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Abstract. This note clarifies the significance of the proof of Gödel’s first
disjunct obtained through the formalisation of Penrose’s second argument
within the DTK system. It analyses two formulations of the first disjunct 
one general and the other restricted  and dwells on the demonstration of
the restricted version, showing that it yields the following result: if by F

we denote the set of propositions derivable from any formalism and by K

the set of mathematical propositions humanly knowable, then, given certain
conditions, F necessarily differs from K. Thus it is possible that K surpasses
F but also, on the contrary, that F surpasses K. In the latter case, however,
the consistency of F is humanly undecidable.
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Introduction

In this note we aim to illustrate some consequences that can be derived
from Penrose’s second argument formalised within the DTK system.
These consequences also have a strong impact on the interpretation of the
first disjunct of Godel’s disjunction (see Gödel, 1995, p. 310). Penrose’s
argument (see 1994; 1996) aims at the proof of the first disjunct, i.e.,
the proving of the essential difference between mind and machine. Now
the greatest difficulties in Penrose’s argumentation come from claims
involving the use of a type-free predicate of truth, which exposes the ar-
gument to incorrect paradoxical passages. Koellner (2016, 2018a,b) (see
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also Corradini and Galvan, 2022) proposed to formalise the argument
within the DTK system precisely to avoid the incorrectness attributable
to truth paradoxes. DTK is, in fact, an extension of Feferman’s system
DT, (see 2008), which is characterised by the knowability predicate K
(or absolute provability, as it is called by Koellner), whereas the DT

system is itself characterised by a type-free predicate of truth T and the
determinateness predicate D. The predicate of determinateness serves,
precisely, to contain the destructive effects of paradoxical situations gen-
erated by the untyped character of the truth predicate. By means of
predicate D it is possible to guard against incorrect passages attributable
to the use of indeterminate sentences, i.e., those that are incapable of
being true or false, such as paradoxical sentences. Regarding the formal
structure of the system, we refer to (Koellner, 2016) and (Corradini and
Galvan, 2022). Here we focus only on certain  also notational  aspects
of particular importance.

A. An aspect of particular importance is the fact that the syntax of
DTK is completely arithmetisable. Thus, while ⊢DTK ϕ is the usual syn-
tactic expression of derivability in DTK of the formula ϕ, PRDTK(pϕq) is
the result of the arithmetisation of ⊢DTK ϕ, where PRDTK is a recursively
enumerable predicate and pϕq represents the code of the proposition ϕ.
Clearly to L(DTK) also belongs the expression PRF (pϕq), which arith-
metises the concept of derivability of ϕ in the system F and is usually
denoted by ⊢F ϕ and is shortened to F (pϕq). Also the predicates D, K
and T have codes as arguments. Thus D(pϕq) means that proposition ϕ
is determinate, K(pϕq) means that proposition ϕ is known and T (pϕq)
means that proposition ϕ is true. In what follows, however, we will use a
metatheoretical simplified language, omitting the code function. Hence,
F (pϕq) is simplified to Fϕ, K(pϕq) to Kϕ, D(pϕq) to Dϕ and T (pϕq)
to Tϕ.

Last, it is worth noting that F serves both as a symbol for a formal
system, the concept of formal derivability in the system, and as a symbol
for the set of theorems of the system itself. Moreover predicate F corre-
sponds to the Gödelian idea of formalised mathematics. K, on the other
hand, is the predicate intended to translate the Gödelian idea of subjec-
tive mathematics, i.e., mathematics that is accessible with certainty to
the human mind, while T is that of objective mathematics. Therefore, F ,
K and T may also be understood as sets: F as the set of theorems of the
corresponding F -system, K as the set of humanly knowable propositions
and T as the set of true mathematical propositions.
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B. Referring back to the abovementioned place for a full discussion
of the three predicates, we can limit ourselves to emphasising three fun-
damental principles of the predicate K.

1. K-correctness principle: ⊢DTK Kϕ → ϕ

Correctness is a universally recognised characteristic of knowledge. One
cannot consider oneself to know if what one knows is not true.

2. K-intro rule: ⊢DTK ϕ ∧ Dϕ ⇒ ⊢DTK Kϕ

It should be noted that the K-intro rule is correct only if the premise
satisfies the condition of determinateness. Therefore, to derive ⊢DTK

Kϕ it is not sufficient that ⊢DTK ϕ, but it is also necessary that the
determinateness of ϕ be derivable, i.e., ⊢DTK Dϕ. The consequences
of this are significant. Tarski’s biconditional Tϕ ↔ ϕ does not apply
unconditionally, but only under the condition of determinateness of the
proposition concerned. That is, ⊢DTK Dϕ → (Tϕ ↔ ϕ). What applies
unconditionally is ⊢DTK Tϕ → ϕ but not ⊢DTK ϕ → Tϕ.

With the K-intro rule, the function of the predicate of determinate-
ness D becomes clear. Only determinate propositions can be known and
only these are known as true.

3. Rule of mathematical knowledge: ⊢PA ϕ ⇒ ⊢DTK Kϕ i.e.,
PRPAϕ ⊢DTK Kϕ

Arithmetical propositions are determinate and, consequently, if they are
theorems, they are also knowable and therefore true.

1. DTK system and the Gödel’s disjunction

How can Gödel’s disjunction be obtained in the DTK system? The
disjunction can be obtained in two different formulations: a general and
a restricted. The former concerns all propositions that can be formulated
in the language of DTK, while the latter is restricted to arithmetical
propositions only  i.e. belonging to L(PA), which, as we know, is a part
of L(DTK). In particular this difference can be seen in the formulation
of the first disjunct that includes the expression of the identity between
“Mind” and “Machine”. This identity can be formulated in two ways:

Definition 1. K = F := (∀ϕ ∈ L(DTK))(Kϕ ↔ Fϕ).
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That is, the set of propositions belonging to the language of DTK

and derivable in F coincides with the set of propositions belonging to the
same language that are humanly knowable, i.e., the set of propositions
belonging to the language of DTK and derivable in F coincides with
the set of propositions belonging to the same language that are humanly
knowable.

Definition 2. K =PA F := (∀ϕ ∈ L(PA))(Kϕ ↔ Fϕ).

That is, the set of propositions belonging to the language of PA and
derivable in F coincides with the set of propositions belonging to the
same language that are humanly knowable.

Depending on these two formulations, one can have two forms of
Gödel’s disjunction in DTK:

Formulation 1. ⊢DTK ¬∃F (K = F ) ∨ ∃ϕ(Tϕ ∧ ¬Kϕ ∧ ¬K¬ϕ).

That is, either there is no formalism F capable of deriving all propo-
sitions belonging to the language of DTK that are humanly knowable 
i.e. belong to K  or there is a proposition of that language that is true
and humanly undecidable.

Formulation 2. ⊢DTK ¬∃F (K =PA F ) ∨ (∃ϕ ∈ L(PA))(Tϕ ∧ ¬Kϕ ∧

¬K¬ϕ).

That is, either there is no formalism F capable of deriving all propo-
sitions belonging to the language of PA that are humanly knowable 
i.e., belong to K  or there is a proposition of that language that is true
and humanly undecidable.

Both formulations are derivable in DTK (see Koellner, 2016, pp. 174–
176). However, there is an important difference: only the restricted
formulation is determinate, so that only it is provably knowable and con-
sequently true. It alone can therefore be declared fully acceptable. What
is the reason for this difference? As we have already mentioned, DTK is
characterised by the possibility of containing indeterminate propositions,
i.e., neither true nor false. The predicate of determinateness is defined
in such a way as to ensure the conditions of formation and derivation
of determinate propositions. Among these conditions, there is also the
condition that all mathematical propositions (belonging to the language
of PA) are determinate; this is why the restriction of the assertion of
equivalence to mathematical propositions ensures the determinateness
of equivalence. This difference also plays an important role in the proof
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of the first disjunct. For it is one thing to prove ¬∃F (K = F ) and
another to prove ¬∃F (K =PA F ). While it is possible to prove the first
formulation, it is not possible to prove the second.

2. DTK and Gödel’s first disjunct

Koellner (2016, Theorem 7.16.2(1), pp. 177–179) first achieved the fol-
lowing result on the first disjunct:

Theorem 1. 6⊢DTK ¬∃F (K =PA F ), i.e., it is impossible to prove in
DTK that no formalism exists that is capable of proving all mathematical
propositions (belonging to the language of Peano’s arithmetic) knowable
by the human mind.

This is an important result of independence. It makes it clear that
it is not ruled out that there exists a formalism capable of proving all
mathematical propositions knowable by the human mind. The restric-
tion to mathematical propositions is essential. We already know why the
assertion of equivalence between K and F must be restricted to mathe-
matical propositions. The restriction ensures the determinateness  and
thus the possibility of being true  of the proposition whose nonderivabil-
ity is asserted in DTK. Therefore, while ¬∃F (K =PA F ) is a determinate
proposition  and thus susceptible of being true  the same unrestricted
proposition ¬∃F (K = F ) is not. On the basis of this result  and of the
further theorem 7.16.2(2) concerning the second disjunct, which we do
not consider here  Koellner states that it is impossible to decide on any
disjuncts in DTK.1

In reality, it is possible to go a few steps further. In fact, in DTK it is
possible to obtain the following partial result (see Corradini and Galvan,
2022, step 8′, p. 493):

Theorem 2. K =PA F ⊢DTK(∃ϕ /∈ L(PA)(Dϕ∧Kϕ∧¬Fϕ), i.e., if there
is a formalism F which coincides with K with respect to mathematical
propositions, there is at least one not purely mathematical determinate
proposition that is humanly knowable and not derivable in F .

1 He says in (Koellner, 2018b, p. 468): “Assume that DTK is correct for arith-
metical statements. Then [. . . ] from the point of view of DTK, it is in principle
impossible to prove or refute either disjunct.”
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Clearly, both theorems are restricted to determinate formulas. In
particular, the assumption of identity between K and F that appears
in the antecedent in Theorem 2 is explicitly restricted to arithmetical
formulas, but the non-arithmetical formula whose existence is declared
in the consequent is also determinate, and is proved to be so. The mean-
ing of the theorem is subtle: it declares that, even assuming that there
is a formalism F which coincides with K with respect to mathematical
propositions  i.e., which is able to match the human mind in this re-
spect  there is at least one not purely mathematical proposition that is
not derivable in F  and therefore inaccessible to it. In other words, it is
impossible for a formalism to equal the human mind in both mathemat-
ical and non-mathematical knowledge. It may equal it mathematically,
but in that case it cannot equal it in other respects. In this sense, then,
the difference between mind and machine is demonstrated.

Theorem 2 seems to contradict Theorem 1. But this is a false impres-
sion. Theorem 1 rejects the possibility of proving that the human mind
cannot be equalled by a formalism as far as mathematical propositions
are concerned; that is, it excludes the provability of the first restricted
disjunct. Theorem 2, instead, states that, if there exists a formalism F
equivalent to the human mind from a mathematical point of view, then
there exists at least one non-mathematical proposition that is humanly
knowable but not derivable in F . This means that formalism cannot
match the human mind in both respects: if it equals it from a mathe-
matical point of view, it cannot equal it from a non-purely mathematical
point of view. Therefore, Theorem 2 excludes that there can be a for-
malism equivalent to the mind and consequently seems to prove the first
disjunct in contrast to Theorem 1.

However, things are not like that. It is true that Theorem 2 excludes
that the mind is equivalent to a machine, but it excludes it because
equivalence is understood in a broader sense than that of Koellner. The
equivalence between mind and machine is understood in terms of their
ability to derive both mathematical and non-purely mathematical deter-
minate propositions. That the first disjunct can be understood according
to this meaning of the notion of equivalence is not senseless, since the
equivalence between mind and machine must not be exclusively ascribed
to the ability to derive mathematical propositions. But then, if the first
disjunct is understood in the sense that there is no formalism capable
of deriving all mathematical or non-purely mathematical determinate
propositions knowable by the human mind, it is reasonable to propose
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expressing it formally and proving it in DTK. The following steps serve
precisely this purpose.

The first idea is to exploit the following two facts:

1. K = F ⊢DTK K =PA F
2. (∃ϕ /∈ L(PA))(Kϕ ∧ ¬Fϕ) ⊢DTK ∃ϕ(Kϕ ∧ ¬Fϕ)

Starting from Theorem 2. we can then obtain:

K = F ⊢DTK (∃ϕ /∈ L(PA))(Kϕ ∧ ¬Fϕ) by chain
K = F ⊢DTK K 6= F from def. of K = F
⊢DTK ∀F (K 6= F ) by contradiction
⊢DTK ¬∃F (K = F ) logic

Clearly, we went thus far as to falsify that the mind can be a machine,
i.e., the first unrestricted disjunct. Unfortunately, however, we cannot
prove in DTK that this result is true. The unrestricted proposition is in
fact indeterminate and, as a consequence, it is not possible to apply the
K-intro rule to it and thereby derive the truth.

However there is another way to give a different but correct form to
the statement that the mind is not a machine. That road is to stick to
the formulation restricted to mathematical propositions and work on the
double assumption K =PA F and K 6=PA F . This is the content of the
following theorem:

Theorem 3. ⊢DTK (∃ϕ /∈ L(PA))(Dϕ∧Kϕ∧¬Fϕ)∨(∃ϕ ∈ L(PA))(Kϕ∧

¬Fϕ) ∨ (∃ϕ ∈ L(PA)(¬Kϕ ∧ Fϕ).

Proof. 1. Part: K =PA F

K =PA F ⊢DTK (∃ϕ /∈ L(PA))(Dϕ∧Kϕ∧¬Fϕ)∨(∃ϕ ∈ L(PA))(Kϕ∧

¬Fϕ) ∨ (∃ϕ ∈ L(PA)) ∧ ¬Kϕ ∧ Fϕ) (from Theorem 2).

2. Part: K 6=PA F

K 6=PA F ⊢DTK (∃ϕ ∈ L(PA))(Kϕ ∧ ¬Fϕ) ∨ (∃ϕ(ϕ ∈ L(PA))(¬Kϕ ∧

Fϕ) (def. K =PA F ),
K 6=PA F ⊢DTK (∃ϕ /∈ L(PA))(Dϕ∧Kϕ∧¬Fϕ) ∨ (∃ϕ ∈ L(PA))(Kϕ∧

¬Fϕ) ∨ (∃ϕ ∈ L(PA))(¬Kϕ ∧ Fϕ) (logic).

Conclusion:

⊢DTK (∃ϕ /∈ L(PA))(Dϕ ∧ Kϕ ∧ ¬Fϕ) ∨ (∃ϕ ∈ L(PA))(Kϕ ∧ ¬Fϕ) ∨

(∃ϕ ∈ L(PA))(¬Kϕ ∧ Fϕ) (logic).
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Manifestly, the three admitted possibilities exclude the possibility of
the mind being a machine. If mind and machine do not differ for math-
ematical propositions, they do differ for propositions that are not purely
mathematical. Furthermore, the formulation is restricted to determinate
formulas and the entire disjunction is itself determinate. In this sense,
we have gained the formulation of the first disjunct we wanted.

3. No Identity 6= Superiority

The explication of the result achieved, however, makes it clear that the
difference between mind and machine does not nevertheless imply the
mathematical superiority of the mind over the machine.2 In fact, The-
orem 3 contemplates the possibility that the machine is superior to the
mind in mathematical propositions. It is possible that there exists a
machine capable of deriving mathematical propositions inaccessible to
the human mind. Far from disproving the difference result, this possi-
bility reaffirms it. Indeed, as the following corollary shows, if there is a
formalism that overcomes the human mind in mathematical knowledge,
it is impossible to know whether this formalism is consistent. Let us see
the proof of this important corollary.

Corollary. (∃ϕ ∈ L(PA))(¬Kϕ ∧ Fϕ) ⊢DTK ¬K(ConsF )

Proof.

⊢DTK Fϕ → PRPA(Fϕ) by Σ1−Completeness
⊢DTK PRPA(Fϕ) → K(Fϕ) from Rule of mathematical knowledge

(∗) ⊢DTK Fϕ → K(Fϕ) logic
(∗∗) ⊢DTK ϕ ∈ L(PA) → K(ϕ ∈ L(PA)) idem

⊢DTK ConsF → (∀ϕ ∈ L(PA))(Fϕ → ϕ) Cons implies Sound

Now, ConsF → (∀ϕ ∈ L(PA))(Fϕ → ϕ) is determinate. In fact ConsF is
determinate since it is an arithmetical proposition. Moreover, Fϕ → ϕ
is itself determinate since Fϕ and ϕ are both arithmetical and therefore
determinate. That is why it is legitimate to apply K-intro.

⊢DTK K(ConsF → (∀ϕ ∈ L(PA))(Fϕ → ϕ)) K-intro

2 The notion of superiority of the mind over the machine is very complex. For a
more detailed discussion see (Shapiro, 2016, pp. 192–200). For us, the notion of supe-

riority simply stems from the negation of the introduced notion of identity between
mind and machine.
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⊢DTK K(ConsF ) → K((∀ϕ ∈ L(PA)(Fϕ → ϕ))) Distributivity of K
⊢DTK K(ConsF ) → ∀ϕ(K(ϕ ∈ L(PA)) → K(Fϕ → ϕ))

Distributivity of K
⊢DTK K(ConsF ) → ∀ϕ(K(ϕ ∈ L(PA)) → (KFϕ → Kϕ))

Distributivity of K
⊢DTK K(ConsF ) → (∀ϕ ∈ L(PA))(Fϕ → Kϕ) by (∗) and (∗∗)
(∃ϕ ∈ L(PA))(¬Kϕ ∧ Fϕ) ⊢DTK ¬K(ConsF ) by contraposition

Conclusion

In conclusion we have that for all F it is impossible that F = K; that is,
if F = K as far as mathematical formulas are concerned, then F differs
from K in some propositions that are not purely mathematical. It is
possible, however, that K surpasses F as far as mathematical propo-
sitions are concerned but also, on the contrary, that F surpasses K
in the derivation of mathematical propositions not accessible to human
knowledge. In the latter case, however, the consistency of F is humanly
undecidable. This fact is important from two points of view.

First of all, it is important since it cannot be ruled out that the
unknowability of the consistency of F is due to the fact that F is in fact
inconsistent. Therefore, this proposition  as well as the consistency of
F  does not belong to the set of propositions mentioned in Gödel’s
second disjunct. These are indeed humanly undecidable, but true. Of
the proposition provable in F but not humanly knowable, we cannot
say that it is true, because we do not know that F is consistent. In
any case, the fact that the first disjunct is  according to Theorem 3 
true affects the whole disjunction. It implies that the second disjunct
can be true or false, but not necessarily true. If it is false, then there
is no true proposition that escapes human knowledge. In that case the
above formalism F would be inconsistent. For, if it were consistent 
i.e., if it were true that it is consistent  then it would be known and
consequently there could be no proposition derivable in F that is not
knowable  i.e., F could not exceed the capacity of the human mind. If,
on the other hand, it is true  and so there would exist propositions that
are true but humanly absolutely undecidable  then the case of F being
superior to K could arise, because among the humanly unknowable true
propositions could also be the proposition declaring the consistency of F .
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Second, that the machine cannot equal the human mind in the knowl-
edge of non-purely mathematical truths  although it can equal it in
specifically mathematical knowledge  is a clear evidence of the differ-
ence between mind and machine. Further evidence of this difference is
the fact that, if the machine surpasses the human mind in mathemat-
ical knowledge  a case equally possible on the basis of Theorem 3 
its consistency is not knowable. Indeed, diversity is to be understood
not only in terms of the greater/smaller amount of mathematical truth
attainable by the machine or the mind, but also in terms of the different
way in which mathematical truth is accessed. Even if, as follows from
Theorem 3, it is not excluded that the mathematical goals attainable by
the human mind can be surpassed by a machine, it is important that the
mind’s way of proceeding is different from that of the machine. For, even
assuming for the sake of argument that humans, unlike machines, have
the ability to understand, manipulate and work with abstract objects 
as Gödel and Kreisel believe according to Shapiro (2016, p. 205)  the
mind still does not have the capacity to access the consistency of the
machine that surpasses it in mathematical knowledge. This means that
the machine is so different from the mind that the latter cannot recognise
the way the former identifies the axioms. The mind knows the recursive
way in which the machine proceeds, but it does not recognise the way in
which it establishes the starting axiomatic points. The way in which the
machine determines the axioms is inaccessible to the mind. The corol-
lary to Theorem 3 thus reinforces the meaning of Theorem 3. While
Theorem 3 explains the difference between the mind and the machine
in terms of the quantity and type of mathematical or non-mathematical
propositions that can be known by the mind or derived from the for-
malism, the corollary explains a further element of difference in the fact
that the ways that the mind and the machine operate are profoundly
different.
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