Maciej Sendłak

From the Meinongian Point of View

Abstract. In this paper, I discuss one of Peter van Inwagen’s charges against the Meinongian thesis, which states that some objects do not exist. The charges aimed to show that the thesis either leads to a contradiction or that it is obscure. Both consequences support the opposite Quinean thesis, which states that every object exists. As opposed to the former, the latter ought to be consistent and clear. I argue why there is no contradiction in the Meinongian thesis and why the Quinean thesis is not clear.

Keywords: Alexius Meinong; Peter van Inwagen; Willard van Orman Quine; non-existent objects; quantifiers

Introduction

Since 1948, it has been widely believed that ontology aims to answer the simple question of what there is. Together with the assumption that the terms “being” and “existence” are synonymous, the question is often paraphrased as “What exists?” (see, e.g., Quine, 1948; van Inwagen, 1998). Two opposite answers to this are of great importance. The first one has it that \((Q)\) “Everything exists.” The second has it that \((M)\) “Some things do not exist.” Each is considered obviously true by its advocates and obviously false by its opponents. Advocates of \((M)\) (Meinongians or neo-Meinongians) argue that it is supported by the available evidence (e.g., a golden mountain does not exist). Meanwhile, critics of this thesis (Quineans) claim that \((M)\) is a contradiction in terms. Hence, it cannot be true. The contradiction is meant to be grounded in two assumptions:

(a) Being is the same as existence.
(b) The single sense of being or existence is adequately captured by the existential quantifier of formal logic.¹

Given the above, and that the quantificational expression “some” is also adequately captured by the existential quantifier, statements such as “There is an \(x \) such that \(x \) is \(F \),” “There exists an \(x \) such that \(x \) is \(F \),” and “Some \(xs \) are \(F \)” are logically equivalent (van Inwagen, 1998, p. 235). Accordingly, to say that “Some objects do not exist” is to say that “There exist objects that do not exist” or “There are objects such that there are no such objects.” Advocates of \((M)\) disagree with the above-mentioned equivalence and claim that while a golden mountain is an object, it is undoubtedly not an existing one. Thus, being (or being an object) is not the same as existence, and the notion of non-existent objects is not inconsistent.²

What is often considered a matter of debate between advocates of \((M)\) and \((Q)\) is a disagreement over what “existence” means and whether it should be expressed by a particular (existential) quantifier \((\exists)\). Attempts to find common ground resulted in deadlock. One way of breaking this impasse is to move the burden of the problem in a way that does not involve the mentioned quantifier. This could be achieved by using an unrestricted universal quantifier \((\forall)\). The reason is that— as Peter van Inwagen claimed— both sides of the debate understand “absolutely everything” in the same way (van Inwagen, 2008, p. 49). If this is the case, the shifting of the burden from the particular to the universal quantifier might help overcome the impasse. The result of this ought to justify the thesis that advocates of \((M)\) either contradict themselves or

¹ These are respectively thesis 2. and thesis 4. of what Peter van Inwagen called “Quine’s meta-ontology” (van Inwagen, 1998).

² Since in some of his writings, Alexius Meinong includes “beingless objects” within his theory, the mentioned synonymy between “being” and “being an object” might be questioned. Nevertheless—as a number of contemporary views show— Meinong’s theory left some room for interpretations of \((M)\) (Berto, 2013; Castañeda, 1974; Jacquette, 1996; Parsons, 1980; Paśniczek, 1999; Priest, 2005; Rapaport, 1978; Routley, 1980; Zalta, 1983). Furthermore, some advocates of \((M)\) even accept the synonymy of “being” and “existence” (Priest, 2005; Routley, 1980). Yet, regardless of the nuances between Meinong’s original view and its contemporary variations, all agree that the set of existing objects is merely a proper subset of the universal domain of objects. Thus, even though the suggested synonymy of “being” and “being an object” might be questioned from the exegetical point of view, it accurately reflects how many advocates of \((M)\) explicate their thesis.
it is not even clear what \((M)\) means. In both cases, thesis \((Q)\) becomes more plausible.

I aim to put van Inwagen’s claim to the test. A defense of \((M)\) against Quineans’ criticism is by no mean a novelty. Most previous efforts, however, tried to explain \((M)\) within the framework of advocates of \((Q)\). Unfortunately, this gives the impression that \((Q)\) is the default starting point of the debate, where Meinongians try to satisfy Quineans’ expectations. In the present study, I want to avoid this commonly held assumption. That does not mean that I take \((M)\) to be the starting point. Instead, I examine \((Q)\) from a perspective shared by both sides to show that \((M)\) is not a contradiction in terms and that \((Q)\) is not as clear as its advocates aim to prove.

1. Van Inwagen on non-existence

It is easy to see the inconsistency of \((M)\) if one assumes the synonymy of “being” and “existence.” However, since this is the subject of the argument, it should not be assumed. After all, resolving the debate requires mutual understanding. Van Inwagen attempted to reveal the inconsistency of \((M)\) by assuming there is common ground between the two sides. The starting point of his argument is the observation that there is no disagreement between him (as a Quinean) and Meinongians over the meaning of the unrestricted universal quantifier \((\text{U}UQ)\):

> When I say that everything exists and the neo-Meinongian denies that everything exists, we are not talking past each another – not, at any rate, because we mean different things by “everything.” It is precisely because the neo-Meinongian knows that I mean just what he does by “everything” that he indignantly rises to dispute my contention that everything exists. \[(\text{van Inwagen}, 2008, \text{p. 49})\]

This creates an opportunity to bridge the impasse. At the same time—as van Inwagen claimed—it makes it possible to show that either \((M)\) is inconsistent or it is obscure. Both consequences are undesirable and indirectly support the claim that every object exists.

Here is van Inwagen’s argument for the inconsistency of \((M)\). Both sides of the debate believe in the truth of \((U)\) “Every unicorn does not
exist” (or “Every unicorn is non-existent”). Advocates of \((Q)\) will paraphrase \(U\) as the following formula:

\[
\forall x \neg(x \text{ is a unicorn}) \quad \text{(UQ)}
\]

In other words, the truth of \((U)\) is grounded in the truth of “Everything is not a unicorn” or “Nothing is a unicorn.” Advocates of \((M)\) will agree on \((U)\) but disagree on its paraphrase as \((UQ)\). While every unicorn does not exist, it is not the case that “Everything is not a unicorn” or “Nothing is a unicorn.” Thus, advocates of \((M)\) reject \((UQ)\) and believe in the truth of

\[
\neg \forall x \neg(x \text{ is a unicorn}) \quad \text{(UM)}
\]

Now, \((U)\) and \((UM)\) are thought to contradict each other. This is because of the following sequence. Each one — van Inwagen claimed — is a consequence of the previous one.

1. Every unicorn is non-existent.
2. Every unicorn is such that everything is not it.
3. \(\forall x [x \text{ is a unicorn} \rightarrow (\forall y) \neg(y = x)]\).
4. \(\forall x \neg(x \text{ is a unicorn}).\)

Since Meinongians agree on 1, they ought to agree on 4. But since 4 contradicts \((UM)\), they contradict themselves. Assuming they do not want to contradict themselves, they interpret existence differently than Quineans. Ordinarily, they see existence as a non-trivial property, expressed by the predicate \(E!\) — which some objects have while others do not.\(^3\) While this reservation may help save Meinongianism from inconsistency by blocking the inference from 1 to 2, it leads to a charge of unclarity. After all, if one does not know what existence means precisely, it is not easy to say what non-existence is intended to stand for. Thus, inconsistency is avoided at the price of the key thesis being unclear.

The Quinean definition of existence — van Inwagen claimed — is far from obscure. Its clarity comes from its grounding in three simple notions that are common to both sides of the debate:

\(^3\) Many neo-Meinongians believe that \(E!\) stands for actual spatiotemporality (see, e.g., Priest, 2005; Routley, 1980; Zalta, 1983). This shows that the notion of existence within Meinongianism does not have to be as opaque as van Inwagen suggested. Yet, it leads to further questions about the difference between the ontological status of some abstract objects and the question of how genuine the disagreement between advocates of \((Q)\) and \((M)\) is (Lewis, 1990). Thus, to avoid side discussions, I assume — per van Inwagen’s claim — the primitivity of \(E!\).
From the Meinongian point of view

Unrestricted universal quantification (\forall)
Negation (\neg)
Identity ($=$)

Accordingly, it is claimed that

$$"x\text{ exists}" \overset{\text{def}}{=} \neg\forall y\neg(x = y) \quad \text{(E)}$$

Therefore, the Quinean view appears more attractive than the Meinongian one; it is both consistent and clear. Hence, given the assumed adequacy and clarity of the Quinean notion of existence, one should favor (Q) over (M).

2. On what an object is

It is worth examining the above argument. First, the move from 1 to 2 is question begging. This inference relies on the assumption that everything exists. Since this is the subject of the disagreement between advocates of (M) and (Q), assuming this would constitute a *petitio principii* fallacy. Thus, UUQ does not serve as what ought to be common ground—or at least not without reservation. Hence, the need to find common ground remains. An alternative might be to focus on the notion of an object. There is good reason for doing this. Meinong aimed to propose a theory of objects, where the notion of an object ought to be the most general (i.e., it has no complementation). In this sense, everything is an object and nothing is not an object. It is safe to assume that Quineans share this view.\(^4\) Furthermore, both sides—for the sake of the debate—can define this notion in a very similar way, for example, as a paraphrase of (E), that is, being an object is simply being identical to something:

$$"x\text{ is an object}" \overset{\text{def}}{=} \neg\forall y\neg(x = y). \quad \text{(O)}$$

Given the above, we can paraphrase van Inwagen as follows:

When I say that every object exists and the neo-Meinongian denies that every object exists, we are not talking past one another—not, at any rate, because we mean different things by the term “object.” It is

\(^4\) This allows for the Meinongian paraphrase of Quine’s formulation of the ontological problem. Thus, instead of asking “What is there?” we should ask “What is an object?”
precisely because the neo-Meinongian knows that I mean just what he
does by object that he indignantly rises to dispute my contention that
every object exists.

One consequence of this is that both sides agree that if \(x \) is identical
to nothing (or is not identical to anything), then \(x \) is not an object. If
there is no \(x \), there is no green \(x \) nor an \(x \) that is a horse. Likewise,
there is no existing \(x \).

While both sides agree on how to define an object, the definition of
existence is the subject of the disagreement. What makes these views
different is that in virtue of (O) and (E), advocates of (Q) claim that
being an object and being an existing object (or existing) are the same.
This assumption makes it difficult to conclude the debate over \(M \), for it
not only results in a *petitio principii* fallacy but also gives a misleading
picture of Meinongianism. The assumption discussed above turns the
thesis \((M) \) into \((M^*) \): “Some objects are not objects” or “Some objects
are not self-identical.” By contrast, Meinongians would agree that the
domain of objects does not include non-identical objects, for being an ob-
ject means being identified with something. Since everything is identical
to itself, no object is non-identical.\(^5\) This takes us back to the problem
of whether it is possible to provide an identity criterion for objects that
Meinong considered non-existent. As many contemporary advocates of
Meinongianism have shown, this does not have to be as problematic as
Quine initially thought (see, e.g., Parsons, 1980; Priest, 2005; Routley,
1980; Zalta, 1983). Thus, any contradiction concerning thesis \((M) \) within
Meinongianism is a result of its misinterpretation as \((M^*) \).

The second charge aims to show that—in contrast with expressing
existence in terms of \(E! \)—the definition of existence provided by
Quineans is clear. While this might be so, its clarity does not entail its
plausibility. In virtue of (O) and (E), either (Q) commits to the existence
of a round square copula or to the claim that the round square copula
is not self-identical and, as such, that it is not an object. Quineans
choose the second option and claim that no object has the properties of
being round, square, and a copula. This is because round objects are not
square. Hence, if an object had the property of being round, it would not

\(^5\) The exclusion of non-identical objects is partly grounded in restrictions on the
so-called principle of characterization. A consequence of this is that the unrestricted
principle is open to including objects that are not objects (Priest, 2016; Sylvan, 1995).
Nevertheless, accepting such an unrestricted principle is not necessary for accepting
\((M) \) (Sendlak, 2022).
be square. Accordingly, a round square copula wouldn’t be self-identical. Therefore, the domain of objects includes neither round square copulas nor any other objects with incompatible properties. There is nothing with which these objects could be identical.

This is a common response that is consistent with Quineans’ notions of existence and objecthood. One may, however, question its plausibility. Notice that the exclusion of the round square copula from the domain of objects is grounded in the assumption — call it QRS — that every round object is not square. Thus, the plausibility of this exclusion depends upon the plausibility of QRS. An advocate of M would consider QRS false. A round square is both round and square, hence it is not the case that every round object is not square. Such a response naturally would not convince advocates of (Q) to change their view. Nevertheless, a round square would fail to be a counterexample to QRS only if we take “every object” in “every round object is not square” as standing for every existing object. Hence, a more precise formulation of the Quineans’ justification for a round square copula not being an object is (QRS*: every existing round object is not square.

Importantly, both advocates of (Q) and (M) agree on (QRS*). Meinongians do not believe in the existence of impossible objects any more than Quineans do. So far, we’ve merely shown why the domain of existing objects does not include round squares. Our main question, however, is whether a round square copula is an object, and not if it is an existing one. To see how to make use of QRS* in addressing this, one ought to understand what an existing object is (or what “to exist” means). The Quinean definition of (E) has it that it is something identical to an object. Since we do not want to include round squares in the domain of existing objects, once again we should make the qualification that by “an object” in (E) we mean an existing object. For this reason, the Quinean definition of existence is circular. It defines an existing object as something identical to an existing object. Thus, given the agreement on (O), it should not be a surprise that it is difficult to understand what Quineans mean by the term “exists” without being committed to the existence of impossible objects. This naturally leads to the implausibility of the thesis that everything exists and takes us back to square one — either (Q) is false (for it places impossible objects within the domain of existing objects) or is grounded in a circular definition of existence. Accordingly, (E) turns out to be either too broad or to present an ignotum per ignotius fallacy. It is too broad if we assume that by “an object” we
mean anything that is identical to something. It is circular if we believe that by “an object” we mean an existing object.

This shows that, due to the assumed sameness of (E) and (O), the justification for thesis (Q) requires either the claim that impossible objects exist or the claim that they are not self-identical and, as such, are not objects. The former claim is false, and the latter is grounded in the assumption that the domain of objects includes only existing objects. Hence, if this is supposed to justify the inconsistency of (M) and the plausibility of (Q), it fails on both counts, for it assumes what it is meant to justify.

Acknowledgments. I am grateful to the participants of the seminar Philosophy of Fiction (University of Warsaw, 2021/22) for their helpful comments and discussions, especially to Tomasz Puczyłowski, Tadeusz Ciecierski, and Mariusz Grygianiec. I would also like to thank the anonymous Logic and Logical Philosophy reviewers for their comments concerning earlier versions of the paper.

References

Berto, F., 2013, Existence as a Real Property, Dordrecht: Springer. DOI: 10.1007/978-94-007-4207-9

From the Meinongian point of view

Maciej Sendłak
Department of Philosophy
University of Warsaw
Warsaw, Poland
m.sendlak@uw.edu.pl