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KD45 with Propositional Quantifiers

Abstract. Steinsvold (2020) has provided two semantics for the basic
modal language enriched with propositional quantifiers (∀p). We define an
extension EM of the system KD45� and prove that EM is sound and com-
plete for both semantics. It follows that the two semantics are equivalent.
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1. Introduction

“Epistemic modesty” refers to the assumption that it is rational to be-
lieve that not all of our rational beliefs are correct. Encoding rational
belief with the modality �, Steinsvold (2020) formalized epistemic mod-
esty as

�(∃p)(�p ∧ ¬p).

This is a formula in an extension of the basic modal language by propo-
sitional quantifiers. Steinsvold developed two proposals for semantics
that satisfy this formula. One approach uses a system of French (2006)
that enriches the traditional relational semantics for � with bisimulation
quantifier semantics for (∃p). An example of an early survey of proposi-
tional quantifiers is the thesis by Fine (1969), where (∃p) is interpreted in
the most principled way, i.e. “there exists a subset of the set of possible
worlds”, which entails that bisimulations do typically not preserve truth.
Many later publications have been in the same line of thinking. However,
bisimulation quantifiers had already been studied before French in the
nineties (see Ghilardi and Zawadowski, 1995). The other approach uses
a system of Steinsvold (2007) that combines the co-derived set semantics
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for � with a direct interpretation of (∃p). The syntactical study of the
co-derived set operator dates back to the sixties (see Spira, 1967).

Steinsvold (2020) looked at the theory (set of all valid formulas) of
each of the two semantic systems, and raised the question of whether
these two theories are equal. In this paper we answer the question affir-
matively. Furthermore we provide a sound and complete axiomatization
for this theory: a logic of epistemic modesty. The main theorem, Theo-
rem 4.1, summarizes these results.

Outline of the paper. Section 2 reviews the two semantic systems. Sec-
tion 3 presents the logic of epistemic modesty and proves its soundness
for both semantic systems (Lemma 3.3). Section 4 presents a complete-
ness proof that works for both semantic systems, thus entailing that the
two semantics are equivalent.

2. Semantics

Definition 2.1 (language). Fix a countably infinite set P = {p0, p1, . . .}
of proposition letters or propositional variables. For a finite set Q of
proposition letters we write Q ⊂ω P. Define the language L by

L ::= P | ⊤ | (L ∨ L) | ¬L | �L | (∀P)L.

We will follow the standard rules for omission of the parentheses. As
abbreviations, we include the usual symbols ⊥, ∧, ←, →, ↔, ♦ = ¬�¬
and (∃p) = ¬(∀p)¬.

Definition 2.2 (frames). Let Cste be the class of serial, transitive, eu-
clidean Kripke frames.1 Let Cco be the class of all topological spaces2

that consist of an infinite universe with the topology of cofinite3 or empty
sets. Let Ccco ⊆ Cco be the subclass of spaces in Cco with a countable
universe. (Thus, Ccco contains only one space up to topological equiva-
lence.)

1 A Kripke frame (X, R) is serial if ∀x ∈ X : ∃y ∈ X : xRy; it is transi-
tive if ∀x, y, z ∈ X : (xRy & yRz) ⇒ xRz; and it is euclidean if ∀x, y, z ∈ X :
(xRy & xRz) ⇒ yRz.

2 A topological space is a pair (X, J ) where J ⊆ P(X) is closed under taking
finite intersections and arbitrary unions and ∅, X ∈ J . X is called the universe of the
space and J the topology.

3 A cofinite set is a set with a finite complement.
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Definition 2.3 (models). Recall that a Kripke frame F = (X,R) with a
valuation V : P→ P(X) forms a Kripke model M = (F, V ) based on F .
A Cste-model is a Kripke model based on a frame in Cste.

A topo-model based on a topological space S = (X,J ) is a pair
T = (S, V ) where V : P → P(X) is a valuation. A Cco-model (or Ccco-

model) is a topo-model based on a space in Cco (or Ccco).
For all these types of models: a pointed model is a pair (M,x) where

M is a model and x is in the universe of M .

If (X,R) is a Kripke frame and x ∈ X , let R[x] = {y ∈ X : xRy}.

Definition 2.4 (bisimulation). Recall that a bisimulation between two
Kripke models M = (F, V ) and M ′ = (F ′, V ′) based on the respective
frames F = (X,R) and F ′ = (X ′, R′) is a relation Z ⊆ X × X ′ such
that, whenever xZx′, we have

• (forth) for all y ∈ R[x] there is a y′ ∈ R′[x′] such that yZy′;
• (back) for all y′ ∈ R′[x′] there is a y ∈ R[x] such that yZy′;
• for all p ∈ P: x ∈ V (p) ⇐⇒ x′ ∈ V ′(p).

If Z is a bisimulation between M and M ′ and xZx′, then we say that
the pointed Kripke models (M,x) and (M,x′) are bisimilar.

Lemma 2.1. Every pointed Cste-model is bisimilar to a pointed Cste-

model whose designated world is irreflexive.

Proof. This is not difficult, and has been known for a long time (cf.,
e.g., Nagle, 1981). ⊣

Definition 2.5 (Θ-bisimulation; French, 2006, Def. 2.25). Let Θ ⊆ P,
let F = (X,R) and F ′ = (X ′, R′) be Kripke frames and M = (F, V ) and
M ′ = (F ′, V ′) Kripke models. A relation Z ⊆ X×X ′ is a Θ-bisimulation

between M and M ′ if, whenever xZx′, the conditions (forth) and (back)
hold and, moreover, for all p ∈ P \Θ: x ∈ V (p) ⇐⇒ x′ ∈ V ′(p).

If Z is a Θ-bisimulation between M and M ′ and xZx′, then we say
that (M,x) and (M ′, x′) are Θ-bisimilar and write

M,x -Θ M ′, x′.

We omit curly brackets if Θ is a singleton.

Remark 2.1. An ∅-bisimulation is the same thing as a bisimulation.
Hence two pointed models are bisimilar iff they are ∅-bisimilar. ⊣
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Definition 2.6. If V is a valuation, p ∈ P and Y is a set, then V [p 7→ Y ]
is the valuation defined by

V [p 7→ Y ](q) =

{

Y (q = p)

V (q) (q 6= p)

for all q ∈ P. If M = (F, V ) is a Kripke model we let M [p 7→ Y ] =
(

F, V [p 7→ Y ]
)

, and similarly for topo-models.

Lemma 2.2. Let (M,x) be a pointed Kripke model with M = (F, V )
and F = (X,R).

1. If Θ ⊆ P and V ′ : P→ P(X) is another valuation that agrees with V
on P \Θ, then M ′ = (F, V ′) satisfies M,x -Θ M ′, x.

2. If p ∈ P and Y ⊆ X , then M,x -p M [p 7→ Y ], x.

Proof. 2 follows from 1. In 1, we simply take the identity relation. ⊣

Definition 2.7 (relational semantics; French, 2006, Sect. 2.1).
Let (M,x) be a pointed Cste-model with M = (F, V ) and F = (X,R).
If p ∈ P and φ, ψ ∈ L, we define the satisfaction relation:

M,x � p ⇐⇒ x ∈ V (p)

M,x � ⊤ always

M,x � φ ∨ ψ ⇐⇒ M,x � φ or M,x � ψ

M, x � ¬φ ⇐⇒ not M,x � φ

M, x � �φ ⇐⇒ for all y ∈ R[x] : M, y � φ

M, x � (∀p)φ ⇐⇒ for all pointed Cste-models (M ′, x′),
if M,x -p M

′, x′ then M ′, x′ � φ.

Cste � φ means that M,x � φ for all pointed Cste-models (M,x).

Definition 2.8 (topological semantics; Steinsvold, 2007). Let (T, x) be
a pointed topo-model with T = (S, V ) and S = (X,J ). If p ∈ P and
φ, ψ ∈ L, we define the satisfaction relation:

T, x �τ p ⇐⇒ x ∈ V (p)

T, x �τ ⊤ always

T, x �τ φ ∨ ψ ⇐⇒ T, x �τ φ or T, x �τ ψ

T, x �τ ¬φ ⇐⇒ not T, x �τ φ

T, x �τ �φ ⇐⇒ x has a neighbourhood O ∈ J such that
for every y ∈ O it holds that y = x or T, y �τ φ
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T, x �τ (∀p)φ ⇐⇒ for all Y ⊆ X : T [p 7→ Y ], x �τ φ.

Cco �τ φ means that T, x �τ φ for all pointed Cco-models (T, x). Define
Ccco �τ φ similarly.

Remark 2.2. The semantics in Definition 2.8 can be viewed as a special
case of the complete proper filter algebra semantics presented by Ding
(2021) where we choose the proper filter to be the set of all cofinite sets
in an infinite power set algebra. This specification is essential: there
are many formulas φ for which Cco �τ φ but φ can be falsified on some
complete proper filter algebra. (For instance the formulas (∃T), (∃F)
and (♦2) to be introduced in Definition 3.1 below.) ⊣

It turns out that the theories of Cste, Cco and Ccco coincide (Theo-
rem 4.1 below).

Example 2.1 (axiom of epistemic modesty; Steinsvold, 2020).

1. Cste � �(∃p)(�p ∧ ¬p).
2. Cco �τ �(∃p)(�p ∧ ¬p).

We gather a few technical tools for working with these semantics.

Lemma 2.3. Let (T, x) be a pointed Cco-model with universe X , x ∈ X
and φ ∈ L. Then:

1. T, x �τ �φ iff there is a cofinite set C ⊆ X such that T, y �τ φ for all

y ∈ C.

2. T, x �τ ♦φ iff there is an infinite set I ⊆ X such that T, y �τ φ for all

y ∈ I. ⊣

Definition 2.9 (free variables). For φ ∈ L, define the set FV(φ) of free
variables recursively: FV(p) = {p}, FV(⊤) = ∅, FV(φ ∨ ψ) = FV(φ) ∪
FV(ψ), FV(¬φ) = FV(φ), FV(�φ) = FV(φ), FV

(

(∀p)φ
)

= FV(φ) \ {p}.

Lemma 2.4 (French, 2006, Lemma 2.31). Suppose that Θ ⊆ P and φ ∈ L
such that FV(φ)∩Θ = ∅. If (M,x) and (M ′, x′) are pointed Cste-models

with M,x -Θ M ′, x′, then: M,x � φ ⇐⇒ M ′, x′ � φ.

Lemma 2.5. Let φ ∈ L.

1. If F = (X,R) ∈ Cste, x ∈ X and V, V ′ : P → P(X) are valuations

that agree on FV(φ), then (F, V ), x � φ iff (F, V ′), x � φ.

2. If S = (X,J ) is a topological space, x ∈ X and V, V ′ : P→ P(X) are

valuations that agree on FV(φ), then (S, V ), x �τ φ iff (S, V ′), x �τ φ.
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Proof. 1 follows from Lemmas 2.2(1) and2.4.
2 follows essentially from Lemma 4.11 in (Steinsvold, 2020).4 ⊣

3. Axiomatization

Before we introduce a proof system in the language L, we explain our
notation for proofs.

Let Bool be a natural deduction system for propositional logic in
the language L. Recall that in natural deduction, each stated formula
is either an assumption, an axiom or a formula derived from earlier
formulas. We keep track of which assumptions we used: each stated
formula φ is accompanied by a set a of open assumptions. This can be
read as ∧a → φ. An assumption can be closed by the introduction rule
for implication: if we derive φ under some set a of open assumptions,
then we can next obtain the formula ψ → φ under the set a \ ψ of open
assumptions.

We write natural deduction proofs in Lemmon style. That is: the first
column in a formal proof indicates the set of open assumptions for each
derived formula, usually by listing the line numbers in which the formulas
were assumed. The last column justifies the asserted formulas, by either
saying “A” (new assumption) or referring to previously derived formulas,
to rules, Lemmas etc. However, we shall often suppress reference to Bool

in the justifications.
Let K� be the extension of Bool by the axiom

(K�) �(φ→ ψ)→ (�φ→ �ψ)

and the necessitation rule

(�I)
φ

�φ
(if no open assumptions),

for all φ, ψ ∈ L. The side condition in the rule (�I) means that it can only
be applied if φ was obtained under the empty set of open assumptions.

We shall skip some of the details of derivations in K�. For example,
we may justify a formula φ by simply referring to some previously derived
formula ψ and “K�”, which would mean that there exists a derivation
in K� of φ from ψ.

4 Steinsvold (2020) assumed that S ∈ Ccco, but the proof is the same for un-
countable spaces.
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Let KD45� be the extension of K� by the standard axioms of belief:5

(D�) ♦(φ ∨ ¬φ)

(4�) �φ→ ��φ

(5�) ♦φ→ �♦φ

Definition 3.1 (proof system for epistemic modesty). Let EM be the
system obtained by extending KD45� with the axioms

(∃T) (∃p)
(

p ∧�(p↔ φ)
) (

if p /∈ FV(φ)
)

(∃F) (∃p)
(

¬p ∧�(p↔ φ)
) (

if p /∈ FV(φ)
)

(♦2) ♦φ→ (∃p)
(

♦(φ ∧ p) ∧ ♦(φ ∧ ¬p)
) (

if p /∈ FV(φ)
)

(K∀)
(

(∀p)(φ→ ψ)
)

→
(

(∀p)φ→ (∀p)ψ
)

and the rule

(∀I)
φ

(∀p)φ
(if p is not free in any open assumption).

Remark 3.1. The logic EM is not closed under uniform substitution. For
example, if p, q ∈ P are distinct, the formula (∃p)

(

p ∧�(p↔ ¬q)
)

is an
instance of the axiom (∃T), but the formula φ = (∃p)

(

p ∧ �(p ↔ ¬p)
)

is not, and EM does not entail φ. (This follows from Lemma 3.3 below
because Cste � ¬φ.) ⊣

Definition 3.2 (substitution). For p, q ∈ P, denote by [q/p] the opera-
tion on formulas in L that replaces every occurence of p by q (and every
occurrence of (∀p) by (∀q)).

Lemma 3.1. Let p, q ∈ P and φ ∈ L. If q does not occur in φ, and nor

does (∀q), then EM ⊢ φ implies EM ⊢ [q/p]φ.

Proof. Let Π be a proof of φ in EM. Let r ∈ P be a proposition letter
that does not occur in Π (and nor does (∀r)). Let Π′ be the result of
replacing each formula ψ stated in Π by [r/q]ψ. Then Π′ is still a proof in
EM. (This can be checked formally, but the idea is that we only changed
the name of the propositional variable q into r.) The last formula of Π′

is [r/q]φ = φ. Then q and (∀q) do not occur in Π′. Again we let Π′′ be
the result of replacing each formula ψ stated in Π′ by [q/p]ψ, and Π′′ is
another proof in EM. The last formula of Π′′ is [q/p]φ. ⊣

5 Here in fact it suffices to take only quantifier-free instances of these three
axioms, since we only use these axioms to prove Lemma 3.2. But for the sake of
homogeneity we also include their instances with quantifiers.
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Lemma 3.2 (adequacy of KD45�). Let φ ∈ L be quantifier-free. Then

the following are equivalent:

(i) KD45� ⊢ φ,

(ii) Cste � φ,

(iii) Cco �τ φ,

(iv) Ccco �τ φ.

Proof. (i)⇒ (ii): It is well known that the axioms and rules of KD45�

in the basic modal language are sound for the relational semantics on
Cste-models. Since the relational semantics is compositional, they are
also sound in the full language L.

(ii) ⇒ (i): There is a traditional canonical model for KD45� that
proves its completeness for the relational semantics. See for instance
(Chagrov and Zakharyaschev, 1997, Chapter 5).

(i)⇒ (iii): The reader can check that all axioms and rules of KD45�

are sound for the topological semantics.

(iv)⇒ (i): This follows from Theorem 4.8 in (Steinsvold, 2020).

(iii)⇒ (iv): It is trivial. ⊣

Lemma 3.3 (soundness of EM). For all φ ∈ L,

EM ⊢ φ ⇒ Cste � φ & Cco �τ φ.

Proof. As mentioned in the proof of Lemma 3.2, all axioms and rules
of KD45� are sound for both semantics. It suffices to show that the new
axioms (∃T), (∃F), (♦2), (K∀) and the new rule (∀I) are sound. We start
with the topological semantics. Throughout, let (T, x) be an arbitrary
pointed Cco-model with universe X .

For (∃T) and (∃F): Assume that p /∈ FV(φ). Let Y ′ = {y ∈ X :
T, y �τ φ}, YT = Y ′ ∪ {x} and YF = Y ′ \ {x}. By Lemma 2.5(2), we
have T [p 7→ Y ], y �τ φ for any Y ∈ {YT , YF} and y ∈ YF . Similarly,
T [p 7→ Y ], y �τ ¬φ for any Y ∈ {YT , YF} and y ∈ X \ YT . Furthermore,
T [p 7→ Y ], y �τ p for any y ∈ YF , and T [p 7→ Y ], y �τ ¬p for any
y ∈ X \ YT . Thus T [p 7→ Y ], y �τ p ↔ φ for all y ∈ X \ {x}. Therefore
T [p 7→ Y ], x �τ �(p ↔ φ) (Lemma 2.3(1)). On the other hand T [p 7→
YT ], x �τ p and T [p 7→ YF ], x �τ ¬p. So T, x �τ (∃p)

(

p ∧�(p↔ φ)
)

and
T, x �τ (∃p)

(

¬p ∧�(p↔ φ)
)

.

For (♦2): Assume T, x �τ ♦φ. Then by Lemma 2.3(2) there is an
infinite set I ⊆ X such that T, y �τ φ for all y ∈ I. Split I = Y ⊔ I ′ in
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two infinite sets.6 By Lemma 2.5(2), we have T [p 7→ Y ], y �τ φ ∧ p for
all y ∈ Y , and T [p 7→ Y ], y �τ φ ∧ ¬p for all y ∈ I ′. So T [p 7→ Y ], x �τ

♦(φ ∧ p) ∧ ♦(φ ∧ ¬p) by Lemma 2.3(2). Thus,

T, x �τ (∃p)
(

♦(φ ∧ p) ∧ ♦(φ ∧ ¬p)
)

.

For (K∀): Assume T, x �τ (∀p)(φ→ ψ). Then T [p 7→ Y ], x �τ φ→ ψ
for all Y ⊆ X . In order to check T, x �τ (∀p)φ → (∀p)ψ, suppose
that T, x �τ (∀p)φ. Then T [p 7→ Y ], x �τ φ for all Y ⊆ X . Hence
T [p 7→ Y ], x �τ ψ for all Y ⊆ X . So T, x �τ (∀p)ψ.

For (∀I): Suppose that in some derivation in EM we have derived φ
under the assumptions α1, . . . , αn, and p ∈ P \

(

FV(α1)∪ · · · ∪FV(αn)
)

.
We have to show that, if the derivation is sound up until this point, it is
still sound after we apply the rule (∀I). Hence, it suffices to show that

Cco �τ α1 ∧ · · · ∧ αn → φ (1)

implies
Cco �τ α1 ∧ · · · ∧ αn → (∀p)φ. (2)

Assume (1). Suppose that T, x �τ αi for each i. Then by Lemma 2.5(2),
we have T [p 7→ Y ], x �τ αi for all i and Y ⊆ X . So T [p 7→ Y ], x �τ φ for
all Y ⊆ X . Thus T, x �τ (∀p)φ, which proves (2).

To show soundness for the relational semantics, let (M,x) be a
pointed Cste-model with M = (F, V ) and F = (X,R).

For (∃T) and (∃F): By Lemmas 2.1 and 2.4 and Remark 2.1, we may
assume w.l.o.g. that not xRx. Assume that p /∈ FV(φ). Let Y ′ = {y ∈
X : M, y � φ}, YT = Y ′∪{x} and YF = Y ′ \{x}. For each Y ∈ {YT , YF}
it holds M,x -p M [p 7→ Y ], x by Lemma 2.2(2). By Lemma 2.5(1), we
have M [p 7→ Y ], y � φ for any Y ∈ {YT , YF} and y ∈ YF . Similarly,
M [p 7→ Y ], y � ¬φ for any y ∈ X \ YT . Furthermore, M [p 7→ Y ], y � p
for any y ∈ YF , and M [p 7→ Y ], y � ¬p for any y ∈ X \ YT . Thus
M [p 7→ Y ], y � p ↔ φ for all y ∈ X \ {x}. In particular this holds for
all y ∈ R[x]. Therefore, M [p 7→ Y ], x � �(p ↔ φ). On the other hand
M [p 7→ YT ], x � p and M [p 7→ YF ], x � ¬p. So M,x � (∃p)

(

p∧�(p↔ φ)
)

and M,x � (∃p)
(

¬p ∧�(p↔ φ)
)

.
For (♦2): Assume M,x � ♦φ. Then there is a y ∈ R[x] such that

M, y � φ. Let y′ /∈ X be a fresh object, X ′ = X ⊔ {y′}, and let π : X ′ →
X be the map which sends y′ to y and other points to themselves.

6 We write A ⊔ B := A ∪ B, provided A and B are disjoint sets.
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Take the binary relation uR′v ⇔ π(u)Rπ(v) on X ′ to form the frame
F ′ = (X ′, R′). It is easy to check that F ′ ∈ Cste. Define a valuation V ′ by

V ′(q) =

{

V (p) ∪ {y} (q = p)

π−1
[

V (q)
]

(q 6= p).

Then we claim that M ′ = (F ′, V ′) satisfies Z : M ′, x -p M,x, where
Z ⊆ X ′ × X is the graph of the map π. To check this, suppose that
uZw. For any q ∈ P\{p}, we have u ∈ V ′(q) iff w = π(u) ∈ V (q), so the
propositional condition holds. Whenever uR′v, we have w = π(u)Rπ(v)
and vZπ(v), so the forth condition holds. Whenever wRz, we have
π(u) = wRz = π(z) so uR′z and zZz, so the back condition holds. This
proves that Z is a p-bisimulation.

So by Lemma 2.4, we have M ′, y � φ and M ′, y′ � φ. Thus M ′, y �

φ ∧ p and M ′, y′ � φ ∧ ¬p. Therefore, M ′, x � ♦(φ ∧ p) ∧ ♦(φ ∧ ¬p).
Hence, M,x � (∃p)

(

♦(φ ∧ p) ∧ ♦(φ ∧ ¬p)
)

.
For (K∀): analogous to the proof of its soundness for the topological

semantics.
For (∀I): analogous to the proof of its soundness for the topological

semantics. ⊣

The rest of this section contains some easy lemmas about EM.

Remark 3.2. The language L can be viewed as the multimodal language
whose set of (unary) modalities is µ = {�, (∀p0), (∀p1), . . .}. Observe
that for any p ∈ P, the necessitation rule

φ

(∀p)φ
(if no open assumptions),

is a special instance of (∀I). Since we also included the normality axioms
(K∀) and the system K� in EM, the logic EM extends the minimal
normal modal logic for µ. Lemma 3.4 follows. ⊣

Lemma 3.4. For all φ, ψ ∈ L,

EM ⊢ (∃p)φ ∨ (∃p)ψ ↔ (∃p)(φ ∨ ψ).

Lemma 3.5. EM entails the following natural deduction rule:

φ→ ψ

(∃p)φ→ (∃p)ψ
(if p is not free in any open assumption).
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Proof. Suppose that in some natural deduction we derived φ → ψ
under a certain set a of assumptions whose free variables do not contain
p. Recall that (∃p) = ¬(∀p)¬.

Continue in EM:

a (1) φ→ ψ

a (2) ¬ψ → ¬φ 1

a (3) (∀p)(¬ψ → ¬φ) 2, (∀I)

a (4) (∀p)¬ψ → (∀p)¬φ 3, (K∀)

5 (5) ¬(∃p)ψ A

5 (6) (∀p)¬ψ 5

a, 5 (7) (∀p)¬φ 4, 6

a, 5 (8) ¬(∃p)φ 7

a (9) ¬(∃p)ψ → ¬(∃p)φ 8

a (10) (∃p)φ→ (∃p)ψ 9 ⊣

Example 3.1. (∃F) can be seen as a generalization of the axiom of epis-
temic modesty (Example 2.1).

To see this, derive in EM:

(1) (∃p)
(

¬p ∧�(p↔ ⊤)
)

(∃F)

(2)
(

¬p ∧�(p↔ ⊤)
)

→ (¬p ∧�p) K�

(3) (∃p)
(

¬p ∧�(p↔ ⊤)
)

→ (∃p)(¬p ∧�p) 2, Lemma 3.5

(4) (∃p)(¬p ∧�p) 1, 3

(5) �(∃p)(¬p ∧�p) 4, (�I) ⊣

Lemma 3.6. Let φ, ψ ∈ L and p ∈ P \ FV(φ ∨ ψ). Then

EM ⊢ (∃p)
(

(p↔ φ) ∧�(p↔ ψ)
)

.

Proof.

In EM:

1 (1) φ A
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1 (2) p ∧�(p↔ ψ)→
(

(p↔ φ) ∧�(p↔ ψ)
)

1, Bool

1 (3) (∃p)
(

p ∧�(p↔ ψ)
)

→
(∃p)

(

(p↔ φ) ∧�(p↔ ψ)
)

2, Lemma 3.5

1 (4) (∃p)
(

(p↔ φ) ∧�(p↔ ψ)
)

3, (∃T)

5 (5) ¬φ A

5 (6) ¬p ∧�(p↔ ψ)→
(

(p↔ φ) ∧�(p↔ ψ)
)

5

5 (7) (∃p)
(

¬p ∧�(p↔ ψ)
)

→ (∃p)
(

(p↔ φ) ∧�(p↔ ψ)
)

6, Lemma 3.5

5 (8) (∃p)
(

(p↔ φ) ∧�(p↔ ψ)
)

7, (∃F)

(9) (∃p)
(

(p↔ φ) ∧�(p↔ ψ)
)

4, 8 ⊣

Lemma 3.7. If φ ∈ L and p ∈ P \ FV(φ), then

EM ⊢ (∃p)φ→ φ.

Proof.

In EM:

1 (1) ¬φ A

1 (2) (∀p)¬φ 1, (∀I)

1 (3) ¬(∃p)φ 2

(4) ¬φ→ ¬(∃p)φ 3

(5) (∃p)φ→ φ 4 ⊣

Lemma 3.8. Let p ∈ P.

1. EM ⊢ (∃p)p.
2. EM ⊢ (∃p)¬p.
3. EM ⊢ (∃p)�(p↔ φ) for all φ ∈ L satisfying p /∈ FV(φ).

Proof. Bool entails the formulas

p ∧�(p↔ φ)→ p,

¬p ∧�(p↔ φ)→ ¬p,

p ∧�(p↔ φ)→ �(p↔ φ).
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EM extends Bool, so it entails the formulas

(∃p)
(

p ∧�(p↔ φ)
)

→ (∃p)p,

(∃p)
(

¬p ∧�(p↔ φ)
)

→ (∃p)¬p,

(∃p)
(

p ∧�(p↔ φ)
)

→ (∃p)
(

�(p↔ φ)
)

,

by Lemma 3.5. So (∃T) and (∃F) give us the desired formulas. ⊣

4. Completeness

We show that EM is complete for � and �τ (Lemma 4.6). The key
observation is that the full language with boxes � and quantifiers (∀p)
is no more expressive than its quantifier-free fragment (Lemma 4.2).
We show that, given any formula, EM proves its equivalence with some
quantifier-free formula (Lemma 4.5). Next, completeness of EM will
follow from the known completeness of KD45� (Lemma 3.2).

Definition 4.1. Consider Q ⊂ω P. Define

S(Q) = P
(

P(Q)
)

\ {∅}

and
T (Q) = P(Q)× S(Q).

Define associated formulas. For a ∈ P(Q) let

χ(Q, a) =
(

∧

q∈a

q
)

∧
(

∧

q∈Q\a

¬q
)

.

For s ∈ S(Q) let

χ(Q, s) =
(

∧

a∈s

♦χ(Q, a)
)

∧
(

∧

a∈P(Q)\s

¬♦χ(Q, a)
)

.

For t = (a, s) ∈ T (Q) let

χ(Q, t) = χ(Q, a) ∧ χ(Q, s).

For T ⊆ T (Q) let

χ(Q,T) =
∨

t∈T

χ(Q, t).

Remark 4.1. 1. We took χ(Q, ∗) to mean four different things. Which
of the four we are thinking of should always be clear from the letter
that we use for the argument ∗.
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2. The formulas χ(Q, a) defined in Definition 4.1 are purely proposi-
tional.

3. All formulas χ(Q, ∗) defined in Definition 4.1 are quantifier-free.
4. All formulas χ(Q, ∗) defined in Definition 4.1 only use propositional

variables in Q. ⊣

In (Balbiani and Tinchev, 2018), modulo notational differences, sub-
sets of {p0, . . . , pn−1} are called n-arrows, elements of S

(

{p0, . . . , pn−1}
)

are called n-setarrows and elements of T
(

{p0, . . . , pn−1}
)

are called n-
tips. The following lemma summarizes the results that we need from
their Sections 4–6.

Lemma 4.1. Let Q ⊂ω P. Then:

1. P(Q) 6= ∅, S(Q) 6= ∅, and T (Q) 6= ∅.
2. For every pointed Kripke model (M,x) there is a unique a(Q,M, x) ∈
P(Q) such that

M,x � χ
(

Q, a(Q,M, x)
)

.

In fact, a(Q,M, x) = {p ∈ Q : M,x � p}.
3. For every pointed serial Kripke model (M,x) there is a unique

s(Q,M, x) ∈ S(Q) such that

M,x � χ
(

Q, s(Q,M, x)
)

.

In fact, s(Q,M, x) =
{

a(Q,M, y) : y ∈ R[x]
}

, if M is based on the

frame (X,R).
4. For every pointed serial Kripke model (M,x) there is a unique

t(Q,M, x) ∈ T (Q) such that

M,x � χ
(

Q, t(Q,M, x)
)

.

In fact, t(Q,M, x) =
(

a(Q,M, x), s(Q,M, x)
)

.

5. For every t ∈ T (Q) there exists a pointed Cste-model (M,x) such that

t(Q,M, x) = t.
We can arrange that the universe of M has size at most 1 + 2|Q|.

6. If (M,x), (M ′, x′) are two pointed Cste-models, we have

M,x -P\Q M ′, x′ ⇔ t(Q,M, x) = t(Q,M ′, x′).

Proof. 1: we have Q ∈ P(Q), so {Q} ∈ S(Q) and
(

Q, {Q}
)

∈ T (Q).
2 follows easily from the definitions.
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3. For any a ⊆ Q, we have M,x � ♦χ(Q, a) iff there exists a y ∈ R[x]
such that M, y � χ(Q, a). Let s(Q,M, x) be the set of all such a ⊆ Q.
Then R[x] 6= ∅ guarantees that s(Q,M, x) 6= ∅, so s(Q,M, x) ∈ S(Q).

4 follows from 2 and 3.

5. Suppose t = (a, s). Let X = s ⊔ {x} where x is a fresh object,
R = X × s and F = (X,R). Then F ∈ Cste. (This follows from
Lemma 2.2(i,iv) in Pietruszczak (2009), but it is easy to check it directly.)

Define a valuation V : P→ P(X) by

x ∈ V (p) ⇔ p ∈ a and

a′ ∈ V (p) ⇔ p ∈ a′ for all a′ ∈ s.

Set M = (F, V ). Then by 2 it holds a(Q,M, x) = a and a(Q,M, a′) = a′

for all a′ ∈ s. The former implies M,x � χ(Q, a), while the latter implies
s(Q,M, x) = s by 3, whence M,x � χ(Q, s). Thus M,x � χ(Q, t).

6. ⇐ Assume t(Q,M, x) = t(Q,M ′, x′). Suppose that M and M ′ are
based on the frame F = (X,R) and F ′ = (X ′, R′) respectively. Define
Z ⊆

(

{x} ∪R[x]
)

×
(

{x′} ∪R′[x′]
)

by yZy′ iff y and y′ satisfy the same
proposition letters in Q. Since a(Q,M, x) = a(Q,M ′, x′) by 4, we have
xZx′ by 2. Also s(Q,M, x) = s(Q,M ′, x′) by 4; hence 3 and 2 imply
that that Z relates every point in R[x] to a point in R′[x′] and vice versa.
Since F and F ′ are transitive and euclidean, from this it follows that Z
satisfies the back and forth conditions. So Z is a (P \ Q)-bisimulation
between (M,x) and (M ′, x′).

⇒ Assume M,x -P\Q M ′, x′. From Lemma 2.4 and Remark 4.1(4),
M,x � χ

(

Q, t(Q,M ′, x′)
)

. By uniqueness in 4, t(Q,M, x) = t(Q,M ′, x′).
⊣

What Lemma 4.1 demonstates is that the quantifier-free formulas
χ(Q,T) together already have maximal (P \ Q)-bisimulation invariant
expressive power. On the other hand, the language L is

(P \ Q)-bisimulation invariant (Lemma 2.4). So L should be no more
expressive than its quantifier-free fragment, as we confirm in the next
lemma. This observation allows us to aim for a reduction style complete-
ness proof for the system EM.

Lemma 4.2. Let φ ∈ L and FV(φ) ⊆ Q ⊂ω P. Then there exists a

unique T(Q, φ) ⊆ T (Q) such that

Cste � χ
(

Q,T(Q, φ)
)

↔ φ. (3)
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Proof. Let

T(Q, φ) =
{

t ∈ T (Q) : t = t(Q,M, x) for some pointed

Cste-model(M,x) with M,x � φ
}

.

Then Cste � φ → χ
(

Q,T(Q, φ)
)

, because whenever (M,x) is a pointed
Cste-model with M,x � φ, by Lemma 4.1(4) there is a t ∈ T(Q, φ) such
that M,x � χ(Q, t). For the other implication, suppose that (M,x) is a
pointed Cste-model with M,x � χ

(

Q,T(Q, φ)
)

. By unique existence in
Lemma 4.1(4), this implies t(Q,M, x) ∈ T(Q, φ). So there is a pointed
Cste-model (M ′, x′) with t(Q,M, x) = t(Q,M ′, x′) and M ′, x′ � φ. By
Lemma 4.1(6), M,x -P\Q M ′, x′. From Lemma 2.4 it follows M,x � φ,
as desired.

For uniqueness of T(Q, φ), suppose that T(Q, φ),T′(Q, φ) ⊆ T (Q)
both satisfy (3) and let t ∈ T(Q, φ). By Lemma 4.1(5), there is a pointed
Cste-model (M,x) with t(Q,M, x) = t. Hence M,x � χ

(

Q,T(Q, φ)
)

.
Now the assumption implies M,x � φ, and so M,x � χ

(

Q,T′(Q, φ)
)

. By
the uniqueness of t(Q,M, x) in Lemma 4.1(4), conclude that t ∈ T

′(Q, φ).
We have shown that T(Q, φ) ⊆ T

′(Q, φ), concluding the proof. ⊣

Proposition 4.1 (finite model property). If φ ∈ L and there is a pointed

Cste-model (M,x) satisfying M,x � φ, then there is a pointed Cste-model

(M ′, x′) with a universe of size at most 1 + 2|φ| such that M ′, x′ � φ.7

Proof. Write Q = FV(φ). By Lemma 4.2, we have

Cste � φ↔ χ
(

Q,T(Q, φ)
)

.

So since M,x � φ, we have T(Q, φ) 6= ∅. Pick t ∈ T(Q, φ). Clearly,
|Q| ≤ |φ|. From Lemma 4.1(5), we get a pointed Cste-model (M ′, x′)
with M ′, x′ � χ(Q, t) whose universe has size at most 1+2|Q|. Then also
M ′, x′ � φ. ⊣

Definition 4.2. Let Q ⊆ P ⊂ω P. For a ∈ P(P ), define a ↾ Q = a ∩Q.
For s ∈ S(P ) define s ↾ Q =

{

a ↾ Q : a ∈ s
}

.
For t = (a, s) ∈ T (P ) define t ↾ Q =

(

a ↾ Q, s ↾ Q
)

.
For T ⊆ T (P ), define T ↾ Q =

{

t ↾ Q : t ∈ T
}

.

Remark 4.2. We took ↾ to mean four different things. Which one we are
thinking of should always be clear from the choice of letters. ⊣

7 Here |φ| is the number of symbols in the formula φ.
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Lemma 4.3. Let Q ⊆ P ⊂ω P.

1. For any pointed Kripke model (M,x) we have

a(Q,M, x) = a(P,M, x) ↾ Q.

2. For any pointed serial Kripke model (M,x) we have

s(Q,M, x) = s(P,M, x) ↾ Q.

3. For any pointed serial Kripke model (M,x) we have

t(Q,M, x) = t(P,M, x) ↾ Q.

4. For any a ∈ P(P ) we have

KD45� ⊢ χ(P, a)→ χ
(

Q, a ↾ Q
)

.

5. For any s ∈ S(P ) we have

KD45� ⊢ χ(P, s)→ χ
(

Q, s ↾ Q
)

.

6. For any t ∈ T (P ) we have

KD45� ⊢ χ(P, t)→ χ
(

Q, t ↾ Q
)

.

7. For any T ⊆ T (P ) we have

KD45� ⊢ χ(P,T)→ χ
(

Q,T ↾ Q
)

.

Proof. 1, 2 and 3 follow from Lemma 4.1(2,3,4) respectively.
We claim that for h = a, s, t:

Cste � χ(P, h)→ χ
(

Q, h ↾ Q
)

. (4)

To check this, let (M,x) be a pointed Cste-model with M,x � χ(P, h).
Then h(P,M, x) = h by Lemma 4.1-(2/3/4). By 1, 2 or 3 we find
h(Q,M, x) = h ↾ Q, whence M,x � χ

(

Q, h ↾ Q
)

by Lemma 4.1(2,3,4).
This confirms (4).

Now 4, 5 and 6 follow from (4), Lemma 3.2 and Remark 4.1(3).
6 entails 7. ⊣

Remark 4.3. In Lemma 4.3, KD45� can be replaced by Bool in item 4 and
by K� in items 5, 6 and 7. But we don’t need this for the completeness
proof of EM. ⊣
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Lemma 4.4. Let Q ⊂ω P and p ∈ P \Q.

1. For a ∈ P
(

Q ⊔ {p}
)

,

EM ⊢ (∃p)χ
(

Q ⊔ {p}, a
)

↔ χ
(

Q, a ↾ Q
)

.

2. For s ∈ S
(

Q ⊔ {p}
)

,

EM ⊢ (∃p)χ
(

Q ⊔ {p}, s
)

↔ χ
(

Q, s ↾ Q
)

.

3. For t ∈ T
(

Q ⊔ {p}
)

,

EM ⊢ (∃p)χ
(

Q ⊔ {p}, t
)

↔ χ
(

Q, t ↾ Q
)

.

4. For T ⊆ T
(

Q ⊔ {p}
)

,

EM ⊢ (∃p)χ
(

Q ⊔ {p},T
)

↔ χ
(

Q,T ↾ Q
)

.

Proof. 4 follows from 3 by Lemma 3.4.
We first prove “→” in 1, 2 and 3. Let h denote either a, s or t (it

also works for T).

In EM:

1 (1) (∃p)χ
(

Q ⊔ {p}, h
)

A

(2) χ
(

Q ⊔ {p}, h
)

→ χ
(

Q, h ↾ Q
)

Lemma 4.3(4, 5,6)

(3) (∃p)χ
(

Q ⊔ {p}, h
)

→
(∃p)χ

(

Q, h ↾ Q
)

2, Lemma 3.5

1 (4) (∃p)χ
(

Q, h ↾ Q
)

1, 3

1 (5) χ
(

Q, h ↾ Q
)

4, Lemma 3.7,
Remark 4.1(4)

(6) (∃p)χ
(

Q ⊔ {p}, h
)

→ χ
(

Q, h ↾ Q
)

5

Next prove “←” for the items 1, 2 and 3 successively. Choose q, r ∈
P \

(

Q ⊔ {p}
)

such that q 6= r.
Item 1. Let a ∈ P

(

Q ⊔ {p}
)

. Let π = p if p ∈ a and π = ¬p if p /∈ a.
Then χ

(

Q, a ↾ Q
)

∧ π is equivalent (in Bool) to χ
(

Q ⊔ {p}, a
)

.

In EM:

1 (1) χ
(

Q, a ↾ Q
)

A

1 (2) π → χ
(

Q ⊔ {p}, a
)

1, Bool
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1 (3) (∃p)π→ (∃p)χ
(

Q ⊔ {p}, a
)

2, Lemma 3.5,
Remark 4.1(4)

(4) (∃p)π Lemma 3.8(1,2)

1 (5) (∃p)χ
(

Q ⊔ {p}, a
)

3, 4

(6) χ
(

Q, a ↾ Q
)

→ (∃p)χ
(

Q ⊔ {p}, a
)

5

Item 2. This part contains the technical heart of the completeness
proof. Let s ∈ S

(

Q ⊔ {p}
)

. Let

s11 =
{

a ∈ P(Q) : a ⊔ {p} ∈ s ∋ a
}

,

s10 =
{

a ∈ P(Q) : a ⊔ {p} ∈ s 6∋ a
}

,

s01 =
{

a ∈ P(Q) : a ⊔ {p} /∈ s ∋ a
}

,

s00 =
{

a ∈ P(Q) : a ⊔ {p} /∈ s 6∋ a
}

.

We have s ↾ Q = s11 ⊔ s10 ⊔ s01. Proceed by induction on N = |s11|.
Suppose that N = 0. Then

s ↾ Q = s10 ⊔ s01. (5)

Also P(Q) = s10 ⊔ s01 ⊔ s00, hence

P
(

Q ⊔ {p}
)

=
{

a, a ⊔ {p} : a ∈ s10 ⊔ s01 ⊔ s00

}

. (6)

Define
φ = �

(

p↔
∨

a∈s10

χ(Q, a)
)

.

Observe by uniqueness in Lemma 4.1(2) that

Cste � χ(Q, a)→ ¬
∨

a′∈s10

χ(Q, a′) for each a ∈ s01. (7)

In EM:

(1) �
(

χ(Q, a)→
¬

∨

a′∈s10
χ(Q, a′)

)

[for each a ∈ s01]

(7), Lemma 3.2,
Remark 4.1(3), (�I)

(2) φ→ �
(

χ(Q, a)→ p
)

[for each a ∈ s10]
K�

(3) φ→ �
(

χ(Q, a)→ ¬p
)

[for each a ∈ s01]
1, K�
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4 (4) χ
(

Q, s ↾ Q
)

A

(5) (∃p)φ Lemma 3.8(3),
Remark 4.1(4)

4 (6)
∧

a∈s10
♦χ(Q, a) 4, (5)

4 (7) φ→ ♦
(

χ(Q, a) ∧ p
)

∧
¬♦

(

χ(Q, a) ∧ ¬p
)

[for each a ∈ s10]

2, 6, K�

4 (8) φ→ ♦χ
(

Q ⊔ {p}, a ⊔ {p}
)

∧
¬♦χ

(

Q ⊔ {p}, a
)

[for each a ∈ s10]

7

4 (9)
∧

a∈s01
♦χ(Q, a) 4, (5)

4 (10) φ→ ♦
(

χ(Q, a) ∧ ¬p
)

∧
¬♦

(

χ(Q, a) ∧ p
)

[for each a ∈ s01]

3, 9, K�

4 (11) φ→ ♦χ
(

Q ⊔ {p}, a
)

∧
¬♦χ

(

Q ⊔ {p}, a ⊔ {p}
)

[for each a ∈ s01]

10

4 (12)
∧

a∈s00
¬♦χ(Q, a) 4, (5)

4 (13) φ→ ¬♦
(

χ(Q, a) ∧ p
)

∧
¬♦

(

χ(Q, a) ∧ ¬p
)

[for each a ∈ s00]

12, K�

4 (14) φ→ ¬♦χ
(

Q ⊔ {p}, a ⊔ {p}
)

∧
¬♦χ

(

Q ⊔ {p}, a
)

[for each a ∈ s00]

13

4 (15) φ→ χ
(

Q ⊔ {p}, s
)

8, 11, 14, (6)

4 (16) (∃p)φ→ (∃p)χ
(

Q ⊔ {p}, s
)

15, Lemma 3.5,
Remark 4.1(4)

4 (17) (∃p)χ
(

Q ⊔ {p}, s
)

5, 16

(18) χ
(

Q, s ↾ Q
)

→ (∃p)χ
(

Q ⊔ {p}, s
)

17
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Next suppose N > 0. Choose some a0 ∈ s11 and let s′ = s \ {a0}. Since
a0 ⊔ {p} ∈ s, we have a0 ⊔ {p} ∈ s′, and therefore

a0 ∈ s
′ ↾ Q = s ↾ Q. (8)

Furthermore, s′
11 :=

{

a ∈ P(Q) : a ⊔ {p} ∈ s′ ∋ a
}

= s11 \ {a0}; so
|s′

11| = N − 1. By the inductive hypothesis and (8),

EM ⊢ χ
(

Q, s ↾ Q
)

→ (∃p)χ
(

Q ⊔ {p}, s′
)

.

Hence by Lemma 3.1 and Remark 4.1(4) also

EM ⊢ χ
(

Q, s ↾ Q
)

→ (∃q)ψ, (9)

where ψ = [q/p]
(

χ(Q ⊔ {p}, s′)
)

.
Furthermore write

φ = �
(

p↔ (r ∧ χ(Q, a0)) ∨ (q ∧ ¬χ(Q, a0))
)

,

ρ = ♦
(

χ(Q, a0) ∧ r
)

∧ ♦
(

χ(Q, a0) ∧ ¬r
)

A = P
(

Q ⊔ {p}
)

\
{

a0, a0 ⊔ {p}
}

.

So
s ∩ A = s′ ∩ A. (10)

Since a ↾ Q 6= a0 for a ∈ A, by Lemmas 4.1(2) and 4.3(1), we have that

Cste � χ
(

Q ⊔ {p}, a
)

→ ¬χ(Q, a0) for each a ∈ A.

So by Lemma 3.2 and Remark 4.1(3),

EM ⊢ χ
(

Q ⊔ {p}, a
)

→ ¬χ(Q, a0) for each a ∈ A. (11)

By Lemma 3.1 and Remark 4.1(4) it follows

EM ⊢
(

[q/p]χ(Q ⊔ {p}, a)
)

→ ¬χ(Q, a0) for each a ∈ A. (12)

As a last piece of preparation, observe that if λ is a purely propositional
formula, then

Bool ⊢ (p↔ ℓ)→
(

[ℓ/p]λ↔ λ
)

for ℓ = q, r. (13)

By Remark 4.1(2), in particular for each a ∈ A we have

Bool ⊢ (p↔ q)→
(

[q/p]χ
(

Q ⊔ {p}, a)↔ χ(Q ⊔ {p}, a)
)

. (14)



48 P. Maurice Dekker

In EM:

(1) �
(

χ(Q ⊔ {p}, a)→ ¬χ(Q, a0)
)

[for each a ∈ A]
(11), (�I)

(2) �
(

[q/p](χ(Q ⊔ {p}, a))→
¬χ(Q, a0)

)

[for each a ∈ A]

(12), (�I)

(3) �
(

(p↔ q)→
(

[q/p]χ
(

Q⊔ {p}, a)↔
χ(Q ⊔ {p}, a)

))

[for each a ∈ A]

(14), (�I)

4 (4) χ
(

Q, s ↾ Q
)

A

4 (5) ♦χ(Q, a0) 4, (8)

4 (6) (∃r)ρ 5, (♦2)

7 (7) ρ A

4 (8) (∃q)ψ 4, (9)

9 (9) ψ A

(10) (∃p)φ Lemma 3.8(3),
Remark 4.1(4)

11 (11) φ A

11 (12) �
(

χ(Q, a0)→ (p↔ r)
)

11, K�

7, 11 (13) ♦
(

χ(Q, a0) ∧ p
)

∧ ♦
(

χ(Q, a0) ∧ ¬p
)

7, 12, K�

7, 11 (14) ♦χ
(

Q ⊔ {p}, a0 ⊔ {p}
)

∧
♦χ

(

Q ⊔ {p}, a0

)

13

11 (15) �
(

¬χ(Q, a0)→ (p↔ q)
)

11, K�

11 (16) �
(

[q/p]
(

χ(Q ⊔ {p}, a)
)

↔
χ(Q ⊔ {p}, a)

)

[for each a ∈ A]

1, 2, 3, 15, K�

7, 9, 11 (17)
∧

{

♦χ(Q ⊔ {p}, a) : a ∈ A ∩ s′
}

∧
∧

{

¬♦χ(Q ⊔ {p}, a) : a ∈ A \ s′
}

9, 16, K�
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7, 9, 11 (18) χ
(

Q ⊔ {p}, s
)

14, 17, (10)

7, 9 (19) φ→ χ
(

Q ⊔ {p}, s
)

18

7, 9 (20) (∃p)φ→ (∃p)χ
(

Q ⊔ {p}, s
)

19, Lemma 3.5,
Remark 4.1(4)

7, 9 (21) (∃p)χ
(

Q ⊔ {p}, s
)

10, 20

7 (22) ψ → (∃p)χ
(

Q ⊔ {p}, s
)

21

7 (23) (∃q)ψ → (∃q)(∃p)χ
(

Q ⊔ {p}, s
)

22, Lemma 3.5,
Remark 4.1(4)

4, 7 (24) (∃q)(∃p)χ
(

Q ⊔ {p}, s
)

8, 23

4 (25) ρ→ (∃q)(∃p)χ
(

Q ⊔ {p}, s
)

24

4 (26) (∃r)ρ→ (∃r)(∃q)(∃p)χ
(

Q ⊔ {p}, s
)

25, Lemma 3.5,
Remark 4.1(4)

4 (27) (∃r)(∃q)(∃p)χ
(

Q ⊔ {p}, s
)

6, 26

4 (28) (∃p)χ
(

Q ⊔ {p}, s
)

27, Lemma 3.7,
Remark 4.1(4)

(29) χ
(

Q, s ↾ Q
)

→ (∃p)χ
(

Q ⊔ {p}, s
)

28

We smoothly derive “←” for item 3 from “←” for the previous two
items. Let t = (a, s). Set φ = (p ↔ r) ∧ �(p ↔ q), ψ = [q/p]

(

χ(Q ⊔
{p}, s)

)

and ρ = [r/p]
(

χ
(

Q ⊔ {p}, a)
)

.

In EM:

1 (1) χ
(

Q, t ↾ Q
)

A

1 (2) χ
(

Q, a ↾ Q
)

1

1 (3) χ
(

Q, s ↾ Q
)

1

1 (4) (∃q)ψ 3, item 2, Lemma 3.1,
Remark 4.1(4)

5 (5) ψ A

1 (6) (∃r)ρ 2, item 1, Lemma 3.1,
Remark 4.1(4)
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7 (7) ρ A

(8) (∃p)φ Lemma 3.6

9 (9) φ A

9 (10) p↔ r 9

7, 9 (11) χ
(

Q ⊔ {p}, a
)

7, 10, (13),
Remark 4.1(2)

9 (12) �(p↔ q) 9

(13) �
(

(p↔ q)→
(

χ(Q ⊔ {p}, a′)
↔ [q/p]χ(Q ⊔ {p}, a′)

))

[for each a′ ∈ P
(

Q ⊔ {p}
)

]

(13), Remark 4.1(2),
(�I)

5, 9 (14) χ
(

Q ⊔ {p}, s
)

5, 12, 13, K�

5, 7, 9 (15) χ
(

Q ⊔ {p}, t
)

11, 14

5, 7 (16) φ→ χ
(

Q ⊔ {p}, t
)

15

5, 7 (17) (∃p)φ→ (∃p)χ
(

Q ⊔ {p}, t
)

16, Lemma 3.5

5, 7 (18) (∃p)χ
(

Q ⊔ {p}, t
)

8, 17

5 (19) ρ→ (∃p)χ
(

Q ⊔ {p}, t
)

18

5 (20) (∃r)ρ→ (∃r)(∃p)χ
(

Q ⊔ {p}, t
)

19, Lemma 3.5,
Remark 4.1(4)

1, 5 (21) (∃r)(∃p)χ
(

Q ⊔ {p}, t
)

6, 20

1 (22) ψ → (∃r)(∃p)χ
(

Q ⊔ {p}, t
)

21

1 (23) (∃q)ψ →
(∃q)(∃r)(∃p)χ

(

Q ⊔ {p}, t
)

22, Lemma 3.5,
Remark 4.1(4)

1 (24) (∃q)(∃r)(∃p)χ
(

Q ⊔ {p}, t
)

4, 23

1 (25) (∃p)χ
(

Q ⊔ {p}, t
)

24, Lemma 3.7,
Remark 4.1(4)

(26) χ(Q, t↾Q)→(∃p)χ(Q⊔ {p}, t) 25 ⊣
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Lemma 4.5. For every φ ∈ L and Q ⊂ω P with FV(φ) ⊆ Q,

EM ⊢ χ
(

Q,T(Q, φ)
)

↔ φ.

The formula χ
(

Q,T(Q, φ)
)

is quantifier-free.

Proof. The second statement follows from Remark 4.1(3). We prove
the first statement by induction on the complexity of φ.

• φ ∈ P ∪ {⊤}. Then KD45� ⊢ χ
(

Q,T(Q, φ)
)

↔ φ by Lemmas 3.2 and
4.2 and Remark 4.1(3).

• φ = ¬ψ. Since (by Lemma 4.2)

Cste � ψ ↔ χ
(

Q,T(Q,ψ)
)

and
Cste � φ↔ χ

(

Q,T(Q, φ)
)

,

it follows
Cste � χ

(

Q,T(Q, φ)
)

↔ ¬χ
(

Q,T(Q,ψ)
)

,

whence
EM ⊢ χ

(

Q,T(Q, φ)
)

↔ ¬χ
(

Q,T(Q,ψ)
)

by Lemma 3.2 and Remark 4.1(3). The inductive hypothesis yields

EM ⊢ ψ ↔ χ
(

Q,T(Q,ψ)
)

,

so
EM ⊢ φ↔ χ

(

Q,T(Q, φ)
)

.

• φ = ψ ∨ ρ. Similar to the case for negation.
• φ = �ψ. Similar to the case for negation.8

• φ = (∃p)ψ. By Lemma 4.4(4),

EM ⊢(∃p)χ
(

Q ∪ {p},T(Q ∪ {p}, ψ)
)

↔

χ
(

Q \ {p},T(Q ∪ {p}, ψ) ↾ (Q \ {p})
)

.
(15)

By the inductive hypothesis,

EM ⊢ ψ ↔ χ
(

Q ∪ {p},T(Q ∪ {p}, ψ)
)

,

8 This is the only place in the completeness proof where we use instances of (K�)
and (�I) with propositional quantifiers.
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so, by Lemma 3.5, we have

EM ⊢ φ↔ (∃p)χ
(

Q ∪ {p},T(Q ∪ {p}, ψ)
)

.

Combining this with (15) and Remark 4.1(3), conclude that there is
a quantifier-free formula ρ such that

EM ⊢ φ↔ ρ.

By Lemmas 3.3 and 4.2 it follows that

Cste � ρ↔ χ
(

Q,T(Q, φ)
)

.

Lemma 3.2 and Remark 4.1(3) imply

EM ⊢ ρ↔ χ
(

Q,T(Q, φ)
)

.

Thus
EM ⊢ φ↔ χ

(

Q,T(Q, φ)
)

. ⊣

Lemma 4.6 (completeness of EM). For φ ∈ L, we have

(Cste � φ or Ccco �τ φ) =⇒ EM ⊢ φ.

Proof. Assume Cste � φ or Ccco �τ φ. By Lemma 4.5, there is a
quantifier-free formula ρ ∈ L such that EM ⊢ φ ↔ ρ. By Lemma 3.3,
Cste � ρ or Ccco �τ ρ. By Lemma 3.2, KD45� ⊢ ρ. So EM ⊢ φ. ⊣

From Lemmas 3.3 and 4.6 we obtain:

Theorem 4.1 (adequacy of EM). For any φ ∈ L, the following are

equivalent:

(i) Cste � φ,

(ii) EM ⊢ φ,

(iii) Cco �τ φ,

(iv) Ccco �τ φ.

Proposition 4.2 (decidability). 1. There is an algorithm that decides,

given φ ∈ L and a finite pointed Cste-model (M,x), whether M,x � φ.

2. There is an algorithm that decides, given φ ∈ L, whether EM ⊢ φ.

Proof. Start enumerating the theorems of EM. By Lemma 4.5, at
some point we derive ρ ↔ φ, for some quantifier-free formula ρ. Thus
both items 1 and 2 follow from the corresponding results for KD45� (see
Segerberg, 1968). ⊣
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Future research. For some weaker logics than KD45�, such as K5� which
is modelled by euclidean frames, it seems plausible that the relational
semantics with bisimulation quantifiers can be axiomatized in a way
similar to EM. It is a question whether equivalent topological semantics
(perhaps building on (Steinsvold, 2008)) also exist for those logics.
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me to the subject. I would like to thank Valentin Müller, Christopher
Steinsvold and two anonymous reviewers from Logic and Logical Philos-

ophy for their feedback on my work.
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