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Axiomatization of BLRI Determined by

Limited Positive Relational Properties

Abstract. In the paper a generalised method for obtaining an adequate
axiomatic system for any relating logic expressed in the language with
Boolean connectives and relating implication (BLRI), determined by the
limited positive relational properties is studied. The method of defining
axiomatic systems for logics of a given type is called an algorithm, since the
analysis allows for any logic determined by the limited positive relational
properties to define the adequate axiomatic system automatically, step-by-
step. We prove in the paper that the algorithm really works and we show
how it can be applied to BLRI.
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1. Introduction

In this study, we present a generalised method for obtaining a sound and
complete axiomatic system for any relating logic expressed in a language
with Boolean connectives and relating implication defined by the so-
called limited positive relational properties.

Relational conditions of the analysed in the paper kind take the form
of a general conditional with an antecedent in the form of relational ex-
pression conjunctions, i.e., expressions built with binary predicate and
variables running over formulas, and a consequent in the form of a rela-
tional expression. Multiple examples of such properties can be found in
[Epstein, 1990; Jarmużek and Klonowski, 2021, submitted-a; Jarmużek
and Malinowski, 2019a], where it has been shown how relating semantics,
with the appropriate conditions for the considered type, can allow for
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analysing implication that takes into account content relations of the
expressions, causal implication, and connexive implication.

We call the method of obtaining axiomatic systems, for logics of a
given type, the α algorithm, since our analysis allows for any logic of
a given type to determine step-by-step the adequate axiomatic system.
The proof of completeness of axiomatic systems obtained by applying
the α algorithm that we will present is a modification of Henkin-style
completeness proofs for zero-order logic. Such proofs, for various types of
relating logic, were presented in [Epstein, 1979, 1990; Klonowski, 2019,
2021a].1 All of those cases, however, made use of the fact of the expres-
sivity of the relating relation in the language of the analysed logic. Our
proof does not use the expressivity of the relating relation. By means of
an appropriate transformation, we will show how to transform the rela-
tional conditions that determine a given logic into axioms. In addition to
axioms, in some cases, we must additionally consider a rule that allows us
to transform axioms in a way that corresponds to possible relational con-
ditions that can be deduced from the explicitly given initial conditions.

The paper consists of an introduction, eight sections, and a conclu-
sion. In Section 1, we introduce the language of the analysed logics,
the necessary notations, and the notion of Boolean logic with relating
implication. For the latter, we also define the type of relational condition
of interest. In Section 2, we define an axiomatic system and use examples
to describe and demonstrate the α algorithm. In Sections 3 and 4, we
will deal respectively with the proof of soundness and completeness of
the axiomatic systems obtained using α algorithm. In the Sections 5 and
6 we study general forms of soundness and completeness. Section 7 is
devoted to the problem of cardinality of BLRI logical systems and the
problem of their determination. In Section 8 we propose a translation
into classical logic and investigate metalogical issues such as complete-
ness and interpolation.

2. Boolean logics with relating implication

In this paper, we will focus on a certain family of Boolean logics with
relating implications. In general, by Boolean logics with relating impli-
cation BLRI), we mean relating logics with classical negation, conjunc-
tion, and disjunction in which there is only one relating connective 

1 Constructive proofs were examined in [Paoli, 1996; Klonowski, 2018].
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the relating implication. That is, an implication whose interpretation
necessitates taking into account hypothetical relationships between the
antecedent and the consequent.

The language (object-language) of Boolean logic with relating im-
plication is a language consisting of propositional variables and the fol-
lowing connectives: negation ¬, conjunction ∧, disjunction ∨ and im-
plication →, as well as brackets: ), (. The set of propositional vari-
ables is denoted by Var. Let us define the set of (object-language)
formulas in a standard way and denote it by For. The metavariables
A,B,C,D,A1, B1, C1, D1 . . . will ranging over set For. Thus, by means
of these variables and the assumed connectives we can determine formu-
las schemata. The set of metavariables is denoted by VAR and the set
of formulas schemata is denoted by FOR. By means of F,G,H, I, F1,
G1, H1, I1 . . . we will represent any formulas schemata, i.e. these vari-
ables ranging over the set FOR. In turn, X, Y, Z,X1, Y1, Z1, . . . will rang-
ing over the power set of the set For, i.e. P(For).

We will omit brackets in formulas according to the standard conven-
tion of biding strength and define the following abbreviations: λ ⊃ π :=
¬λ∨π and λ ≡ π := (¬λ∨π) ∧ (¬π∨λ). By λ[π/σ] we denote a formula
obtained by the replacement of all occurrences of π by σ in λ.

In our discussion, we will sometimes use the iterated conjunction
λ1∧. . .∧λn, which we will also write as follows:

∧n
i=1 λi. The conjunction

obtained from
∧n

i=1 λi by excluding the conjuncts λj1 , . . . , λjm
, where

m < n, will be written as follows:
∧n

i=1,i6=j1,...,jm
λi. Let us assume that

if n = 1, formula λ1 ∧ . . . ∧ λn−1 ⊃ π (or
∧n−1

i=1 λi ⊃ π) is just π.

A model of the analysed object-language is an ordered pair 〈v,R〉,
such that, v : Var −→ {1, 0} is a classical valuation and R ⊆ For × For is
a binary relation, called relational relation.2 In this paper, we will use the
notation R(A,B) and ∼R(A,B), to express, that A is in the relation R to
B, and A is not in the relation R toB, respectively. The relational symbol
R can be used to state various relations between denotations of sentences.

A formula A ∈ For is true in model M = 〈v,R〉 (in symb.: M |= A;
M 6|= A, if false) iff for every B,C ∈ For:

v(A) = 1, if A ∈ Var

M 6|= B, if A = ¬B

M |= B and M |= C, if A = B ∧ C

2 For a discussion on the relation R see [Estrada-González et al., 2021].
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M |= B or M |= C, if A = B ∨ C

[M 6|= B or M |= C] and R(B,C), if A = B → C.

Let X ⊆ For. We will write M |= X instead of, for every A ∈ X ,
M |= A.3

We adopt standard definitions of semantic consequence relations and
valid formulas. Let X ∪ {A} ⊆ For and M be a set of all models. Then:
• A is a semantic consequence of (entailed by) X in the set N ⊆ M (in

symb.: X |=N A) iff for every M ∈ N, if M |= X then M |= A.
• A is a valid formula in the set N ⊆ M (in symb.: |=N A) iff ∅ |=N A.4

By logic, we will mean an ordered pair consisting of a set of formulas
and a semantic consequence relation closed under any uniform substitu-
tion. Since we will focus on one set of formulas, set For, we can identify
logic with the semantic consequence relation. A Boolean logic with a

relating implication is any logic |= ⊆ P(For) × For.
In this paper, we will focus on Boolean logics with relating impli-

cations, determined by sets of models satisfying some kind of relational
conditions.5 The conditions we will focus on will be the limited positive
relational properties (LPR). In order to define properties of this type we
use: metalogical connectives: implication (⇒), conjunction (and), dis-
junction (or), and atomic expressions built with the relational symbol R,
formulas schemata, and brackets. Since there is no metalogical negation
among the considered connectives, we call the analysed properties posi-
tive. We interpret the indicated metalogical connectives classically. The
set of formulas constructed by the given metalogical symbols excluding
implication is defined in a standard way and denoted by Ex. Variables
ϕ, ψ, χ, ϕ1, ψ1, χ1 . . . are ranging over the set Ex. We adopt similar as
for above presented languages conventions for metalogical conjunction
iterations. In this case, instead of: ϕ1 and . . . and ϕn, we sometimes
use the following notation: ANDn

i=1ϕi. Moreover, we assume similar
conventions for replacing a formula within a given formula and use sim-
ilar notation as for above presented languages. We have the following
examples of expressions that are LPR:

3 We will say that a formula schema is false when there is a formula in the form
of that schema that is false.

4 We will say that a formula schema, in particular an axiom schema, is a semantic
consequence of (derived from) a set (resp. valid) in a set of models if any formula of
the form, of that schema, is a semantic consequence of (derived from) a given set
(resp. valid) in that set of models.

5 In other words, we analyse only those logics that we can define by models whose
relations satisfy any fixed conditions of a certain type.
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R(A,A) (LPR1)

R(¬A,A) (LPR2)

R(A,¬A) (LPR3)

R(A,B) and R(B,C) ⇒ R(A,C) (LPR4)

R(A,B) ⇒ R(¬A,¬B) (LPR5)

R(A,B) or R(A,C) ⇒ R(A,B ∨ C) (LPR6)

R(A ∧B,C ∧D) or R(A ∧B,C ∨D) ⇒ R(A,C) and R(B,D). (LPR7)

We can now introduce the definition of the relational properties of
interest. We say that ϕ is a simplified limited positive relational property

(sLPR) iff there are F,G ∈ FOR such that either ϕ = R(F,G) or there is
n ∈ N such that ϕ = R(F1, F2) and . . . and R(F2n−1, F2n) ⇒ R(F,G).
Thus, any sLPR is of the following form:

ANDn−1
i=1 R(F2i−1, F2i) ⇒ R(Fn+1, Fn+2),

for some n ∈ N. The first five expressions of the LPR examples given
above, i.e. (LPR1)–(LPR5), are sLPR. Let us consider the subsequent
examples, i.e. (LPR6)–(LPR7). Clearly, the condition (LPR6) has the
following corresponding sLPR conditions:

R(A,B) ⇒ R(A,B ∨ C) (LPR6.1)

R(A,C) ⇒ R(A,B ∨ C), (LPR6.2)

and (LPR7) has the following corresponding sLPR conditions:

R(A ∧B,C ∧D) ⇒ R(A,C) (LPR7.1)

R(A ∧B,C ∧D) ⇒ R(B,D) (LPR7.2)

R(A ∧B,C ∨D) ⇒ R(A,C) (LPR7.3)

R(A ∧B,C ∨D) ⇒ R(B,D). (LPR7.4)

In the paper we study these LPR properties that are reducible to
some sets of sLPR properties.

3. Axiomatic systems

At a later stage, we will refer to the notion of derivability. We shall now
define the notion of an axiomatic system of Boolean logic with relating
implication. For this purpose, we will use the set of classically valid
formulas expressed in the new language, denoted as BL.
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By axiomatic system (of BLRI ) we shall mean the set of formulas
X ⊆ For satisfying the following conditions:

• BL ⊆ X ,
• X contains any formula of the form:

(A → B) ⊃ (A ⊃ B) (E→)

• X is closed under the rule of material detachment:

A
A ⊃ B
B

(MD)

i.e., for any A,B ∈ For, if A ⊃ B,A ∈ X , then B ∈ X .6

The schema (E→) allows us to eliminate the relating implication or
weaken the relating implication to the abbreviation classically equiva-
lent to the material implication ⊃. Note that because axiomatic system
contains formulas of the form (E→) and is closed under (MD), it is also
closed under the Modus Ponens rule:

A
A → B
B

(MP)

Let X be an axiomatic system and Y ∪ {A} ⊆ For. Then:

• A is thesis based on the system X iff A ∈ X
• A is syntactic consequence (derivable from) Y based on system X (in

symb.: Y |−X A) iff exists n ∈ N such that B1, . . . , Bn ∈ Y and
∧n

i=1Bi ⊃ A ∈ X .7

We can state that A ∈ X iff ∅ |−X A iff X |−X A.

Let us denote the least axiomatic system by W→. In turn, let us
denote the least axiomatic system containing all formulas of the form of
the schemata (Ax1), . . . , (Axn) as W→ ⊕ {(Ax1), . . . , (Axn)}.

6 If a set X contains all formulas of the form of some schema F, we shall refer to
them as F ∈ X or (x) ∈ X, if (x) denotes F .

7 We shall say that a formula schema, in particular an axiom schema, is a theorem
(the corresponding syntactic consequence of (is derived from) some set) in some system
when any formula of the form of that schema is a theorem (the corresponding syntactic
consequence of (is derived from) a given set) in that system. We shall then use the
same notation as for formulas.
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4. Algorithm α – moving from relational conditions to axioms

and inference rules

In this section, we will define a method for transforming arbitrary sLPR
into schemata of formulas that will serve as schemata of axioms of logics
defined by given relational conditions.

We define function α that transforms any sLPR into a formula schema
(an axiom schema), for any n ∈ N:

α(ANDn−1
i=1 R(F2i−1, F2i) ⇒ R(Fn+1, Fn+2)) :=

∧n−1
i=1 (F2i−1 → F2i) ⊃ (Fn+1 → Fn+2) ∨ (Fn+1 ∧ ¬Fn+2).

Let us consider some examples, transforming (LPR1)–(LPR7). Con-
dition (LPR1) can be transformed into the following formula:

(A → A) ∨ (A ∧ ¬A). (A1)

Since (A1) ≡ (A → A) ∈ BL, (A1) can be reduced to the following form:

A → A.

(LPR2) and (LPR3) can be transformed into the following schemata:

(¬A → A) ∨ (¬A ∧ ¬A) (A2)

(A → ¬A) ∨ (A ∧ ¬¬A). (A3)

Once again, by BL we can reduce (A2) and (A3) to the following:

(¬A → A) ∨ ¬A

(A → ¬A) ∨A,

since (A2) ≡ (¬A → A) ∨ ¬A ∈ BL and (A3) ≡ (A → ¬A) ∨A ∈ BL.
Condition (LPR4) can be transformed in the following way:

(A → B) ∧ (B → C) ⊃ (A → C) ∨ (A ∧ ¬C). (A4)

In this case, we can also make a reduction, this time to the following
schema:

(A → B) ∧ (B → C) ⊃ (A → C).

However, in addition to classical logic, we need to apply (E→) and (MD),
i.e., (A4) ≡ (A → B) ∧ (B → C) ⊃ (A → C) ∈ W→.
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Condition (LPR5) is transformed in the following way.

(A → B) ⊃ (¬A → ¬B) ∨ (¬A ∧ ¬¬B). (A5)

In this case, we can only make the following minor reduction:

(A → B) ⊃ (¬A → ¬B) ∨ (¬A ∧B),

resulting in (A5) ≡ (A → B) → (¬A → ¬B) ∨ (¬A ∧B) ∈ BL.

(LPR6) can be transformed indirectly using (LPR6.1) and (LPR6.2):

(A → B) ⊃ ((A → B ∨ C) ∨ (A ∧ ¬(B ∨ C)) (A6.1)

(A → C) ⊃ ((A → B ∨ C) ∨ (A ∧ ¬(B ∨ C)). (A6.2)

Once again referring to the classical logic, (E→) and (MD), (A6.1) and
(A6.2) can be modified in the following way:

(A → B) ⊃ (A → B ∨ C)

(A → C) ⊃ (A → B ∨ C),

i.e., (A6.1) ≡ (A → B) ⊃ (A → B ∨C) ∈ W→ and (A6.2) ≡ (A → C) ⊃
(A → B ∨ C) ∈ W→.

Similarly as for (LPR7), we can transform (LPR7.1)–(LPR7.4):

(A ∧B → C ∧D) ⊃ (A → C) ∨ (A ∧ ¬C) (A7.1)

(A ∧B → C ∧D) ⊃ (B → D) ∨ (B ∧ ¬D) (A7.2)

(A ∧B → C ∨D) ⊃ (A → C) ∨ (A ∧ ¬C) (A7.3)

(A ∧B → C ∨D) ⊃ (B → D) ∨ (B ∧ ¬D). (A7.4)

In this case, we are unable to make any reductions similar to those
described above.

Let us note that, from the point of view of function α, (LPR1),
(LPR4) and (LPR6) are similar in some respects. Namely, in the given
cases, we have been able to reduce the axiom schemata obtained with
function α to schemata in which only relating implications exist, either
in the schema itself or in the antecedent and consequent of the schema,
and in which there is no alternative with a single member of the form of
a relating implication. In this way, we obtained schemata describing the
well-known laws of various implications: reflexivity, transitivity, and the
introduction of alternatives.
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However, it should be stressed that the axiom schemata obtained by α
do not always provide a complete axiomatization of a given logic. A prob-
lem may arise when we start to consider logics determined by several re-
lational conditions from which a new condition (or conditions) can be de-
duced which, when transformed by α, allows us to obtain a valid schema
(or schema) which we will not derive using the axioms obtained with α.
For example, note that if a relation satisfies (LPR2)–(LPR4), it also sat-
isfies (LPR1). However, from the set of formulas in the form of schemata
(A2)–(A4) we will not derive (A1) on the basis of W→. We can easily
show that (A1) is independent of (A2)–(A4). For this purpose, it suffices
to consider the classical matrices for ¬,∧,∨, and the matrix 1 for →.

→ 1 0

1 1 0
0 1 0

Table 1. Matrix for →

Under the given interpretation, all elements of the set BL, as well as
(E→), are true, and so is (MD). Furthermore, (A2)–(A4) will also be
true. In turn, the schema (A1) is false, (p → p is false if p is assigned 0).

Similarly, if a relation satisfies (LPR5), it also satisfies the following
condition:

R(A,B) ⇒ R(¬¬A,¬¬B).

The condition given allows the validity of the following schema to be
demonstrated:

(A → B) ⊃ (¬¬A → ¬¬B). (A5.1)

However, from (A5) we will not be able to derive the schema (A5.1)
on the ground of W→. The schema (A5.1) is indeed independent from
(A5). Let us consider a relating model 〈v,R〉 such that for any A ∈ Var,
v(A) = 1 and for any A,B ∈ For, R(A,B) iff for some C ∈ For, A =
C ∧¬C and B = C∨¬C. Such a model satisfies the following condition:

R(A,B) ⇒ R(¬A,¬B) or (〈v,R〉 6|= A and 〈v,R〉 |= B).

In the given model, all elements of the set BL, (E→) and (MD) are
true. The schema (A5) is true as well. In turn, the schema (A5.1)
is false. Namely, since ∼R(¬¬(p ∧ ¬p),¬¬(p ∨ ¬p)), then the formula
(p ∧ ¬p → p ∨ ¬p) ⊃ (¬¬(p ∧ ¬p) → ¬¬(p ∨ ¬p)) is false.
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As a result, we introduce the following rules that will allow us to use
the obtained axiom schemata to prove the formulas that we will obtain
using α from the conditions that determine the logic in question. For all
n,m ∈ N:

A1 ∧ . . . ∧An−1 ⊃ ((An → An+1) ∨ (An ∧ ¬An+1))

B1 ∧ . . . ∧Bm ⊃ Bm+1

B1 ∧ . . . ∧Bm[Bi/A1 ∧ · · · ∧An−1] ⊃ Bn+1,

(Rα)

where Bi = An → An+1, for some i ¬ m.
The applicability of the rule (Rα) must be limited accordingly. The

following inference based on (Rα) shows that our rule need not always
lead from thesis to thesis (the premises are theses, while the conclusion
may not be a thesis):

(p → q) ⊃ (¬p ∨ p → p ∧ ¬p) ∨ ((¬p ∨ p) ∧ ¬(p ∧ ¬p))
(¬p ∨ p → p ∧ ¬p) ⊃ (q → p) ∨ (q ∧ ¬p)

(p → q) ⊃ (q → p) ∨ (q ∧ ¬p)

However, the (Rα) will not allow falsity if we apply it to substitutions
of axioms obtained by α function and/or formulas obtained by applica-
tion of (Rα). Thus, in practice, our rule can be applied if the subformulas
of premises are of the following form:
• for any i ¬ n− 1, there are Ci, Di ∈ For such that Ai := Ci → Di,
• for any i ¬ m+ 1, there are Ci, Di ∈ For such that Bi := Ci → Di.
Let us also remind that if n = 1, then (A1 ∧ · · · ∧ An−1) ⊃ (An →
An+1) ∨ (An ∧ ¬An+1) = (An → An+1) ∨ (An ∧ ¬An+1). Therefore, rule
(Rα) can also be formulated in the following way:

∧n−1
i=1 (A2i−1 → A2i) ⊃ (An+1 → An+2) ∨ (An+1 ∧ ¬An+2)

∧m
i=1(B2i−1 → B2i) ⊃ (Bm+1 → Bm+2) ∨ (Bm+1 ∧ ¬Bm+2)

∧m
i=1(B2i−1 → B2i)[B2j−1 → B2j/

∧n−1
i=1 (A2i−1 → A2i)] ⊃

(Bm+1 → Bm+2) ∨ (Bm+1 ∧ ¬Bm+2),

where B2j−1 → B2j = An+1 → An+2, for some j ¬ m.
Let us consider some examples of rules that are special cases of the

rule (Rα). For example, we have the following rules:

(¬A → A) ∨ (¬A ∧ ¬A)

(¬A → A) ∧ (A → ¬A) ⊃ (A → A) ∨ (A ∧ ¬A)

(A → ¬A) ⊃ (A → A) ∨ (A ∧ ¬A)

(R1)
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(A → ¬A) ∨ (A ∧ ¬¬A)

(A → ¬A) ⊃ (A → A) ∨ (A ∧ ¬A)

(A → A) ∨ (A ∧ ¬A)

(R2)

Using (R1), (A2) and (A4), we derive the following schema:

(A → ¬A) ⊃ (A → A) ∨ (A ∧ ¬A).

Moreover, using additionally (R2) and (A3), we can derive (A1). Thus,
we can conclude that (A1) /∈ W→⊕ {(A2), (A3), (A4)} but (A1) ∈ W→⊕
{(A2), (A3), (A4); (Rα)}.

Let us further consider the following rule:

(A → B) ⊃ (¬A → ¬B) ∨ (¬A ∧ ¬¬B)

(¬A → ¬B) ⊃ (¬¬A → ¬¬B) ∨ (¬¬A ∧ ¬¬¬B)

(A → B) ⊃ (¬¬A → ¬¬B) ∨ (¬¬A ∧ ¬¬¬B)

(R3)

Using (R3) and twice (A5) we shall derive the following schema:

(A → B) ⊃ (¬¬A → ¬¬B) ∨ (¬¬A ∧ ¬¬¬B),

which using classical logic can be reduced to (A5.1). Therefore, we can
conclude that (A5.1) /∈ W→ ⊕ {(A5)}, but (A5.1) ∈ W→ ⊕{(A5); (Rα)}.

Due to the indicated restriction, we need to introduce a specific no-
tion of the set closed under (Rα). Let X be an axiomatic system whose
only axiom schemata obtained with α function are (Ax1), . . . , (Axn). A
closure under (Rα) with respect to X (denoted by: Rα(X)) is a set of all
formulas A such that there is a sequence (A1, . . . , An) (n ∈ N) such that:

• An = A,
• for any i ¬ n at least one of the following conditions holds:

– Ai is of the form of (Ax1) or . . . or (Axn),
– there are l, k ¬ i such that Ai is obtained from Al, Ak by (Rα).

We say that X is axiomatically closed under (Rα) iff Rα(X) ⊆ X . Let
as denote the least axiomatic system containing the axiom schemata
(F1), . . . , (Fn) and axiomatically closed under (Rα) as W→ ⊕ {(Ax1),
. . . , (Axn); (Rα)}.
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5. Soundness theorem

In order to prove the soundness theorem, we show that by means of rule
(Rα) we can capture all properties of relations that can be derived from
some initial, assumed properties that determine a given set of relations.

Lemma 5.1. Let ϕ1, . . . , ϕn be sLRP and X = W→ ⊕{α(ϕ1), . . . , α(ϕn);
(Rα)} be an axiomatic system. Then, for any relation R satisfying the

conditions ϕ1, . . . , ϕn, for any A ∈ Rα(X), there is m ∈ N such that:

1. A =
∧m−1

i=1 (A2i−1 → A2i) ⊃ (Am+1 → Am+2) ∨ (Am+1 ∧ ¬Am+2),

2. ANDm−1
i=1 R(A2i−1, A2i) ⇒ R(Am+1, Am+2) holds.

Proof. By definition of Rα(X), for any A ∈ Rα(X) there is a sequence
(B1, . . . , Bk) such that the indicated conditions are met. We conduct
the inductive proof on the number k.

Base case. Let k = 1. Thus, there is j ¬ n such that A is of the form
of α(ϕj). We have ϕj = ANDm−1

i=1 R(F2m−1, F2m) ⇒ R(Fm+1, Fm+2),
for some m ∈ N. Thus, α(ϕj) =

∧m−1
i=1 (F2i−1 → F2i) ⊃ (Fm+1 →

Fm+2) ∨ (Fm+1 ∧ ¬Fm+2). Therefore, A =
∧m−1

i=1 (A2i−1 → A2i) ⊃
(Am+11 → Am+12) ∨ (Am+1 ∧ ¬Am+2) and ANDm−1

i=1 R(A2i−1, A2i) ⇒
R(Am+1, Am+2) holds.

Inductive hypothesis. Let 1 ¬ o < k. Suppose for any j ¬ o, there
is m ∈ N such that Bj =

∧m−1
i=1 (A2i−1 → A2i) ⊃ (Am+1 → Am+2) ∨

(Am+1 ∧ ¬Am+2) and ANDm−1
i=1 R(A2i−1, A2i) ⇒ R(Am+1, Am+2) holds.

Inductive step. Let k = o+ 1. Suppose A is obtained by application
of α to ϕj , for some j ¬ n. So A is of the form α(ϕj). Then we reason
as in the base case.

Suppose A is obtained from Bj1 , Bj2 by the application of rule (Rα).
Thus, by inductive hypothesis, we have that there are m1,m2 such that:

1. Bj1 =
∧m1−1

i=1 (C2i−1 → C2i) ⊃ (Cm1+1 → Cm1+2) ∨ (Cm1+1 ∧
¬Cm1+2),

2. Bj2 =
∧m2

i=1(D2i−1 → D2i) ⊃ (Dm2+1 → Dm2+2) ∨ (Dm2+1 ∧
¬Dm2+2),

3. ANDm1−1
i=1 R(C2i−1, C2i) ⇒ R(Cm1+1, Cm1+2) holds

4. ANDm2
i=1R(D2i−1, D2i) ⇒ R(Dm2+1, Dm2+2) holds,

where D2j−1 → D2j = Cm1+1 → Cm1+2, for some j ¬ m2. More-
over, since A is obtained by (Rα), A =

∧m2

i=1(D2i−1 → D2i)[D2j−1 →
D2j/

∧m1−1
i=1 (C2i−1 → C2i)] ⊃ (Dm2+1 → Dm2+2) ∨ (Dm2+1 ∧Dm2+2).
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Since D2j−1 → D2j = Cm1+1 → Cm1+2, D2j−1 = Cm1+1 and
D2j = Cm1+2. Thus, ANDm2

i=1R(D2i−1, D2i)[R(D2j−1, D2j)/ANDm1−1
i=1

R(C2i−1, C2i)] ⇒ R(Dm2+1, Dm2+2) holds. Therefore, after renumer-
ating those sequences, we have: A =

∧m−1
i=1 (A2i−1 → A2i) ⊃ (Am+1 →

Am+2)∨(Am+1∧¬Am+2) and ANDm−1
i=1 R(A2i−1, A2i) ⇒ R(Am+1, Am+2)

holds, for some m ∈ N. ⊣

We can now proceed to show that any axiom system obtained by us-
ing the algorithm α is consistent. We carry out the proof in the standard
way, by showing that the axiom schemata and inference rules preserve
the validity of the models of the logics in question.

Theorem 5.2. Let |= be any Boolean logic with a relating implication

determined by ϕ1, . . . , ϕn being sLPR and let X = {α(ϕ1), . . . , α(ϕn);
(Rα)} be an axiomatic system. Then, for any Y ∪{A} ⊆ For, if Y |−X A,

then Y |= A.

Proof. All classical tautologies of Boolean logic are valid, and (MD)
preserves validity in any Boolean logic with relating implication as well.
It is also easy to see that in any Boolean logic with relating implication,
(E→) is also valid.

Let v : Var −→ {1, 0} be a valuation and R ⊆ For ×For be any binary
relation. By Lemma 5.1, if A ∈ Rα(Y ), then there is m ∈ N such
that A =

∧m−1
i=1 (A2i−1 → A2i) ⊃ (Am+1 → Am+2) ∨ (Am+1 ∧ ¬Am+2)

and ANDm−1
i=1 R(A2i−1, A2i) ⇒ R(Am+1, Am+2) holds. Suppose that

〈v,R〉 |=
∧m−1

i=1 (A2i−1 → A2i). Then, ANDm−1
i=1 R(A2i−1, A2i) holds.

Thus, R(Am+1, Am+2) holds. We have that either 〈v,R〉 |= Am+1 ⊃
Am+2 or 〈v,R〉 |= Am+1 ∧ ¬Am+2. Therefore, 〈v,R〉 |= (Am+1 →
Am+2) ∨ (Am+1 ∧ ¬Am+2). ⊣

6. Completeness theorem

For completeness analysis, we introduce the standard notions of consis-
tent and maximally consistent sets. Let X be an axiomatic system and
Y ⊆ For. Then:

• Y is X-consistent iff Y 6|−X p ∧ ¬p,
• Y is X-inconsistent iff Y is not X-consistent.

The following fact is also the standard one:
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Fact 6.1. Let X be an axiomatic system and Y ∪ {A} ⊆ For. Then,

Y ∪ {¬A} is X-consistent iff Y 6|−X A.

The notion of maximal X-consistent set is defined in the standard
way. Let X be an axiomatic system and Y ⊆ For. Y is maximal X-

consistent iff the following conditions are satisfied:
• Y is X-consistent,
• for every Z ⊆ For, if Y ⊂ Z, then Z is X-inconsistent.
A set of all maximal X-consistent sets is denoted by Max(X). Maximally
consistent sets are obviously theories, i.e., they are closed on the relation
of logical consequence.

Fact 6.2. Let X be an axiomatic system and Y ∈ Max(X). For any

A ∈ For, A ∈ Y iff Y |−X A.

By Fact 6.2 and the axiomatic system definition, we can show that
the maximal X-consistent sets are saturated with respect to connectives
¬,∧,∨.

Fact 6.3. Let X be an axiomatic system and Y ∈ Max(X). Then, for

every A,B ∈ For:

1. ¬A ∈ Y iff A /∈ Y ,

2. A ∧B ∈ Y iff A ∈ Y and B ∈ Y ,

3. A ∨B ∈ Y iff A ∈ Y or B ∈ Y .

The next theorem is Lindenbaum’s lemma, which we will use in our
proof of completeness:

Fact 6.4. Let X be an axiomatic system and Y ⊆ For. Then, if Y is

X-consistent, then there is Z ⊆ For such that Y ⊆ Z and Z ∈ Max(X).

Let us now proceed to define the canonical model. Let X be an
axiomatic system and Y ∈ Max(X). We define the valuation of the
propositional variables in the following way, for any A ∈ Var:

vY (A) =

{

1, if A ∈ Y,

0, if A 6∈ Y.

We now define a sequence of relations (Rn)n∈N:
• R1(A,B) iff A → B ∈ Y ,
• Rn+1(A,B) iff at least one of the following holds:

– 〈A,B〉 ∈
⋃

i¬n Ri,
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– there is m ∈ N such that 〈vY ,
⋃

i¬n Ri〉 |=
∧m

i=1(C2i−1 → C2i)
and

∧m
i=1(C2i−1 → C2i) ⊃ ((A → B) ∨ (A ∧ ¬B)) ∈ Rα(X),

– (A → B) ∨ (A ∧ ¬B) ∈ Rα(X).
Let us denote the sum of the defined sequence of relations in the following
way: R̆Y :=

⋃

n∈N
Rn.

The canonical model determined with respect to Y (in short: Y -model,
in symb.: MY ) is the model 〈vY , R̆Y 〉. For any n ∈ N, the model 〈vY ,Rn〉
we call the canonical n-model determined with respect to Y (in short:
n-model, in symb.: M

n
Y ). Let us notice that M

n
Y = 〈vY ,

⋃

m¬n Rm〉,
because for any n ∈ N, Rn ⊆ Rn+1.

Notice that Rα(W→) = ∅ and for any Y ∈ Max(W→), (Rn)n∈N = R1,
therefore MY = M

1
Y .

Note also that the 1-model has the property that any formula be-
longing to the maximally consistent set with respect to which a given
canonical model is determined is true in the 1-model.

Fact 6.5 (Klonowski, 2021a). Let X be an axiomatic system and Y ∈
Max(X). Then, for any A ∈ For, M1

Y |= A iff A ∈ Y .

We will now show that the same formulas are true in any canonical
model as in the 1-model.

Lemma 6.6. Let X be an axiomatic system and Y ∈ Max(X). Then, for

any n ∈ N, for any A ∈ For, M1
Y |= A iff M

n
Y |= A.

Proof. Let X be an axiomatic system such that Rα(X) 6= ∅. We use
a double induction on number n and complexity of formulas. We start
with n = 2.

Initial step. Let n = 2.
1.1. Base case. Let A ∈ For, where the complexity of A is equal to 1.

Then, A ∈ Var. By the definition of M1
Y and M

2
Y , M1

Y |= A iff M
2
Y |= A.

1.2. Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For,
if complexity A is not bigger than m, then M

1
Y |= A iff M

2
Y |= A.

1.3. Inductive step. Let A ∈ For, where complexity of A is equal to
m+1. If A = ¬B or A = B ∗C, where ∗ ∈ {∧,∨}, then by the inductive
hypothesis 1.2, M1

Y |= A iff M
2
Y |= A. Let us consider the case where

A = B → C.
„⇒” Suppose that M1

Y |= A → B. Then, by the definition of truth in
a model, (M1

Y 6|= B or M
1
Y |= C) and R1(B,C). By inductive hypothe-

sis 1.2, M2
Y 6|= B or M

2
Y |= C. By the definition of (Rn)n∈N, R2(B,C).

Thus, by the definition of truth in a model, M2
Y |= B → C.
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„⇐” Suppose that M
2
Y |= B → C. Then, by the definition of truth

in a model (M2
Y 6|= B or M

2
Y |= C) and R2(B,C). By the inductive

hypothesis 1.2, M1
Y 6|= B or M

1
Y |= C. Suppose ∼R1(B,C). Then, by

the definition of (Rn)n∈N, we have the following possibilities:

(a) there are k, l ∈ N such that D1, . . . , D2k ∈ For, M1
Y |=

∧k
i=1(D2i−1

→ D2i) and
∧k

i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)) ∈ Rα(X),

(b) ((B → C) ∨ (B ∧ ¬C)) ∈ Rα(X).

In case (a), since
∧k

i=1(D2i−1 → D2i) ⊃ ((B → C)∨(B∧¬C)) ∈ Rα(X),
then

∧k
i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)) ∈ Y . Therefore, by

Fact 6.5, M1
Y |=

∧k
i=1(D2i−1 → D2i) ⊃ ((B → C)∨(B∧¬C)). Therefore,

since M
1
Y |=

∧k
i=1(D2i−1 → D2i), we have that M

1
Y |= (B → C) ∨ (B ∧

¬C). But, by the inductive hypothesis 1.2, M1
Y 6|= B ∧ ¬C. Therefore

M
1
Y |= B → C. By the definition of truth in a model, R1(B,C). In case

(b), we reason similarly as in case (a).
Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For,

M
1
Y |= A iff M

n
Y |= A.

Inductive step. Let us consider model Mn+1
Y . We show by induction

that for any A ∈ For, Mn
Y |= A iff M

n+1
Y |= A.

2.1. Base case. We reason similarly as in 1.1.
2.2. Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For,

if complexity A is not bigger than m, then M
n
Y |= A iff M

n+1
Y |= A.

2.3. Inductive step. Let A ∈ For, where complexity of A is equal to
m + 1. As in 1.3, if A = ¬B or A = B ∗ C, where ∗ ∈ {∧,∨}, then by
the inductive hypothesis 2.2, Mn

Y |= A iff M
n+1
Y |= A. Let us consider a

case where A = B → C.
„⇒” As in 1.3 „⇒”. By the definition of (Rn)n∈N, we obtain that if

Rn(B,C), then Rn+1(B,C).
„⇐” We reason similarly as in 1.3 „⇐”. Suppose M

n+1
Y |= B → C.

Then, by the definition of truth in a model, (Mn+1
Y 6|= B or M

n+1
Y |= C)

and Rn+1(B,C). By the inductive hypothesis, Mn
Y 6|= B or M

n
Y |= C.

Suppose ∼Rn(B,C). Then, by the definition of (Rn)n∈N, we have the
following possibilities:

(a) there are k, l ∈ N such that D1, . . . , D2k ∈ For, Mn
Y |=

∧k
i=1(D2i−1

→ D2i) and
∧k

i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)) ∈ Rα(X),

(b) ((B → C) ∨ (B ∧ ¬C)) ∈ Rα(X).

In case (a),
∧k

i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)) ∈ Rα(X), so
∧k

i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)) ∈ Y . Thus, by Fact 6.5,
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M
1
Y |=

∧k
i=1(D2i−1 → D2i) ⊃ ((B → C) ∨ (B ∧ ¬C)). Therefore, if

M
1
Y |=

∧k
i=1(D2i−1 → D2i), then M

1
Y |= (B → C) ∨ (B ∧ ¬C). Thus,

by the main inductive hypothesis, Mn
Y |= (B → C) ∨ (B ∧ ¬C). But, by

the inductive hypothesis 2.2, Mn
Y 6|= B ∧ ¬C. Therefore, Mn

Y |= B → C.
This, by the definition of truth in a model, Rn(B,C). In case (b), we
reason similarly as in case (a).

Since for any A ∈ For, Mn
Y |= A iff M

n+1
Y |= A, then by inductive

hypothesis for any A ∈ For, M1
Y |= A iff M

n+1
Y |= A. ⊣

By Lemma 6.6 we can prove the following fact:

Lemma 6.7. Let X be an axiomatic system and Y ∈ Max(X). Then for

any A ∈ For, M1
Y |= A iff MY |= A.

Proof. Base case. Let A ∈ For, where complexity of A is equal to
1, therefore A ∈ Var. By the definition of M

1
Y and MY , M

1
Y |= A iff

MY |= A.

Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For, if
complexity A is no bigger than m, then M

1
Y |= A iff MY |= A.

Inductive step. Let A ∈ For, where complexity of A is equal to m+1.
If A = ¬B or A = B ∗ C, where ∗ ∈ {∧,∨}, then by the inductive
hypothesis, M1

Y |= A iff MY |= A. Let us consider a case A = B → C.

„⇒” Suppose that M
1
Y |= A → B. Then, by the definition of

truth in a model, (M1
Y 6|= B or M

1
Y |= C) and R1(B,C). By the

inductive hypothesis, MY 6|= B or MY |= C. By the definition of
(Rn)n∈N, R̆Y (B,C). Therefore, by the definition of truth in a model,
MY |= B → C.

„⇐” Suppose that MY |= B → C. Then, by the definition of truth
in a model, (MY 6|= B or MY |= C) and R̆Y (B,C). By the inductive
hypothesis, M

1
Y 6|= B or M

1
Y |= C. If R̆Y (B,C), then there is n ∈ N

such that Rn(B,C). By Lemma 6.6, Mn
Y 6|= B or M

n
Y |= C. Therefore,

by the definition of truth in a model, M
n
Y |= B → C. Once again by

Lemma 6.6, M1
Y |= B → C. ⊣

We will now show that the canonical model determined with respect
to a given axiomatic system satisfies the relevant relational conditions.

Lemma 6.8. Let ϕ1, . . . , ϕn be sLPR and X = W→ ⊕{α(ϕ1), . . . , α(ϕn);
(Rα)} be an axiomatic system. Then, for any Y ∈ Max(X), R̆Y satisfies

conditions ϕ1, . . . , ϕn.
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Proof. Let ϕ be any of conditions ϕ1, . . . , ϕn. Suppose that ϕ has
the following form R(F,G) for some F,G ∈ FOR. Then, α(ϕ) has the
following form:

(F → G) ∨ (F ∧ ¬G).

Let F and G have n  1 and m  1 variables, respectively. Let A1,
. . . , An ∈ For and B1, . . . , Bm ∈ For. By F ′, G′ we denote formulas of
object-language obtained from F by replacing i-th variable in F by the
formula Ai and G by replacing i-th variable in G by the formula Bi,
respectively. Hence, (F ′ → G′) ∨ (F ′ ∧ ¬G′) ∈ Rα(X). Thus, by the
definition of (Rn)n∈N, for any j > 1, Rj(F ′, G′). Therefore, R̆Y (F ′, G′).

Suppose that ϕ has the following form:

Andn
i=1R(F2i−1, Fi) ⇒ R(G,H),

for some F1, . . . , F2n ∈ FOR (n ∈ N) and some G,H ∈ FOR. Then, α(ϕ)
has the following form:

∧n
i=1(F2i−1 → F2i) ⊃ ((G → H) ∨ (G ∧ ¬H)).

Let Fi, G and H have mi  1, j  1 and k  1 variables, respectively.
Let A11 , . . . , Am1, . . . , A1n

, . . . , Amn
, B1, . . . , Bj , C1, . . . , Ck ∈ For. Let

F ′
i , G

′, H ′ ∈ For be formulas obtained from Fi, G and H by replacing
the l-th variable in Fi with Ami

, l-th variable in G with Bl and l-th
variable in H with Cl, respectively. Hence:

∧n
i=1(F ′

2i−1 → F ′
2i) ⊃ ((G′ → H ′) ∨ (G′ ∧ ¬H ′)). (1)

is an element of Rα(X).
Suppose that 〈F ′

1, F
′
2〉, . . . , 〈F ′

2n−1, F
′
2n〉 ∈ R̆Y . We consider the fol-

lowing possibilities:

(a) for any i ¬ n, 〈F ′
2i−1, F

′
2i〉 ∈ R1,

(b) for any i ¬ n, 〈F ′
2i−1, F

′
2i〉 6∈ R1,

(c) there is i ¬ n such that 〈F ′
2i−1, F

′
2i〉 ∈ R1 and there is i ¬ n such

that 〈F ′
2i−1, F

′
2i〉 6∈ R1.

Let us consider case (a). Let i ¬ n. If 〈F ′
2i−1, F

′
2i〉 ∈ R1, then

by the definition of (Rn)n∈N, F ′
2i−1 → F ′

2i ∈ Y . Therefore, by Fact 6.3,
∧n

i=1(F ′
2i−1 → F ′

2i) ∈ Y . Thus, by Fact 6.3, (G′ → H ′)∨(G′ ∧¬H ′) ∈ Y .
Suppose that G′ ∧ ¬H ′ /∈ Y . Then, by Fact 6.3, G′ → H ′ ∈ Y . Thus, by
the definition of (Rn)n∈N, R1(G′, H ′). Therefore, R̆Y (G′, H ′). Suppose
that G′ ∧¬H ′ ∈ Y . Since

∧n
i=1(F ′

2i−1 → F ′
2i) ∈ Y , so by Fact 6.5, M1

Y |=
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∧n
i=1(F ′

2i−1 → F ′
2i). Thus, by Lemma 6.6, M

2
Y |=

∧n
i=1(F ′

2i−1 → F ′
2i).

Thus, by the definition of (Rn)n∈N, R
2
Y (G′, H ′). Thus R̆Y (G′, H ′).

Let us consider case (b). For any i ¬ n, there is the least li such that
〈F ′

2i−1, F
′
2i〉 ∈ Rli

and at least one of following possibilities holds:

(b1) there is si ∈ N such that C1i
, . . . , C2si

∈ For, 〈vY ,
⋃

t<li
Rt〉 |=

∧si

t=1i
(C2t−1 → C2t) and

∧si

t=1i
(C2t−1 → C2t) ⊃ ((F ′

2i−1 → F ′
2i) ∨

(F ′
2i−1 ∧ ¬F ′

2i)) ∈ Rα(X),
(b2) (F ′

2i−1 → F ′
2i) ∨ (F ′

2i−1 ∧ ¬F ′
2i) ∈ Rα(X).

Let us assume that for i1, . . . , iu ¬ n, (b1) holds, while for iu+1, . . . ,
iu+w ¬ n, (b2) holds. Thus:

∧si1
t=1i1

(C2t−1 → C2t) ⊃ ((F ′
2i1−1 → F ′

2i1
) ∨ (F ′

2i1−1 ∧ ¬F ′
2i1

)) (i1)

...
∧siu

t=1iu
(C2t−1 → C2t) ⊃ ((F ′

2iu−1 → F ′
2iu

) ∨ (F ′
2iu−1 ∧ ¬F ′

2iu
)) (iu)

are elements of Rα(X). Let us also consider the following formulas:

∧n
t=1(F ′

2t−1 → F ′
2t)[F

′
2i1−1 → F ′

2i1
/

∧si1
t=1i1

(C2t−1 → C2t)] ⊃

((G′ → H ′) ∨ (G′ ∧ ¬H ′))
(i+1 )

...
∧n

t=1(F ′
2t−1 → F ′

2t)[F
′
2i1−1 → F ′

2i1
/

∧si1
t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1−1 → F ′

2iu−1
/

∧si1
t=1iu−1

(C2t−1 → C2t)] ⊃

((G′ → H ′) ∨ (G′ ∧ ¬H ′))

(i+u−1)

By (Rα), from (i1) and (1) we obtain (i+1 ). Thus, (i+1 ) is an element
of Rα(X). By (Rα), from (i2) and (i+1 ) we obtain (i+2 ). Thus, (i+2 ) is
an element of Rα(X). Let 2 < z < u − 2 and suppose that (i+u−z) is

an element of Rα(X). By (Rα), from (iu−(z−1)) and (i+u−z) we obtain

(i+
u−(z−1)). Thus, (i+

u−(z−1)) is an element of Rα(X). Therefore, (i+u−1)

is an element of Rα(X). By (Rα), from (iu) and (i+u−1) we obtain the
following formula:

∧n

t=1(F ′
2t−1 → F ′

2t)[F
′
2i1−1 → F ′

2i1
/

∧si1
t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1 → F ′

2iu
/

∧si1
t=1iu

(C2t−1 → C2t)] ⊃ ((G′ → H ′) ∨ (G′ ∧ ¬H ′))
(2)

Therefore, (2) is an element of Rα(X).



20 Tomasz Jarmużek and Mateusz Klonowski

The following formulas:

(F ′
2iu+1−1 → F ′

2iu+1
) ∨ (F ′

2iu+1−1 ∧ ¬F ′
2iu+1

) (iu+1)

...

(F ′
2iu+w−1 → F ′

2iu+w
) ∨ (F ′

2iu+w−1 ∧ ¬F ′
2iu+w

). (iu+w)

are also elements of Rα(X). Let us consider the following formulas:
∧n

t=1,t6=iu+1
(F ′

2t−1 → F ′
2t)[F

′
2i1−1 → F ′

2i1
/

∧si1

t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1 → F ′

2iu
/

∧si1

t=1iu

(C2t−1 → C2t)] ⊃ ((G′ → H ′) ∨ (G′ ∧ ¬H ′))
(i+

u+1)

...
∧n

t=1,t6=iu+1,...,iu+(w−1)
(F ′

2t−1 → F ′
2t)[F

′
2i1−1 → F ′

2i1
/

∧si1

t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1 → F ′

2iu
/

∧si1

t=1iu

(C2t−1 → C2t)] ⊃ ((G′ → H ′) ∨ (G′ ∧ ¬H ′))

(i+
u+(w−1)

)

By (Rα), from (iu+1) and (2) we obtain (i+u+1). Thus, (i+u+1) is an

element of Rα(X). By (Rα), from (iu+2) and (i+u+1) we obtain (i+u+2).

Theus, (i+u+2) is an element of Rα(X). Let 2 < z < w − 2 ans suppose

that (i+(u+(w−z)) is an element of Rα(X). By (Rα), from (iu+(w−(z−1)))

and (i+
u+(w−z)) we obtain (i+

u+(w−(z−1))). Thus, (i+
u+(w−(z−1))) is an

element of Rα(X). Therefore, (i+
u+(w−1)) is an element of Rα(X). By

(Rα), from (iu+w) and (i+
u+(w−1)) we obtain the following formula:

∧n

t=1,t6=iu+1,...,iu+w
(F ′

2t−1 → F ′
2t)[F

′
2i1−1 → F ′

2i1
/

∧si1

t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1 → F ′

2iu
/

∧si1

t=1iu

(C2t−1 → C2t)] ⊃ ((G′ → H ′) ∨ (G′ ∧ ¬H ′))
(3)

Therefore, (3) belong to Rα(X). Note that the antecedent of (3) has
only the subformulas:

∧si1
t=1i1

(C2t−1 → C2t), . . . ,
∧si1

t=1iu
(C2t−1 → C2t).

Let us take the greatest indices among i1, . . . , iu and denote it as z.
By Lemma 6.6, 〈vY Rlz

〉 |=
∧si1

t=1i1
(C2t−1 → C2t) ∧ . . .∧

∧siu

t=1iu
(C2t−1 →

C2t). Moreover, (3) ∈ Rα(X), so by Fact 6.5, 〈vY R1〉 |= (3). Thus,
by Lemma 6.6, 〈vY Rlz

〉 |= (3). Therefore, by the definition of (Rn)n∈N,
R̆Y (G′, H ′).

The cases when for all i ¬ n (b1) holds and the case when for all
i ¬ n (b2) holds are simple modifications of the case we consider.

Let us consider case (c). Let i1, . . . , iu+w be all indices for which
〈F ′

2i−1, F
′
2i〉 6∈ R1, while iu+w+1, . . . , iu+w+z for which 〈F ′

2i−1, F
′
2i〉 ∈ R1.

As in (b), suppose that for i1, . . . , iu ¬ n, (b1) holds, and for iu+1, . . . ,
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iu+w ¬ n, (b2) holds. We reason similarly as in case (b) and obtain that
the following formula in an element of Rα(X):
∧

n

t=1,t 6=iu+1,...,iu+w

(F ′
2t−1 → F ′

2t)[F ′
2i1−1 → F ′

2i1
/
∧

si1

t=1i1

(C2t−1 → C2t)] . . .

[F ′
2iu−1 → F ′

2iu
/
∧

si1

t=1iu

(C2t−1 → C2t)] ⊃ ((G′
→ H′) ∨ (G′

∧ ¬H′))
(4)

Note that the antecedent of (4) has only the subformulas:
∧iu+w+z

t=iu+w+1
(F ′

2t−1 → F ′
2t),

∧si1
t=1i1

(C2t−1 → C2t), . . . ,
∧si1

t=1iu
(C2t−1 → C2t).

Let us take the greatest indices among i1, . . . , iu and denote it as g. By
Lemma 6.6, 〈vY Rlg

〉 |=
∧si1

t=1i1
(C2t−1 → C2t) ∧ . . . ∧

∧siu

t=1iu
(C2t−1 →

C2t). If
∧iu+w+z

s=uu+w+1
(F ′

2i−1 → F ′
2i) ∈ Y , then by Fact 6.5, M

1
Y |=

∧iu+w+z

s=uu+w+1
(F ′

2i−1 → F ′
2i). Thus, by Lemma 6.6, M

lg

Y |=
∧iu+w+z

s=uu+w+1
(

F ′
2i−1 → F ′

2i). Hence, M
lg

Y |=
∧si1

t=1i1
(C2t−1 → C2t) ∧ . . . ∧

∧siu

t=1iu
(C2t−1

→ C2t) ∧
∧iu+w+z

s=uu+w+1
(F ′

2i−1 → F ′
2i). Since (4) ∈ Rα(X), so by Fact

6.5, M
1
Y |= (4). Thus, by Lemma 6.6, M

lg

Y |= (4). Therefore, by the

definition of (Rn)n∈N, R̆Y (G′, H ′). ⊣

Using the lemma 6.7 and the lemma 6.3 we can easily prove the
completeness of any axiomatic system obtained by the α algorithm.

Theorem 6.9. Let ϕ1, . . . , ϕn be sLPR, |= be a Boolean logic with relat-

ing implication determined by ϕ1, . . . , ϕn and X = {α(ϕ1), . . . , α(ϕn);
(Rα)} be an axiomatic system. Then, for any Y ∪ {A} ⊆ For, if Y |= A,

then Y |−X A.

Proof. Suppose that Y 6|−X A. By Fact 6.1, Y ∪ {¬A} is X-consistent.
Therefore, by Fact 6.4, there is Z ∈ Max(X) such that Y ∪ {¬A} ⊆ Z.
By Fact 6.5, M1

Z |= Y ∪ {¬A}. By Lemma 6.7, MZ |= Y ∪ {¬A}. Since
X = {α(ϕ1), . . . , α(ϕn); (Rα)}, by Lemma 6.8, R̆Z satisfies ϕ1, . . . , ϕn.
Therefore, Y 6|= A. ⊣

7. Cardinalities and udefiniability in BLRI

In the section we would like to make some observations about BLRI and
relating semantics. In order:
• we want to determine how many BLRI systems can be defined in

relating semantics,
• investigate how many different semantic structures can define a single

BLRI logic,
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• check whether there are BLRI logics that cannot be defined by rela-
tional properties.

7.1. Cardinality of the family of BLRI

The answer to the question how many BLRI logics there are is not sur-
prising. We have a fact.

Fact 7.1. There exists continuum of BLRI logics as sets of theses.

Proof. We can define uncountable many independent properties of re-
lation R. Let us take for example two different subsets of natural num-
bers N1, N2. Then the properties R(

∧n
i=1Ai, A), for n ∈ Nj , where

j ∈ {1, 2} and for all i ¬ n, Ai = A, define two non-equivalent sets
of axioms. Because we have uncountable many subsets of N then there
exists continuum BLRI logical systems. ⊣

7.2. Cardinality of the set of relating semantics

We can show that a logic can be defined by infinitely many relating
semantics. Let N ⊆ N. We have the relational property:

R(A ∨ ¬A, (B ∧ ¬B) ∧ (
∧n

i=1Bi))

for n ∈ N . We know that there exist uncountably many such properties.
They define the sets of equivalent axioms of the following form:

((A∨¬A) → ((B∧¬B)∧(
∧n

i=1Bi)))∨((A∨¬A)∧¬((B∧¬B)∧(
∧n

i=1Bi)))

So adding these properties to the set of LPR relations defining a given
logic does not change that logic. So we can define a given BLRI logic in
infinitely many (continuum) ways.

Fact 7.2. Let |= be BLRI a logic defined by some set of LPR. There

exist uncountably many sets of LPR that define exactly the same logic.

7.3. Undefinability of BRLI logic by means of relations

Each set of LPRs determines some logic, because it defines a set of
models. But can every set of models that defines a logic be determined
by some set of LPRs? The answer is negative.

Fact 7.3. There exist BLRI logics that are not definable by sets of

relational properties.
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Proof. Let M1 be the class of all models M = 〈v,R〉, where the relation
R, for any A ∈ For, fulfills the following condition:

R(A ∧ ¬A,A) iff 〈v,R〉 |= A. (Rv1)

Notice that the condition (Rv1) makes the relation R in a model depen-
dent from the valuation of variables. If we change the valuation, this
changes the relation R. The relation R certainly defines a lot of models
by adding different valuations v. However, not all models 〈v,R〉 obtained
in that way satisfy the condition (Rv1). So, the set of models M1 can
validate more formulas than the set of all models based on relations R.
Below, we present such formulas:

|=M1 A ≡ ((A ∧ ¬A) → A) (M11)

6|=M1 (A ∧ ¬A) → A. (M12)

For (M11), notice that the logical value of formula A in model 〈v,R〉
and R(A∧ ¬A,A) are interdependent. Whereas, the logical value of the
formula (A ∧ ¬A) → A depends only on whether R(A ∧ ¬A,A). For
(M12), notice that if we take such model 〈v,R〉 that v(p) = 0, then
∼R(p ∧ ¬p, p). Hence, 〈v,R〉 6|=M1 (p ∧ ¬p) → p. On the other hand, for
any set of relations R, we have the following observations:

for all v, for all R ∈ R, 〈v,R〉 |= A ≡ ((A ∧ ¬A) → A) iff R = ∅ (R1)

for all v, for all R ∈ ∅, 〈v,R〉 |= ¬(A ∧ ¬A) → A). (R2)

So any logic defined with the set of relations R and containing A ≡
((A∧ ¬A) → A) is the trivial logic: the set of all formulas. On the other
hand, the logic determined by the set of models M1 that contains the
formula A ≡ ((A ∧ ¬A) → A) is not the trivial logic (see (M12)). ⊣

8. Towards an alternative approach to completeness theorem

In [Jarmużek, Klonowski and Kulicki, submitted], we discuss the meth-
ods of proving soundness and completeness by a translation of relating
logic with only one intensional connective, relating conjunction, into
classical logic.8 The introduced method can be also applied for BLRI.

8 Such a method, but for logics with the relating implication, was presented
in the paper “Axiomatization of the smallest relating logic RF and strict relating
implication” during The 8th edition of Non-Classical Logic, Łódź, 2016.
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Let us consider the partition of Var into Var1 and Var2 such that
Var1 and Var2 are countably infinite sets. Let Var1 = {pn : n ∈ N}
and we index elements of Var2 by ordered pairs of For × For. Thus,
Var2 = {p〈A,B〉 : A,B ∈ For}. In the sequel, we consider a bijection
b : Var −→ Var1. We denote the set of formulas constructed by elements
of Var1 ∪ Var2 and ¬,∧,∨ by Form. We assume similar conventions as
for formulas of For. We can define classical logic on Form. A classical

valuation is any function V : Form −→ {1, 0} satisfying the following
conditions:

V (¬A) = 1 iff V (A) = 0

V (A ∧B) = 1 iff V (A) = V (B) = 1

V (A ∨B) = 1 iff V (A) = 1 or V (B) = 1.

Let Val be the set of all classical valuations. Any valuation v : Var −→
{1, 0} can be extended to a classical valuation in a unique way. We
can define Classical Propositional Logic in the standard way: for any
X ∪ {A} ⊆ Form, X |=Val A iff for all V ∈ Val, if for any B ∈ X ,
V (B) = 1, then V (A) = 1.

Let us now define the translation τ1 : For → Form (cf. [Jarmużek,
Klonowski and Kulicki, submitted]). For any A ∈ For, we put:

τ1(A) :=



































b(A), if A ∈ Var

¬τ1(B), if A = ¬B

τ1(B) ∧ τ1(C), if A = B ∧ C

τ1(B) ∨ τ1(C), if A = B ∨ C

(τ1(B) ⊃ τ1(C)) ∧ p〈A,B〉, if A = B → C.

Let us also define the translation τ2 : Form −→ For. For any A ∈ Form,
we put:

τ2(A) :=



































b−1(A), if A ∈ Var1

(B → C) ∨ (B ∧ ¬C), if A = p〈B,C〉

¬τ2(B), if A = ¬B

τ2(B) ∧ τ2(C), if A = B ∧ C

τ2(B) ∨ τ2(C), if A = B ∨ C.

Let us note the following fact about the composition of τ1 and τ2.

Fact 8.1. For all M ∈ M and A ∈ For, M |= τ2(τ1(A)) iff M |= A.
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Proof. We use an induction on complexity of A.
Base case. Let A ∈ For, where the complexity of is equal 1. Thus,

A ∈ Var. Thus, τ2(τ1(A)) = τ2(b(A)) = b−1(b(A)) = A. Hence, M |=
τ2(τ1(A)) iff M |= A.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For, if the
complexity of A is not greater than n, then M |= τ2(τ1(A)) iff M |= A.

Inductive step. Let A ∈ For, where the complexity of is equal n+ 1.
Let A = ¬B. By the inductive hypothesis and the definitions of

τ1 and τ2, M |= A iff M |= τ2(τ1(¬B)) iff M |= τ2(¬τ1(B)) iff M |=
¬τ2(τ1(B)) iff M |= ¬B.

Let A = B ∗ C, where ∗ ∈ {∧,∨}. By the inductive hypothesis and
the definitions of τ1 and τ2, M |= τ2(τ1(A)) iff M |= τ2(τ1(B ∗ C)) iff
M |= τ2(τ1(B) ∗ τ1(C)) iff M |= τ2(τ1(B)) ∗ τ2(τ1(C)) iff M |= B ∗ C.

Let A = B → C. By the inductive hypothesis and the definitions of
τ1 and τ2, M |= τ2(τ1(A)) iff M |= τ2(τ1(B → C)) iff M |= τ2((τ1(B) ⊃
τ1(C)) ∧ p〈B,C〉) iff M |= (τ2(τ1(B)) ⊃ τ2(τ1(C))) ∧ τ2(p〈B,C〉) iff M |=
(B ⊃ C) ∧ ((B → C) ∨ (B ∧ ¬C)) iff M |= B → C. ⊣

We have the following expected fact about translations and the in-
troduced interpretations.

Lemma 8.2. 1. For any V ∈ Val, there is M ∈ M such that for any

A ∈ For, M |= A iff V (τ1(A)) = 1.

2. For any M ∈ M, there is V ∈ Val such that for any A ∈ For, M |= A
iff V (τ1(A)) = 1.

3. For any M ∈ M, there is V ∈ Val such that for any A ∈ Form,

V (A) = 1 iff M |= τ2(A).

Proof. Ad 1. For V ∈ Val, we define MV := 〈vV ,RV 〉 by:
• for any A ∈ Var, vV (A) = V (b(A)),
• for all A,B ∈ For, RV (A,B) iff V (p〈A,B〉) = 1.

We prove in the standard way, by induction, that for any A ∈ For,
MV |= A iff V (τ1(A)) = 1.

Ad 2. For M = 〈v,R〉 ∈ M, we define vM : Var1 ∪ Var2 −→ {1, 0} by:

vM(A) :=















v(b−1(A)), if A ∈ Var1

1, if A = p〈B,C〉 ∈ Var2 and R(B,C)

0, if A = p〈B,C〉 ∈ Var2 and ∼R(B,C).

We extend vM on Form to classical valuation VM. We prove in the stan-
dard way, by induction, that for any A ∈ For, M |= A iff VM(τ1(A)) = 1.
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Ad 3. For M = 〈v,R〉 ∈ M, we define vM : Var1 ∪Var2 −→ {1, 0} by:

vM(A) :=







v(b−1(A)), if A ∈ Var1

1, if A = p〈B,C〉 ∈ Var2, either R(B, C) or M |= B ∧ ¬C

0, if A = p〈B,C〉 ∈ Var2, ∼R(B, C) and M 6|= B ∧ ¬C.

We extend vM on Form to classical valuation VM. We prove, by induc-
tion, that for any A ∈ Form, VM(A) = 1 iff M |= τ2(A). ⊣

By Lemma 8.2, we obtain the following theorem:

Theorem 8.3. 1. For any X∪{A} ⊆ For, X |=M A iff τ1(X) |=Val τ1(A).
2. For any X ∪ {A} ⊆ Form, if X |=Val A, then τ2(X) |=M τ2(A).

Note that the other direction of the second implication from Theorem
8.3 does not hold. Let τ2(p1) = q and τ2(p2) = r. Then, ¬p〈q,r〉 6|=Val

¬(p1 ∧ ¬p2), while ¬((q → r) ∨ (q ∧ ¬r) |=M ¬(q ∧ ¬r).
By standard methods for classical logic we can prove:

Theorem 8.4. For any X ∪ {A} ⊆ For, if τ1(X) |=Val τ1(A), then X
|−W→

A.

Proof. Suppose that X 6|−W→
A. By Fact 6.1, X ∪ {¬A} is W→-

consistent. Therefore, by Fact 6.4, there is Z ∈ Max(W→) such that
X∪{¬A} ⊆ Z. For any B ∈ Var1, we put vZ(B) = 1 iff for some C ∈ For

such that τ1(C) = B, C ∈ Z. For any B ∈ Var2, we put vZ(B) = 1 iff
for some C,D ∈ For such that τ1(C → D) = B, C → D ∈ Z. Since Z
is a maximally consistent set, we can extend vZ to VZ ∈ Val. Therefore,
τ1(X) 6|=Val τ1(A). ⊣

There is also another way to relate classical logic defined on Form

to BLRI. Take any adequate axiomatization of |=Val and the provability
relation |−Val, defined by this axiomatization.

Theorem 8.5. For any X ∪ {A} ⊆ For, τ1(X) |−Val τ1(A) iff X |−W→
A.

Proof. Let us observe that |−W→
contains all classical principles. So, if

τ1(X) |−Val τ1(A), then X |−W→
A, for all X∪{A} ⊆ For. The additional

axiom (E→) after translation changes into:

((τ1(A) ⊃ τ1(B)) ∧ p〈A,B〉) ⊃ (τ1(A) ⊃ τ1(B)).

So, this is just a classically valid formula. In consequence, what can be
proved by means (E→), after the translation can be also proved in the
classical logic. ⊣
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By means of some proper restrictions of Val, one can define classical
theories, i.e., classical logic with some extra axioms but not closed un-
der substitution, that will be sound an complete for most of axiomatic
systems of BLRI [see Jarmużek, Klonowski and Kulicki, submitted].

Let us also note that by Fact 8.1 and Theorem 8.3 many metalogical
properties of classical logic are inherited by the least BLRI. For instance,
the interpolation theorem holds in the obvious way. Let var be a function
assigning to any formula the set of its variables.

Corollary 8.6 (Interpolation). For any A,B ∈ For, if |=M A ⊃ B
and var(A) ∩ var(B) 6= ∅, then there is C ∈ For such that var(C) ⊆
var(A) ∩ var(B), |=M A ⊃ C and |=M C ⊃ B.

Proof. Let |=M A ⊃ B and var(A) ∩ var(B) 6= ∅. Then |=Val τ1(A) ⊃
τ2(B), by Theorem 8.3. Moreover, var(τ1(A)) ∩ var(τ1(B)) 6= ∅. By the
interpolation theorem for classical logic, there is C ∈ Form such that
var(C) ⊆ var(τ1(A)) ∩ var(τ1(B)), |=Val τ1(A) ⊃ C and |=Val C ⊃ τ1(B).
Thus, |=M τ2(τ1(A)) ⊃ τ2(C) and |=M τ2(C) ⊃ τ2(τ1(B)), by Theorem
8.3. Therefore, |=M A ⊃ τ2(C) and |=M τ2(C) ⊃ B, by Fact 8.1. ⊣

9. Summary

In our paper we studied a generalised method for obtaining an adequate
axiomatic system for any relating logic expressed in the language with
Boolean connectives and relating implication, determined by the limited
positive relational properties.

The method of obtaining axiomatic systems for logics of a given type
is called an algorithm, since the analysis allows for any logic of a given
type (determined by the limited positive relational properties) to define
the axiomatic system adequate for it. We call it the algorithm α.

The proof of completeness of axiomatic systems obtained by applying
the α algorithm that we presented is a modification of Henkin-style com-
pleteness proofs for propositional logics. The proof in the paper does not
use expressivity of the relating relation, since in many cases of limited
relational properties the relation R is not expressible.

Our proposal is a partial answer to the problem formulated during
the 1st Workshop On Relating Logic9, called problem α: axiomatiza-

9 The 1st Workshop On Relating Logic took place in September 25–26, 2020.
More on the workshop, see [Jarmużek and Paoli, 2021].



28 Tomasz Jarmużek and Mateusz Klonowski

tion of logical systems defined by relating semantics (by given classes of
valuations/relations).

We call the answer partial because it concerns only the relating im-
plication and the properties that are LPRs. To have more, we also need
to consider other relating connectives and non-limited relational prop-
erties, including negative properties and disjunction in a consequent of
implication. But our method works for all of these cases, so we take up
this challenge in [Jarmużek and Klonowski, submitted-b].
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