the same interpretation of
connection). The latter model is strict: if EQ([x], [y]), then EQ(x, y),
which implies [x] = [y]. Hence, given any NERC model of RCC, we can
construct a strict model of RCC simply by taking the quotient of [·].6

Moreover, under the standard interpretation of connection as set-
theoretic intersection, the only NERC models of RCC satisfying the

6 Thanks to a reviewer for suggesting this point.
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conditions of Theorem 4.1 are strict with respect to non-universal re-
gions. To show this, we first prove a lemma.

Lemma 5.1. In a topological model satisfying Non-Atomicity*, and with
C(x, y) interpreted as x ∩ y 6= ∅, P (y, x) implies Int(y) ⊆ x for non-
universal y.

Proof. Suppose Int(y) * x. Then Int(y)∩(X −x) is a non-empty open
subset of y ∩ (X − Int(x)), which hence has a non-empty interior. Now
z = Int(y ∩ (X − Int(x))) is a NERC set not overlapping x because the
interiors of x and z do not intersect, and z is non-universal because it
is a subset of y. Non-Atomicity* now implies that some region does not
intersect compl(z) ⊇ x. But this region would intersect [z] and hence
z ⊆ y, and so would be connected to y without being connected to x. ⊣

From Lemma 5.1 it follows that the topological models in question
are strict for non-universal regions.

Theorem 5.1. With C(x, y) interpreted as x ∩ y 6= ∅, in any topological
model satisfying Non-Atomicity*, EQ(x, y) implies x = y whenever x is
non-universal.

Proof. If EQ(x, y) and x is non-universal, y is non-universal. Applying
Lemma 5.1 twice now yields Int(y) ⊆ x and Int(x) ⊆ y. Then Int(x) ∪
Int(y) is an open subset of x, so Int(x) ∪ Int(y) ⊆ Int(x) and Int(y) ⊆
Int(x). Symmetrically, Int(x) ⊆ Int(y). Hence x = Int(x) = Int(y) = y.

⊣

Since RCC has Non-Atomicity* as a theorem, Theorem 5.1 implies
that all topological models of RCC are strict for non-universal regions
under the standard interpretation of connection. So although the formal
theory of RCC leaves room for non-strict models, RCC’s meta-theoretic
intended features, particularly the intended interpretation of connection,
implies that the extent to which coincidence can diverge from identity
in such models is limited. In addition to the practical reasons typically
given in the literature, therefore, there are in fact theoretical reasons for
investigations into models of RCC to focus on strict models, insofar as
these investigations are interested only in standard features of the theory.

Second remark: the proofs in Sections 3–4 sought to generalise over
interpretations of connection by depending on just three properties of the
standard interpretation. One might wonder if there are non-standard in-
terpretations satisfying the conditions of Theorem 4.1. Toward a positive
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answer, call a pair of sets a, b in a topological space separated by open

neighbourhoods if there are disjoint open sets A, B such that a ⊆ A and
b ⊆ B. We might interpret connection as follows:

C(x, y) ≡ x and y are not separated by open neighbourhoods

The following example shows that this interpretation of connection is
not equivalent to the standard one.

Example 5.1. Let X = {1, 2, 3, 4, 5} and T be generated by arbitrary
unions of ∅, {1}, {3}, {5}, {1, 2, 3}, and {3, 4, 5}. Then (X, T ) is a
topological space in which the NERC sets are {1, 2}, {4, 5}, {2, 3, 4},
{1, 2, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}, and X . {1, 2} and {4, 5} are disjoint
but not separated by open neighbourhoods.

Nevertheless, this alternate interpretation of connection admits mod-
els of RCC in the same class of topological spaces as given in Corol-
lary 4.2.7

Theorem 5.2. With C(x, y) interpreted as non-separation by open
neighbourhoods, the NERC sets of a connected weakly regular topolog-
ical space are a model of RCC.

Proof. The interpretation of connection bears properties (i)–(iii). (i)
is easily observed. For (ii): if x ⊆ y and z is not connected to y, then
the open sets separating z from y also separate z from x. For (iii): if x
is not connected to either y or z, there are open sets separating x from
y and x from z; the intersection of the two neighbourhoods of x and the
union of the neighbourhoods of y and z separate x from y ∪ z.

In connected topological spaces, NERC sets are connected to their
complements under this interpretation: the proof of Corollary 4.2 showed
that NERC sets intersect their complements in connected topological
spaces, and intersecting regions are not separated by open neighbour-
hoods. And, weak regularity again implies Non-Atomicity*. Given any
NERC x, applying the characteristic property of weakly regular spaces
twice yields open sets U and V with U ⊆ U ⊆ V ⊆ V ⊆ Int(x). The
NERC set U is then separated from compl(x) by the open sets V and
X − V . The result now follows from Theorem 4.1. ⊣

7 However, even in connected weakly regular topological spaces, this interpreta-
tion of connection is not equivalent to the standard one. Normal topological spaces
are characterised by the property that disjoint closed sets are separated by open
neighbourhoods, and it is known that not all (weakly) regular topological spaces are
normal. Thanks to a reviewer for raising this issue.
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The fact that models of RCC exist under non-standard interpreta-
tions shows the interpretation of connection to be underdetermined by
the formal theory of RCC.

Third, the results of Section 4 may be compared with similar previ-
ous work. Corollary 4.2 has previously been shown in [20, 29] and, as
observed earlier, its conditions entail the sufficient conditions of Theo-
rem 4.1. In fact, under the standard interpretation of connection, the
connectedness property of topological spaces is equivalent to the condi-
tion that all regions be connected to their complements: a disconnected
topological space can be partitioned into two disjoint (and hence not con-
nected) NERC sets, each of which would be the complement of the other.

However, Non-Atomicity* is not equivalent to weak regularity even
under the standard interpretation of connection. In the topological space
in Example 3.1, for instance, weak regularity fails but Non-Atomicity*
(trivially) holds. Indeed, as noted above, the NERC sets of this topo-
logical space are a model of RCC, which shows that weak regularity is
not a necessary condition for topological models of RCC even under the
standard interpretation. Moreover, with non-standard interpretations
in view, neither weak regularity nor connectedness is necessary: under
a trivial interpretation of connection entailing that all regions are con-
nected, the NERC sets of any topological space are a (trivial) model of
RCC even if those spaces are neither connected nor weakly regular. The
conditions in Theorem 4.1, on the other hand, were observed in Section
4 to be necessary as well as sufficient under any interpretation of connec-
tion. So the result in Theorem 4.1 may be seen as a strengthening of these
prior results and a generalisation over interpretations of connection.

Another similar result was shown by Stell [36]. Stell defined a
Boolean connection algebra as a Boolean algebra equipped with a
binary relation satisfying certain conditions, and showed that all and
only models of RCC have the structure of a Boolean connection algebra,
under the assumption that the models in question are strict. It is known
that the NERC sets of any topological space are a Boolean algebra less
the bottom element. In topological terms, and with NERC sets in view,
Stell’s additional conditions for a Boolean connection algebra are as
follows:

(A1) C is reflexive and symmetric
(A2) ¬EQ(x, u) → C(x, compl(x))
(A3) C(x, y ∪ z) ↔ C(x, y) ∨ C(x, z)
(A4) ¬EQ(x, u) → ∃y ¬C(y, x)
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(A1) and (A3) are equivalent to (i)–(iii), and (A2) is identical to
the condition identified in (c). (A4) is equivalent to Non-Atomicity*
in strict models, but this equivalence does not generally hold. For
example, consider again the topological space in Example 5.1. Under
the standard interpretation of connection, all of (A1)–(A4) are satisfied.
In particular, (A4) is satisfied because the only non-universal NERC
sets in this space are {1, 2} and {4, 5}, which are not connected to each
other. However, Non-Atomicity* is not satisfied because all NERC sets
intersect compl({1, 2}) = {2, 3, 4, 5}. Indeed, the topological model com-
prising the NERC sets of this space does not satisfy axiom (4b) because
{2, 3, 4, 5}, being universal, has {1, 2} as a part; hence {1, 2} overlaps
its complement. An odd feature of Example 5.1, which underlies the
divergence between (A4) and Non-Atomicity*, is that the topological
model in this example contains regions whose complements coincide
with the universe. This feature does not arise in models satisfying
Non-Atomicity*, nor does it arise in strict models, in which ∅ is the only
regular closed set whose RCC complement is universal. So the result in
Theorem 4.1 may be seen as a generalisation of Stell’s result to models
that are not necessarily strict.

6. Non-empty regular open sets

This and the next section will consider how the results of Section 4 trans-
late to topological models other than those comprising the NERC sets
of a topological space. Perhaps unsurprisingly, similar results hold for
models comprising the non-empty regular open (henceforth NERO) sets
of a topological space. Nevertheless, it will be seen, there are significant
meta-theoretic differences between the two kinds of models.

Given an interpretation of connection, let [x] be the smallest NERO
setcontaining allmembersof the equivalence class under EQ containing x:

[x] := Int
(

⋃

{y : EQ(y, x)}
)

and interpret the complement, sum, product, and difference mappings
as follows:

compl(x) ≡ X − [x]
sum(x, y) ≡ Int([x] ∪ [y])
prod(x, y) ≡ [x] ∩ [y]
diff(x, y) ≡ [x] ∩ (X − [y])
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Since the interiors of closed sets are regular open, and the intersection
of two NERO sets is NERO, [x], compl(x), sum(x, y), prod(x, y), and
diff(x, y) are NERO whenever x and y are. It can now be shown,
by proofs largely similar to those in Sections 3–4, that if the adopted
interpretation of connection is such that

(i) C is reflexive and symmetric
(ii) x ⊆ y → P (x, y)
(iii) C(x, Int(y ∪ z)) → C(x, y) ∨ C(x, z)

then results (a)–(c) in Theorem 4.1 hold for the NERO sets of a topo-
logical space. Moreover, as in the NERC case, plural non-equivalent
interpretations of connection satisfy the sufficient conditions identified
in (a)–(c), and thus yield topological models of RCC. One such inter-
pretation is the standard C(x, y) ≡ x ∩ y 6= ∅, which may be verified to
bear properties (i)–(iii). Under this interpretation, it can be shown by
proofs similar to that for Corollary 4.2 and Theorem 5.1 that the NERO
sets of any connected weakly regular topological space are a model of
RCC, and that all such models are strict for non-universal regions.

Toward a non-standard interpretation of connection, call a function
between topological spaces continuous if the preimage of every open set
in the codomain is open in the domain, and call a pair of sets a, b in a
topological space (X, T ) separated by a continuous function if there is a
continuous function f : X → R such that f(a) ⊆ {0} and f(b) ⊆ {1}.
Connection might then be interpreted as: C(x, y) iff x and y are not
separated by a continuous function.

This interpretation is non-equivalent to the standard one. As an
example, consider again the topological space in Example 5.1. The sets
{1} and {5} are NERO in this topological space, and their closures {1, 2}
and {4, 5} are disjoint. But these NERO sets are not separated by a
continuous function because a continuous f : X → R requires

(I) f(1) = f(3) because {1, 2} and {2, 3} are not open, and
(II) f(3) = f(5) because {3, 4} and {4, 5} are not open;

but (I) and (II) cannot be satisfied with f(1) = 0 and f(5) = 1.
This interpretation of connection also admits models of RCC in a

significant class of topological spaces. Call a topological space normal

just in case disjoint closed sets are separated by a continuous function.
We then have the following theorem.
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Theorem 6.1. With C(x, y) interpreted as non-separation by a continu-
ous function, the NERO sets of a connected, weakly regular, and normal
topological space are a model of RCC.

Proof. We first show that this interpretation of connection bears prop-
erties (i)–(iii). (i) and (ii) are easily observed. For (iii): if x is connected
to neither y nor z, then there are continuous real-valued functions g and h
on X such that g(y)∪h(z) ⊆ {1} and g(x)∪h(x) ⊆ {0}. Then f : X → R
defined by f(p) = max(g(p), h(p)) is continuous, with f(x) ⊆ {0} and
f(y ∪z) ⊆ {1}. Indeed, because {1} is closed in the standard topology of
the reals, its preimage under f is closed and includes y ∪ z ⊇ Int(y ∪ z).
So x is not connected to Int(y ∪ z).

In connected topological spaces, NERO sets are connected to their
complements under this interpretation because if a NERO set is sepa-
rated from its complement by a continuous function, so would the clo-
sures of these two sets, which would be disjoint and cover the topological
space, violating connectedness. If moreover the topological space in ques-
tion is weakly regular and normal, Non-Atomicity* would be satisfied by
its NERO sets. In weakly regular topological spaces, every NERO x ad-
mits an open y with y ⊆ x. This y is a closed set disjoint from the closed
X −x, so if the topological space is additionally stipulated to be normal,
Int(y) would be a NERO set not connected to compl(x). Applying the
NERO analogue of Theorem 4.1 now implies that we have a model of
RCC. ⊣

The observed similarity between the NERC and NERO cases is per-
haps unsurprising since it is known that in any topological space, the
class of NERC sets is isomorphic to the class of NERO sets, and vice

versa. But despite their formal similarity, significant differences arise
between the two cases when meta-theoretic considerations are in view,
particularly when self-connection is considered. Presumably, in topologi-
cal models of RCC, CON is intended to align with topological connection.
This alignment, however, is countenanced more naturally in the NERC
case than in the NERO case.

In NERC models, several possible interpretations of connection, in-
cluding the standard one, align the two definitions. When only NERC
sets are in view, y∩z = y∩z = ∅ is equivalent to y∩z = ∅, so topological
connection implies self-connection when connection is interpreted as set-
theoretic intersection. For the converse, we have the following lemma.
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Lemma 6.1. If x is NERC and y ∪ z = x is a partition of x with y ∩ z =
y ∩ z = ∅, then y and z are NERC.

Proof. It suffices to show that y = Int(y). Since Int(y) ⊆ Int(x) =
x = y ∪ z, and Int(y) ⊆ y is disjoint from z, we have Int(y) ⊆ y.
Conversely, let p ∈ y. Since y is disjoint from z, there is an open set
U ⊇ y ∋ p disjoint from z. Now suppose toward a contradiction that
p /∈ Int(y). Then there is an open set V ∋ p disjoint from Int(y). Since
p ∈ x = Int(x), U ∩ V intersects Int(x), and W = U ∩ V ∩ Int(x) is
open. Since W is disjoint from z, W is an open subset of both V and y,
contradicting that V is disjoint from Int(y). Hence, y ⊆ Int(y). ⊣

Lemma 6.1 entails that under the standard interpretation of connec-
tion, self-connection implies topological connection. When connection is
interpreted non-standardly as non-separation by open neighbourhoods,
by a similar argument to the above, the definitions of self-connection and
topological connection agree in normal topological spaces.

In NERO models, however, it seems unlikely that any natural in-
terpretation of connection aligns self-connection with topological con-
nection. To see why, consider the Euclidean plane with the standard
topology. In this topological space, the two open balls of radius 0.5
centred at (0.5, 0) and (1.5, 0) are NERO and their RCC sum is their
union. The union of these open balls is not topologically connected, so
any interpretation of connection that aligns self-connection with topo-
logical connection will have to entail that the two open balls are not
connected. But in the real numbers with the standard topology, the
interval (0, 2) = Int((0, 1) ∪ (1, 2)) is topologically connected, so an in-
terpretation of connection that aligns self-connection with topological
connection will have to entail that (0, 1) and (1, 2) are connected. While
it might be possible to construct an interpretation of connection satisfy-
ing both these conditions, it is unclear that this can be done in a natural
non-contrived manner, especially since the intervals (0, 1) and (1, 2) are
simply the open sets induced by the open balls in the previous example
when the real line is viewed as a topological subspace of the Euclidean
plane. Indeed, under both interpretations of connection considered ear-
lier in this section, including the standard interpretation, the union of the
open balls is self-connected, which disagrees with topological connection.

The upshot is that although NERC and NERO models of RCC share
many formal properties, a significant meta-theoretic difference exists:
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NERC models more naturally countenance the intended alignment be-
tween self-connection and topological connection.

7. Deep properties

This section will consider the extent to which the axioms of RCC can
be satisfied by topological models comprising all the non-empty sets of
a topological space. It will be observed that although these topological
models do not themselves provide non-trivial models of RCC, they can
easily provide models of RCC less axiom (4a). This will suggest that
roughly (in a sense to be made precise below), axiom (4) is significantly
more difficult to satisfy than are the other axioms of RCC.

Given an interpretation of connection, let [x] be the union of the
equivalence class containing x:

[x] :=
⋃

{y : EQ(y, x)}

and interpret the complement, sum, product, and difference mappings
thus

compl(x) ≡ X − [x]
sum(x, y) ≡ [x] ∪ [y]
prod(x, y) ≡ [x] ∩ [y]
diff(x, y) ≡ [x] ∩ (X − [y])

Then it may be verified, by proofs similar to those in Sections 3–4, that
if the adopted interpretation of connection is such that

(i) C is reflexive and symmetric
(ii) x ⊆ y → P (x, y)
(iii) C(x, y ∪ z) → C(x, y) ∨ C(x, z)

then (a) and (b) in Theorem 4.1 hold for the non-empty sets of any
topological space. Moreover, some interpretations of connection admit
topological spaces that satisfy the conditions of (a) and (b). For instance,
under an interpretation of connection as set-theoretic intersection, which
was previously observed to bear properties (i)–(iii), non-empty sets are
not connected to their complements under the present interpretation of
compl, so Non-Atomicity* is satisfied. So under this interpretation, the
non-empty sets of any topological space are a model of RCC less (4a).

However, none of these models can non-trivially satisfy axiom (4b).
Indeed, under any interpretation of connection bearing properties
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(i)–(iii), the only topological models of RCC comprising all the non-
empty subsets of a topological space are ones in which all regions are
universal.

Theorem 7.1. If connection bears properties (i)–(iii) and the non-empty
sets of (X, T ) are a model of axiom (4), then EQ(x, u) for all x in this
model.

Proof. Suppose x is a non-universal set in such a model. Property (ii)
implies that any subset of x is also non-universal. Let p be a singleton
subset of x containing just a point. Now if p is not connected to X − p,
axiom (4a) is violated. But if p is connected to X − p, it follows from
(ii) that all non-empty sets are connected to X − p, which implies that
p overlaps its complement, violating axiom (4b). ⊣

So without any further restriction on the sets under consideration
(beyond a restriction to non-empty sets), there are no non-trivial topo-
logical models of RCC. Furthermore, a restriction to either NERC or
NERO sets, without stipulations about the topological spaces in ques-
tion, would also not constitute sufficient conditions to guarantee non-
trivial topological models of RCC. For, given any point-set X , a topology
on X in which every subset of X is open is such that every non-empty set
is both NERC and NERO. If connection is interpreted in such a way that
there is at least one non-universal region, then, a similar argument to
the above would show that the NERC or NERO sets of this space cannot
satisfy both parts of axiom (4) simultaneously. So while connection can
be interpreted in such a way that the non-empty sets of any topological
space are a model of RCC less axiom (4a), a non-trivial topological model
of RCC requires restrictions on both the sets and the topological spaces
under consideration.

These observations suggest that axiom (4) imposes stronger con-
straints on topological models than do the other axioms of RCC, and
gives RCC much of its topological structure. Insofar as the topological
features of models of RCC are determined by the formal theory, then, we
might expect these features to be determined by axiom (4). An example
of such a feature is Non-Atomicity, which was initially identified as a pos-
sible ‘deep theorem’ of RCC [12] and later shown to be consequence of
axiom (4). Non-Atomicity is not a theorem of RCC less axiom (4a). With
connection interpreted as set-theoretic intersection, the non-empty sets
of any connected topological space with at least two points, which are a
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model of RCC less axiom (4a), do not satisfy Non-Atomicity because sin-
gleton non-universal sets have no proper parts. Non-Atomicity as a topo-
logical feature of RCC is thus determined only in models satisfying both
parts of axiom (4). This reveals one way in which Non-Atomicity might
be considered something of a ‘deep’ theorem of RCC: it is a consequence
of the constraints imposed on topological models by all the axioms of
RCC; but it might not hold in models that do not satisfy part of (4).

This notion can be defined somewhat more formally. Call a property
deep if it holds in all topological models of RCC, but not generally in
topological models of RCC less either (4a) or (4b). In the next section,
it will be shown that some deep properties arise in relation to interiors.

8. Interiors

It is typically thought to be a feature distinguishing RCC from the the-
ories of Clarke that interiors cannot be defined in RCC. An informal
argument was given in [35] to the conclusion that interiors are incon-

sistent with RCC (also see [1]). Here, a formal reconstruction of the
argument will be given and it will be shown that interiors can in fact
be defined consistently, albeit not very meaningfully. It will also be seen
that this incompatibility with a meaningful notion of interiors is a deep
property of RCC.

The argument in [35] aims to show that the axioms of RCC do not
allow for an arbitrary sum to be taken over all the non-tangential proper
parts of a region, in accordance with the usual notion of interior. Let
sum{y : φy} denote the arbitrary sum over all regions bearing property
φ. According to the argument, arbitrary sums should be governed by
the following axiom:

C(z, sum{y : φy}) ↔ ∃y(φy ∧ C(z, y))

This is perhaps a natural extension of axiom (5), and indeed reduces to
(5) in the finite case. The argument now proceeds with the observation
that RCC countenances the following ‘weak supplementation’ principle:

PP (y, x) → ∃z(P (z, x) ∧ ¬O(z, y))

To see that this is a theorem of RCC, assume that y is a proper part
of x. Axiom (4b) implies that x overlaps the complement of y, so z =
prod(x, compl(y)) is a region. Axiom (6) implies that z is a part of x
and axiom (4b) implies that z does not overlap y.
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An implication of the supplementation principle and Non-Atomicity
(which is also a theorem of RCC) is that regions coincide with their
interiors. For, otherwise, sum{y : NTPP (y, x)} would be a proper part
of x, which by the supplementation principle implies that some part of
x does not overlap sum{y : NTPP (y, x)}. But Non-Atomicity implies
that this part of x contains a non-tangential proper part of x, which
entails a contradiction.

Now by axiom (4a), any region x, coincident with its interior, is con-
nected to its complement, and the governing axiom for arbitrary sums
implies that compl(x) is connected to some non-tangential proper part
of x. But this entails that x overlaps its complement, which contradicts
axiom (4b). Therefore, it seems, interiors are inconsistent with RCC.
Several topological properties typically associated with RCC follow, par-
ticularly that RCC, contra Clarke’s theories, does not distinguish open,
closed, and semi-open regions.

A potentially contentious point of the proof above is the suggested
governing axiom for arbitrary sums, and an examination of some typical
topological models of RCC will suggest reasons against it. Recall that
in NERC models of RCC, the finite sum mapping is interpreted thus:

sum(x, y) ≡ [x] ∪ [y]

A natural extension to the infinite case seems to be:

sum{y : φy} ≡
⋃

{[y] : φy}

The closure operator here is necessary to guarantee that arbitrary sums
are NERC. Arbitrary sums thus interpreted violate the axiom suggested
above. For example, in the standard topology of the reals and under the
standard interpretation of connection for NERC models, the sum over
all closed intervals [a, b] with 0 < a < b < 1 is [0, 1], which is connected
to [1, 2]; but [1, 2] is not connected to any [a, b]. Similarly, in the NERO
case, the natural interpretation of arbitrary sum is

sum{y : φy} ≡ Int(
⋃

{[y] : φy})

Under this interpretation, and with connection interpreted standardly
as intersection of closures, (1, 2) is connected to the sum over all open
intervals (a, b) with 0 < a < b < 1, namely (0, 1); but (1, 2) is not
connected to any (a, b).
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These observations suggest that we might explore other possible ax-
ioms for governing arbitrary sums. Casati and Varzi [5] formulated a
different mereological theory countenancing arbitrary sums, whose defi-
nition, in RCC terms, is as follows:

sum{y : φy} := ιz∀y(O(y, z) ↔ ∃x(φx ∧ O(y, x)))

This definition suggests the following possible axiom:

O(z, sum{y : φy}) ↔ ∃y(φy ∧ O(z, y))

This axiom aligns with the topological interpretations of arbitrary sums
suggested above: while intersection with

⋃

{[y] : φy} does not imply in-
tersection with some [y], intersection with Int(

⋃

{[y] : φy}) does. More-
over, this axiom is a consequence of the properties of connection stip-
ulated in the earlier sections, regardless of whether NERC sets, NERO
sets, or all non-empty sets are in view. We show this just for the NERC
case.

Theorem 8.1. If connection bears properties (i)–(iii), then in models
comprising the NERC sets of a topological space, O(z, sum{y : φy}) ↔
∃y(φy ∧ O(z, y)).

Proof. By the interpretations of overlap and general sum, it suffices to
show that for any z, Int([z]) intersects the interior of

⋃

{[y] : φy} iff it in-
tersects the interior of some [y] such that φy. First suppose that Int([z])
intersects the interior of

⋃

{[y] : φy}. Since Int([z]) is open, its intersect-
ing

⋃

{[y] : φy} implies that it intersects
⋃

{[y] : φy}, which implies that
it intersects some [y] such that φy. Again, since Int([z]) is open, its in-
tersecting [y] = Int([y]) implies that it intersects Int([y]). The converse
follows from the observation that if φy, then [y] ⊆

⋃

{[y] : φy}. ⊣

The proofs for the other cases proceed similarly. Theorem 8.1 and
its analogues show that the suggested alternative axiom is a theorem of
RCC and hence is consistent with the theory. Interiors, therefore, can
be defined consistently in RCC.

Nevertheless, a notion of interiors would not be very useful since, as
noted above, it is a theorem of RCC that regions coincide with their
interiors. This coincidence might not hold, however, in models of RCC
less axiom (4b).
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Example 8.1. With connection interpreted as C(x, y) ≡ (x∩y)∪(x∩y) 6=
∅, the non-empty sets in the standard topology on the reals are a model
of RCC less axiom (4b), in which the interior of [0, 1] is (0, 1).

Proof. We first show that the given model is a model of RCC less axiom
(4b). The given interpretation of connection bears properties (i)–(iii) as
given in Section 7, so this model satisfies RCC less axiom (4). Toward
axiom (4a), we note that this model is such that all non-universal sets
are connected to their complements, so the proof of ¬NTPP (y, x) →
C(y, compl(x)) proceeds as in Section 4. For the converse, if y is con-
nected to compl(x), then either y intersects compl(x) or y intersects
compl(x). In the former case, Int(compl(x)) is connected to y with-
out overlapping x; and in the latter, y − x is connected to y without
overlapping x. Either way, y is not a non-tangential proper part of x.

Next, we show that the interior of [0, 1] is (0, 1). Any open interval in
[0, 1] is a non-tangential proper part because any set connected to such
an interval intersects, and hence overlaps, [0, 1]. Also, 0 and 1 are not in
the interior of [0, 1] because any set containing 1 (or 0) is connected to
(1, 2) (or (−1, 0)), which does not overlap [0, 1]. Since (1, 2) is connected
to [0, 1] but not (0, 1), the latter two sets do not coincide. ⊣

This example shows it to be a deep property of RCC that regions
coincide with their interiors. In this model, furthermore, open, closed,
and semi-open regions can be distinguished. In line with an analogous
theorem in topology, define the closure of a non-universal region as the
complement of its complement’s interior. Then, the closure of R − [0, 1]
is R − (0, 1). To see this, let x = R − [0, 1]. We first note that [x] = x
because any set intersecting [0, 1] is connected to (0, 1) and hence not
coincident with x. The complement of x is thus [0, 1], whose interior is
(0, 1). We now note that any set intersecting X − (0, 1) is not coincident
with (0, 1) because any such set is connected to x. The complement of
(0, 1) is thus X − (0, 1). Since (0, 1) is connected to X − (0, 1) but not
X − [0, 1], the latter two sets are not coincident.

Therefore, in the model in Example 8.1, not only are regions not
generally coincident with their interiors, they are also not generally co-
incident with their closures. Open, closed, and semi-open regions may
hence be defined analogously to topology, namely, a region is open if
it coincides with its interior, closed if it coincides with its closure, and
semi-open if its closure coincides with the closure of an open proper part.
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The incompatibility of RCC with a distinction between these three kinds
of regions thus constitutes another deep property.

9. Conclusion

This paper investigated several meta-theoretic topological features of
RCC and showed that they are either underdetermined by the formal
theory of RCC, or would be underdetermined if part of axiom (4) is
dropped. The main findings were the following:

1. The topological interpretation of connection is underdetermined
by the axioms of RCC for both NERC and NERO models.

2. The alignment of self-connection with topological connection is
also underdetermined. Plural interpretations of connection countenance
this alignment in NERC models, while it seems that most natural in-
terpretations (including the standard one) do not for NERO models.
Incidentally, this also shows that despite the formal similarity between
NERC and NERO topological models, meta-theoretic differences exist
between the two classes of models.

3. Restrictions on both sets and topological spaces are necessary for
topological spaces to provide non-trivial models of RCC, but neither is
necessary if part of axiom (4) is dropped. Under some interpretations of
connection, models of RCC less axiom (4a) are given by the non-empty
sets of any topological space.

4. Interiors cannot be meaningfully defined in RCC, but this is not
the case if part of axiom (4) is dropped. Contrary to what is sometimes
thought, interiors are formally consistent with RCC, though regions al-
ways coincide with their interiors in models of RCC. A meaningful notion
of interior, however, is compatible with RCC less axiom (4b).

5. Open, closed, and semi-open regions cannot be distinguished in
RCC, but this is not the case if part of axiom (4) is dropped.

The former two observations suggest that if some intended features of
RCC are to be determined, additional axioms are necessary. The latter
three show that among the current axioms, axiom (4) is deeper than the
other axioms of RCC, giving models of RCC much of their topological
structure.
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