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an Application to Regret and Responsibility

Abstract. We provide a fine-grained analysis of notions of regret and re-
sponsibility (such as agent-regret and individual responsibility) in terms of a
language of multimodal logic. This language undergoes a detailed semantic
analysis via two sorts of models: (i) relating models, which are equipped
with a relation of propositional pertinence, and (ii) synonymy models, which
are equipped with a relation of propositional synonymy. We specify a class
of strictly relating models and show that each synonymy model can be
transformed into an equivalent strictly relating model. Moreover, we define
an axiomatic system that captures the notion of validity in the class of all
strictly relating models.
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1. Introduction

Recent contributions to the semantics of modal logic have increasingly
paid attention to the problem of providing adequate structures to in-
terpret systems where replacement of provable equivalents (RPE) fails.1

Informally, RPE can be described as follows: if φ and ψ are provable
equivalents in a system S, then so are any two formulas χ and χ∗ s.t.
χ∗ is obtained from χ by replacing some occurrences of φ with ψ. The
approaches that have been proposed generally share the view that RPE
should be abandoned in favour of notions of replacement that are not

1 The literature is very vast; for examples of approaches which abstract from a
specific context of reasoning see [Pietruszczak, 2009; Jarmużek, 2020; Sedlár, 2021],
as well as an earlier unifying framework in [Rantala, 1982].
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based (or, not uniquely based) on provable equivalence. However, ideas
on how to handle this issue largely differ. In this article we will anal-
yse a solution that is inspired by the framework of “relating semantics”
[Jarmużek, 2020]. More specifically, we will see how a variation of re-
lating semantics can be employed in the context of normative reasoning
represented via modal logic.

Normative concepts, such as ‘obligation’, ‘permission’, ‘prohibition’,
‘duty’, ‘right’, etc., have some peculiar features. First, these concepts
are always relative to a certain source. Current regulations in Slovakia
require that passengers wear masks in public transport, while a parallel
norm does not hold under the UK regulations right now. A bus passenger
in Bratislava is thus legally obliged to wear a face covering, while a bus
passenger in Bristol is not. Also, a moral system that grants animals
moral standing would view the admissibility of eating meat differently
than a moral system that does not.

Second, a normative concept that qualifies a given proposition need
not qualify other propositions that are logically equivalent to it. For
instance, an obligation ‘to feed Thomas (the cat) or to meet and not
meet with a friend’ does not automatically follow from an obligation ‘to
feed Thomas’, even though a proposition having the structure p∨(q∧¬q),
like the former, is logically equivalent (in a classical setting) to a propo-
sition having the structure p, like the latter. Therefore, replacement of
propositions within norms should be carefully performed.

Third, a normative source (or, sometimes, a legal or moral theory
integrating its content) establishes which propositions fall within the
scope of the norms it includes.2 For instance, the fact that an employer
committed a tort is relevant to the norms on vicarious liability in the
German Civil Code, but is not relevant to the corresponding norms in
the French Civil Code (at least under its current interpretation [Giliker,
2010]).

A system of formal logic designed for normative reasoning should take
these features into account. However, many deontic logics interpreted via
possible worlds semantics, following the paradigmatic case of Standard
Deontic Logic (SDL), fail to do so. As Jarmużek and Klonowski [2020]
observe, SDL and various systems sharing its semantics are logics of

2 By a normative source (or normative system), we here mean any static or
dynamic collection of norms, in particular, deontic norms. For instance, this can be a
portion of a legal code, but also a set of norms taken from two or more distinct legal
codes.



Alternative semantics for normative reasoning 655

alethic-deontic modalities  dealing primarily with what is the case in
a class of possible worlds  rather than proper deontic logics  dealing
primarily with what ought to be the case. This observation leads them
to formulating a new approach to normative reasoning based on the
framework of relating semantics.

Relating semantics provides an interpretation for modal languages
that extends possible worlds semantics with a relation R which applies
to pairs of formulas, saying that the content of such formulas is somehow
connected with respect to a given set of parameters (e.g., a world in a
model, a source, etc.). Usually, in order to emphasize the role it plays,
this relation is called a relating relation. If we adopt a broad notion of
proposition, according to which the proposition expressed by a formula
is the thought expressed by that formula (or even the class of thoughts
expressed by that formula), rather than a set of possible worlds, then we
can regard the original component of relating semantics as a relation of
propositional pertinence.

Deontic logic based on relating semantics can be formulated as a lin-
guistic extension of traditional deontic logic. In this case it involves two
sorts of deontic modalities: quasi-deontic modalities (or alethic-deontic
modalities) and strictly deontic modalities (or purely deontic modali-
ties). The former are equated with the modalities captured in SDL and
receive an intensional reading (being closed under RPE), whereas the
latter constitute a new set of modalities and receive a hyperintensional
reading (being not closed under RPE). Another way of looking at this
difference is saying that quasi-deontic modalities are characterized by
a balance between an alethic and a deontic component; for instance,
a proposition is quasi-obligatory iff it is true in all deontically optimal
circumstances. By contrast, in strictly deontic modalities the deontic
component is dominant; for instance, a proposition is strictly-obligatory
iff it is true in all deontically optimal circumstances and it is related to
some proposition in a normative system.

Relating semantics is, per se, a general framework to interpret modal
languages, neither committed to a specific context of reasoning nor to a
specific interpretation of the relation of propositional pertinence. There-
fore, one of the main advantages of this framework, if compared with
others available in the literature, is that it allows for introducing rela-
tions of a different kind among propositions and, possibly, additional
parameters. In turn, any such relation can give rise to new technical
devices.
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In the present setting, the relation of propositional pertinence gives
rise to two functions: obligation assignment and causal contribution as-
signment. The whole conceptual construction is the following. First,
propositional pertinence is technically defined here as a quaternary re-
lation; it specifies whether a proposition (expressed by a formula) φ is
related to a proposition ψ according to a certain source s which will
be, in our case, a normative source  at a state w of a model. From this
quaternary relation one can infer a simpler, ternary relation of propo-
sitional pertinence, that is, whether a proposition φ on its own  is
relevant to a source s at a state w of a model. In fact, intuitively, a
source s may establish a relation between two propositions φ and ψ only
if both of these are relevant to s. Finally, the meaning of the ternary
relation is used to explain the two functions of obligation assignment
and causal contribution assignment. The obligation assignment says
what is obligatory for an agent a with reference to a source s at a state
w. The causal contribution assignment says what causal contributions
of an agent are relevant to a source s at a state w. Thus, we have the
conceptual dependence represented in Figure 1, where, given two nodes
x and y, an arrow from x to y means that x will be used to explain y.

4-ary pertinence 3-ary pertinence

obligation assignment

causal contribution assignment

Figure 1. Conceptual dependence among key relations

We have already clarified the connection between normative concepts
and normative systems. The connection between the concept of cause
(or, as we prefer, causal contribution) and normative systems can be
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defended as well [see, e.g., Faroldi, 2014].3 As the following example
shows, being the cause is not an absolute issue, but a relative one:

what counts as the cause of an event depends on the purpose of the
inquiry. Someone is killed in a road accident. Was the cause of his
death internal bleeding, the driver’s mistake, the ice on the road with
which the driver failed to cope, or the shortage of funds that led to the
local authority’s not removing the ice in time? [Honoré, 1999, p. 3]

In line with this observation, we will say that a normative source deter-
mines what causal contributions of an agent at a given state are relevant
for normative discourse.

Building on top of this conceptual ground, we will develop a detailed
technical analysis of two semantics for normative reasoning that are al-
ternative to each other. In fact, the core of our contribution is a formal
comparison between models of a certain version of relating semantics,
here simply called relating models, and models endowed with a relation
of propositional synonymy, here simply called synonymy models. The
latter are taken from [Glavaničová and Pascucci, 2019], where they are
used to interpret a multimodal language and reason on various notions of
responsibility. The discussion of these two semantics occupies Sections
2–5. In particular, we show that synonymy models can be transformed
into equivalent relating models of a particular kind, here called strictly
relating models. Furthermore, we provide an axiomatization of the set
of formulas that are valid in the class of all strictly relating models.

In Section 6, inheriting the aims of the formal analysis of responsi-
bility carried out in [Glavaničová and Pascucci, 2019], we employ our
logical apparatus involving fine-grained notions of obligation and causal
contribution to capture new normative notions. In particular, we define
notions of:

• avoiding (understood as the claim that a proposition φ never happens
throughout time);

• agent-avoiding (understood as the claim that an agent never con-
tributes to φ throughout time);

3 ‘Being the cause of something’ is a stronger condition than ‘causally contribut-
ing to something’. In cases of causal overdetermination, such as when two gunmen
shoot at a single victim, we still want to ascribe responsibility to both of them, even
though neither of them is the cause.
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• regret (understood, with a slight simplification, as a situation in
which an agent regrets a certain fact, and based on the notion of
‘avoiding’);

• agent-regret (understood, again with a slight simplification, as a sit-
uation in which an agent regrets their causal participation in φ, and
based on the notion of ‘agent-avoiding’);

• individual responsibility (understood as individual blameworthiness,
that is, a causal participation in a prohibited proposition that could
have been avoided).

We conclude the paper by summarising its contents and pointing out
interesting directions for future research.

2. Formal language

We will use a formal language L that is described by a set of primitive
symbols and a grammar to build well-formed expressions. This will turn
out to be a variation of the multimodal language employed for a formal
analysis of responsibility in [Glavaničová and Pascucci, 2019].

Definition 2.1 (Primitive symbols). The list of primitive symbols in L
is the following:

• a countable set of propositional variables Var, denoted by p1, p2, p3,
etc. (also p, q, r, etc.);

• a finite set of (names for) agents Agt, denoted by a1, a2, a3, etc. (also
a, b, c, etc.);

• a finite set of (names for) normative sources Src, denoted by s1, s2,
s3, etc. (also s, s′, s′′, etc. and s(a), where a ∈ Agt);

• the unary logical operators ¬, H, G, Cs
a and Os

a (for a ∈ Agt and
s ∈ Src);

• the binary logical operators → and ∼s (for s ∈ Src).

A normative source s represents a set of norms, such as the set of
all norms included in a legal code. Our approach will rely on a notion
of normative source that is arguably simplistic if compared with real-life
norms. For instance, we will work under the assumption that sources
are pairwise disjoint: every norm belongs to at most one normative
source s ∈ Src. However, this simplification will serve the purpose of
illustrating the theoretical foundations of the formalism. In principle, it
is possible to enrich the framework provided here by taking into account
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a set of normative sources without such a restriction. In that case, one
would have to encode a mechanism for source aggregation. A remark on
the label s(a), and similar ones used for normative sources: this can be
a formal representation of agent a’s personal set of norms, or a system
of normative beliefs, that is, beliefs about what should be the case, or
simply agent a’s preferences about what should and should not happen
to the world. To give an example, a cat person has a preference (believes
that it should be the case) that no violence is done to cats; in compar-
ison, a person who hates cats might not have such a preference. More
generally, a cat person’s set of norms will likely take into consideration
the cats’ well-being, whereas a cat hater’s set of norms will probably not.

The intended reading of primitive operators in L will be clarified
below, after the definition of well-formed formulas. We will say that ¬
and → are Boolean operators, ∼s is an operator for propositional per-
tinence (or propositional relatedness) and H, G, Cs

a and Os
a are modal

operators, for past reference, future reference, causal contribution and
obligation, respectively. The notion of a proposition plays a central role
in the present framework. We stress that a proposition is here not to
be equated with a set of possible worlds; it can be rather conceived of
as a Fregean thought (or even a set of Fregean thoughts) expressed by
a sentence [see Frege, 1892]. We define the set of well-formed formulas
(wffs) over L via a two-step procedure. First, we specify formulas over
the ‘pertinence-free’ fragment of L, namely the fragment where no op-
erator ∼s, for s ∈ Src, is involved; this fragment will be labelled as Lh

(hypo-L).

Definition 2.2 (Grammar of Lh-formulas). The set of Lh-formulas is
defined by the following grammar, where p ∈ Var, a ∈ Agt and s ∈ Src:

φ ::= p | ¬φ |φ → φ |Hφ |Gφ |Cs
aφ |Os

aφ

Definition 2.3 (Grammar of L-formulas). The set of L-formulas is de-
fined by the following grammar, where φ is an Lh-formula and s ∈ Src:

ψ ::= φ |φ ∼s φ

Thus, arguments of wffs whose main operator is ∼s always belong
to Lh. The notion of main operator and argument(s) of an operator
in a formula are understood as usual. The meaning of formulas whose
main operator is a Boolean one is also standard. Formulas whose main
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operator is a modal one read as follows: Hφ says “in all possible past
states it is the case that φ”, Gφ “in all possible future states it is the
case that φ”, Cs

aφ “it is a result of agent a’s causal participation and
relevant to source s that φ” and Os

aφ “it is obligatory for agent a and
relevant to source s that φ”. A formula of the form φ ∼s ψ means that φ
and ψ express propositions that are related according to source s. Since,
as we will see below, formulas are evaluated at a state w of a model,
from a semantic perspective φ ∼s ψ encodes the idea of propositional
pertinence as a quaternary relation: two formulas (first two arguments
of the relation) are said to be related according to a normative source
(third argument of the relation) and with reference to a state (fourth
argument of the relation).

The remarks on the meaning of logical operators that we have pro-
vided so far already point out some important features:

• it might be that an agent’s causal contribution to an outcome is
relevant to a normative source s1 and not relevant to a normative
source s2;

• it might be that an agent is obliged to bring about something that
is relevant to a normative source s1 but not relevant to a normative
source s2;

• there might be a relation of propositional pertinence between φ and ψ
according to a normative source s1, but not according to a normative
source s2;

• the formal encoding of obligation and causal contribution always
makes reference to a normative source, as it is witnessed by the su-
perscript s in operators of kind Cs

a and Os
a, and conveys a notion

of relevance; in this regard, the approach presented here differs from
the one in [Jarmużek and Klonowski, 2020], since it does not employ
operators for quasi-deontic modalities.

Usual definitions can be adopted for Boolean operators of conjunction
(∧), disjunction (∨) and material equivalence (≡), as well as for the
modal operators meaning “in some possible past state it is the case that
. . . ” (P ) and “in some possible future state it is the case that . . . ” (F ).
For instance, Pφ =def ¬H¬φ and Fφ =def ¬G¬φ. The logical symbols
⊤ and ⊥, for arbitrary tautologies and contradictions, are also defined
in a standard way.
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3. Relating semantics

We describe below the models inspired by relating semantics for modal
logic that will be used in this article to interpret the formal language
L. These will be simply called relating models. A comparison with
the original relating models for normative reasoning in [Jarmużek and
Klonowski, 2020], as well as with the models used in [Glavaničová and
Pascucci, 2019] to interpret a variation of L and here called synonymy
models, is offered below.

Definition 3.1 (Relating model). A relating model for language L is a
tuple M = 〈W,≺, R, c, o, V 〉 where:

• W is a set of states (denoted by w1, w2, w3, w, w′, w′′, etc.);
• ≺ ⊆ W ×W is a relation that will be called temporal precedence;
• R ⊆ Lh × Lh × Src ×W is a relation that will be called propositional

pertinence;
• c : Agt −→ ℘(R) is a function that will be called contribution assign-

ment;
• o : Agt −→ ℘(R) is a function that will be called obligation assignment;
• V : Var −→ ℘(W ) is a valuation function.

An example can be useful to illustrate the ideas behind Definition 3.1.
Given p, q ∈ Var, the fact that the ordered 4-tuple (p, q, s, w) belongs
to R means that the proposition expressed by p and the proposition
expressed by q are related by normative source s at state w. As we
said above, this is the semantic encoding of the idea of a quaternary
relation of propositional pertinence (the leftmost node in Figure 1). For
instance, in the current state w, pandemic restrictions (s) say that the
proposition that one stays home (p) is pertinent to the proposition that
one has been exposed to COVID-19 (q). Now, since under this reading
it is a normative source, s, that establishes that formulas p and q express
related propositions, we can also say that p and q express propositions
that are both relevant (or pertinent) to s at w. Accordingly, for any
formula φ, if there is a formula ψ s.t. (φ, ψ, s, w) ∈ R, then we can say
that the proposition expressed by φ is relevant to s at w. This is the idea
of propositional pertinence as a ternary relation (the central node of Fig-
ure 1), whose arguments are: a formula, a normative source and a state.

In other words, the relation R plays two roles in relating models:
• specifying whether two propositions φ and ψ are pertinent to each

other according to a normative source s at a state w;
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• specifying whether a proposition φ is relevant to a normative source
s at a state w.

The first role is directly conveyed by an expression of kind (φ, ψ, s, w) ∈
R, for some ψ ∈ Lh; the second role is not directly expressed in the formal
semantics, but can be inferred from the first one (and, in the second role,
R ultimately stands for a ternary relation: between φ, s and w). This
justifies the idea, illustrated in Figure 1, that in the present framework
ternary pertinence is explained in terms of quaternary pertinence. Such a
conceptual dependence is a result of our formal and semantic setting, and
a different solution establishing a converse dependence between ternary
and quaternary propositional pertinence could be adopted as well.

Definition 3.2 (Truth-conditions). The truth of a wff of L at a state
w of a relating model M is recursively defined below:

• M, w � p iff w ∈ V (p), for any p ∈ Var;
• M, w � ¬φ iff M, w 2 φ;
• M, w � φ → ψ iff M, w 2 φ or M, w � ψ;
• M, w � φ ∼s ψ iff (φ, ψ, s, w) ∈ R;
• M, w � Hφ iff M, v � φ for all v ∈ W such that v ≺ w;
• M, w � Gφ iff M, v � φ for all v ∈ W such that w ≺ v;
• M, w � Os

aφ iff (φ, φ, s, w) ∈ o(a);
• M, w � Cs

aφ iff (φ, φ, s, w) ∈ c(a).

While we have already discussed the clause relative to ∼s to a suf-
ficient extent, and many other clauses are standard ones in the seman-
tics of multimodal logic, a few comments on the last two clauses are
needed. We recall that, according to the second of the aforementioned
roles played by the relation R, the expression (φ, φ, s, w) ∈ R can be read
as saying that (the proposition expressed by) φ is relevant to normative
source s at state w. Therefore, we get the following explanation of
the truth-conditions associated with operators for obligation and causal
contribution. Os

aφ holds at a state w if and only if the propositional per-
tinence relation R establishes that φ is relevant to normative source s at
world w and φ represents an obligation for agent a. Cs

aφ holds at a state
w if and only if the propositional pertinence relation R establishes that φ
is relevant to normative source s at world w and agent a contributed to φ.

The notions of validity of a formula in a model or in a class of models
are defined in the usual way. For the sake of simplicity, we will some-
times make reference to the domain of a model M and the relations and
functions in M without a previous thorough description of M.
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From a formal point of view, the relation of propositional pertinence
R in a relating model can be specified in an arbitrary way. However,
if we want to get closer to the intended meaning of this notion, it is
convenient to stipulate some restrictions. Therefore, we will consider
a restricted class of relating models that will be called strictly relating
models. Clearly, our choice of this class targets the specific context of
reasoning we are dealing with; thus, it should not be taken as a definition
of strictly relating models tout court. Given a relation of propositional
pertinence R, we will denote by Rid (the identity fragment of R) the
subset of R including all and only those 4-tuples in R that have the form
(φ, φ, s, w).

Definition 3.3 (Strictly relating model). A relating model is a strictly
relating model iff it satisfies the properties below, for every φ, ψ, χ ∈ Lh,
w ∈ W and s ∈ Src:

1. if there is ψ ∈ Lh such that (φ, ψ, s, w) ∈ R, then (φ, φ, s, w) ∈ R;
2. if (φ, ψ, s, w) ∈ R, then (ψ, φ, s, w) ∈ R;
3. if (φ, ψ, s, w), (ψ, χ, s, w) ∈ R, then (φ, χ, s, w) ∈ R;
4. Rid =

⋃
a∈Agt(c(a) ∪ o(a));

5. if (φ, ψ, s, w) ∈ R, then: for every a ∈ Agt, (φ, φ, s, w) ∈ c(a) entails
(ψ, ψ, s, w) ∈ c(a);

6. if (φ, ψ, s, w) ∈ R, then: for every a ∈ Agt, (φ, φ, s, w) ∈ o(a) entails
(ψ, ψ, s, w) ∈ o(a).

Thus, according to the first two properties listed in Def. 3.3, at any
world of a strictly relating model, whenever a proposition (expressed by)
φ is related to a possibly different proposition (expressed by) ψ according
to a source s, we can infer that (i) φ is related to itself according to s,
and (ii) ψ is related to φ according to s. Furthermore, according to
the third property in Def. 3.3, at any world of a strictly relating model,
whenever φ is related to ψ and ψ is related to χ according to a normative
source s, we can infer that φ is related to χ according to s. In addition,
according to the fourth property in Def. 3.3, in strictly relating models
the identity fragment of R corresponds to a set of tuples (φ, φ, s, w) such
that φ expresses either something that source s prescribes to some agent
a (at w) or a causal contribution of some agent a (at w) that is relevant
to source s. Finally, according to the last two properties in Def. 3.3,
at any world, if two propositions φ and ψ are pertinent to each other
according to a normative source s, then, for each agent a, either both
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of them or none of them is an obligation (causal contribution) relevant
to s.

Strictly relating models are those that we will use to simulate the
semantic approach to the formal analysis of responsibility ascription car-
ried out in [Glavaničová and Pascucci, 2019]. Before proceeding to this,
a further clarifying note is needed. As a matter of fact, in the present
article we defined the notion of a relating model for normative reasoning
(see Def. 3.1) in a way that diverges from the definition in [Jarmużek and
Klonowski, 2020]. The main differences can be summarized as below:

• Jarmużek and Klonowski formally encode a ternary  rather than
quaternary  relation of propositional pertinence, since they do not
make explicit reference to normative sources;

• the ternary pertinence relation for a propositional variable p is de-
fined by Jarmużek and Klonowski in a way that holds either for each
state w ∈ W or for no state w ∈ W (see the first clause of Defini-
tion 3.3 and Fact 3.4 in [Jarmużek and Klonowski, 2020]), whereas
here it can change across states, since we want to capture the idea
that the content of a normative source (whence, the relations it es-
tablishes on propositional variables) may vary over time;

• the pertinence relation is here a component of the formal language
too and is defined in terms of formulas, rather than in terms of their
internal components (see the demodalization procedure illustrated in
Section 3.2 of [Jarmużek and Klonowski, 2020] and discussed below);

• since we do not employ quasi-deontic modalities, we do not use a set
of accessible worlds to interpret deontic modalities; we rather directly
use the two functions called ‘obligation assignment’ and ‘contribution
assignment’ to interpret fine-grained modalities, and these functions
are specified, for each agent a, as subsets of the relation R.

For a better assessment of these differences, we briefly explain how de-
modalization, a key procedure to define propositional pertinence in [Jar-
mużek and Klonowski, 2020], could be implemented in our setting (with
straightforward adaptations to the current notation).

Definition 3.4 (Demodalization). The demodalizer function d : Lh −→
Lh is recursively defined as follows:

• for any p ∈ Var, d(p) = p;
• d(∗φ) = d(φ), for ∗ a unary logical operator;
• d(φ ∗ ψ) = d(φ) ∗ d(ψ), for ∗ a binary logical operator.
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Thus, when it is applied to the language Lh, demodalization erases
every occurrence of a logical operator in the set {H,G,Os

a, C
s
a,¬} from

an input formula φ. It is noteworthy that negation is treated by this
procedure as a sort of modality. Jarmużek and Klonowski assume that
“relations between sentences modulo a given normative system do not
pertain to their modal nature, but only to the factual content they bear”
[Jarmużek and Klonowski, 2020, p. 346]. A way of subscribing to this
view in our framework would be adding the following properties to any
relating model, which would force the pertinence relation to be closed
under the addition or deletion of modal operators (and negation) in
formulas, as well as under Boolean operations:
• for any p ∈ Var, (p, p, s, w) ∈ R iff for each u ∈ W there is φu ∈ Lh

such that (p,d(φu), s, u) ∈ R or (d(φu), p, s, u) ∈ R;
• for any binary Boolean operator ∗,

(φ ∗ ψ, φ ∗ ψ, s, w) ∈ R iff (d(φ),d(ψ), s, w) ∈ R;
• for any unary logical operator ∗,

(∗φ, ∗φ, s, w) ∈ R iff (d(φ),d(φ), s, w) ∈ R.
Alternatively, Jarmużek and Klonowski assume that demodalization con-
cerns only deontic operators and negation, and, mutatis mutandis, anal-
ogous adjustments could be performed in our framework to meet this
requirement.

4. From synonymy models to relating models

We describe below the alternative semantics in terms of synonymy models
that was used in [Glavaničová and Pascucci, 2019] to interpret a language
closely related (although not identical) to L. The aim of this section is
showing that synonymy models can be seen as relating models of a par-
ticular kind, namely as strictly relating models. The semantics in terms
of synonymy models originates from the idea that in hyperintensional
contexts (such as in reasoning about obligations or causal contributions)
the proposition expressed by a formula does not correspond to a set of
possible worlds. These models share some features with the hyperinten-
sional models that are proposed by [Sedlár, 2021].

Definition 4.1 (Synonymy model). A synonymy model for language L
is a tuple M = 〈W,≺,Cnt, f, c, o, V 〉 where:

• W is a set of states denoted by w1, w2, w3, etc. (also w, w′, w′′, etc.);
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• Cnt is a set of semantic contents (or propositions) denoted by k1, k2,
k3, etc. (also k, k′, k′′, etc.);

• ≺ ⊆ (W ×W ) is a relation called temporal precedence;
• f : (Lh ×W ) −→ Cnt is a relation called content assignment;
• c : (Agt × Src × W ) −→ ℘(Cnt) is a function called contribution as-

signment;
• o : (Agt × Src ×W ) −→ ℘(Cnt) is a function called obligation assign-

ment;
• V : Var −→ ℘(W ) is a valuation function.

Thus, the crucial difference between relating models and synonymy
models is the fact that the former include a relation of propositional
pertinence R, whereas the latter include a set of semantic contents Cnt

and a content assignment function f . Furthermore, the functions c and
o are defined in different ways in the two models.

The definition of the truth-conditions in synonymy models needs to
take into account the following syntactic differences between the lan-
guage L adopted here and the original language in [Glavaničová and
Pascucci, 2019]:
• for any s ∈ Src, we now have an operator ∼s which encodes the

relation of propositional pertinence with reference to s and replaces
the single operator ∼ originally used;

• the operators for causal contribution used in the present setting make
reference to a normative source (having the shape Cs

a), since their
meaning is explained in terms of causal relevance, which, in turn, de-
pends on propositional pertinence, and the latter is a source-relative
notion.

Moreover, we add the assumption that the relation of propositional syn-
onymy in accordance to a normative source s concerns only propositions
that are either normatively relevant or causally relevant to s. This is re-
quired by the specific procedure that we will use to translate synonymy
models into relating models, as we will see below, and it will have as a
consequence that φ ∼s φ might not be valid in a model (since φ might
be neither normatively nor causally relevant with reference to s). The
truth-conditions for ∼s will be adapted accordingly.

Definition 4.2 (Truth-conditions). The truth-conditions of a wff of L
at a state w of a synonymy model M are as in a relating model, except
for the clauses below:
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• M, w � φ ∼s ψ iff
– f(φ,w) = f(ψ,w);
– f(φ,w) ∈ c(a, s, w) ∪ o(a, s, w), for some a ∈ Agt;

• M, w � Cs
aφ iff f(φ,w) ∈ c(a, s, w);

• M, w � Os
aφ iff f(φ,w) ∈ o(a, s, w).

The notions of validity of a formula in a synonymy model and in a
class of synonymy models are defined in the usual way.

The following procedure, called a REL-translation, shows how one can
transform a synonymy model into a relating model.

Definition 4.3 (REL-translation). Consider a synonymy model M1 =
〈W1,≺1,Cnt1, f1, c1, o1, V1〉. Then, the REL-translation of M1, denoted
by REL(M1), is the relating model M2 = 〈W2,≺2, R2, c2, o2, V2〉 specified
below:

• W2 = W1;
• ≺2 = ≺1;
• (φ, ψ, s, w) ∈ R2 iff

– f1(φ,w) = f1(ψ,w);
– f1(φ,w) ∈ c1(a, s, w) ∪ o1(a, s, w), for some a ∈ Agt;

• c2(a) = {(φ, φ, s, w) : f1(φ,w) ∈ c1(a, s, w)};
• o2(a) = {(φ, φ, s, w) : f1(φ,w) ∈ o1(a, s, w);
• V2 = V1.

Notice the following result:

Proposition 4.1 (REL-strictness). The REL-translation of a synonymy

model M is a strictly relating model.

Proof. By inspection of the properties of strictly relating models. Con-
sider the first three properties of Def. 3.3. According to Def. 4.3, if we
have (φ, ψ, s, w) ∈ R2, then we must also have (ψ, φ, s, w) ∈ R2 and
(φ, φ, s, w) ∈ R2. Furthermore, if we have (φ, ψ, s, w), (ψ, χ, s, w) ∈ R2,
then we must also have (φ, χ, s, w) ∈ R2. In fact, all these proper-
ties  which have the shape of conditionals  follow from the fact that
if their antecedents hold for some formulas φ. ψ and χ, then we have
f1(φ) = f1(ψ) = f1(χ), and their consequents must hold as well, due to
the properties of =. Consider the fourth property in Definition 3.3. Ac-
cording to Definition 4.3 we must have that Rid

2 =
⋃

a∈Agt(c2(a) ∪ o2(a)).

In fact  taking into account also the definition of Rid
2 in terms of R2 

we have that (φ, φ, s, w) ∈ R2 iff f1(φ,w) ∈ c1(a, s, w) ∪ o1(a, s, w)
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for some a ∈ Agt iff (φ, φ, s, w) ∈ c2(a) ∪ o2(a) for some a ∈ Agt

iff (φ, φ, s, w) ∈
⋃

a∈Agt(c2(a) ∪ o2(a)). Consider the fifth and the
sixth property in Definition 3.3. According to Definition 4.3, if we have
(φ, ψ, s, w) ∈ R2 and, for some a ∈ Agt, (φ, φ, s, w) ∈ c2(a), then we
must also have (ψ, ψ, s, w) ∈ c2(a). In fact, the result follows from the
fact that f1(φ) = f1(ψ). The same conclusion can be reached when we
replace c2(a) with o2(a) in the argument. ⊣

We prove below that REL-translations are invariant with respect to
the truth of formulas at a state. This property will be called REL-
invariance.

Proposition 4.2 (REL-invariance). For every formula θ ∈ L, every syn-

onymy model M1 and every state w in its domain, it holds that M1, w � θ
iff REL(M1), w � θ.

Proof. By induction on the syntactical complexity of θ. We assume
that REL(M1) = M2 in order to have an easier notation when we describe
its components. The basic case in which θ is a propositional variable and
the inductive step in which it is a formula whose main operator is in the
set {¬,→, H,G} can be easily dealt with as immediate consequences of
the definition of the components W2, ≺2 and V2 in M2.

Consider the case θ = φ ∼s ψ. For the left-to-right direction, assume
M1, w � φ ∼s ψ. Then (by Def. 4.2), f1(φ,w) = f1(ψ,w) and there
is some a ∈ Agt such that f1(φ,w) ∈ c1(a, s, w) ∪ o1(a, s, w). From
this (by Def. 4.3), we can infer that (φ, ψ, s, w) ∈ R2. The last step
leads (by Def. 3.2) to the claim that M2, w � φ ∼s ψ. For the right-
to-left direction, assume that M1, w 2 φ ∼s ψ. Then (by Def. 4.2),
either f1(φ,w) 6= f1(ψ,w) or there is no a ∈ Agt such that f1(φ,w) ∈
c1(a, s, w) ∪ o1(a, s, w). From this (by Def. 4.3), we can infer that
(φ, ψ, s, w) /∈ R2. The last step allows one to infer (by Def. 3.2) that
M2, w 2 φ ∼s ψ.

Consider the case θ = Cs
aφ. For the left-to-right direction, assume

that M1, w � Cs
aφ. Then (by Def. 4.2), we can infer that f1(φ,w) ∈

c1(a, s, w). This entails (by Def. 4.3) that (φ, φ, s, w) ∈ c2(a). Therefore
(by Def. 3.2), we can conclude that M2, w � Cs

aφ. For the right-to-left
direction, assume that M1, w 2 Cs

aφ. Then (by Def. 4.2), we can infer
that f1(φ,w) /∈ c1(a, s, w). This entails (by Def. 4.3) that (φ, φ, s, w) /∈
c2(a). Thus (by Def. 3.2), we can conclude that M2, w 2 Cs

aφ.
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Consider the case θ = Os
aφ. For the left-to-right direction, assume

that M1, w � Os
aφ. Then (by Def. 4.2), we can infer that f1(φ,w) ∈

o1(a, s, w). This entails (by Def. 4.3) that (φ, φ, s, w) ∈ o2(a). Therefore
(by Def. 3.2), we can conclude that M2, w � Os

aφ. For the right-to-left
direction, assume that M1, w 2 Os

aφ. Then (by Def. 4.2), we can infer
that f1(φ,w) /∈ o1(a, s, w). This entails (by Def. 4.3) that (φ, φ, s, w) /∈
o2(a). Thus (by Def. 3.2), we can conclude that M2, w 2 Os

aφ. ⊣

5. Axiomatic system

In the present section we provide an axiomatization for the set of formu-
las that are valid in the class of all strictly relating models. Hereafter
we will denote by CSRM the class of all strictly relating models, and the
fact that a formula φ ∈ L is valid in such class by �CSRM

φ.
The following list of deductive principles constitutes a logical system

that we will simply call S. The fact that a formula φ ∈ L is provable in
S will be denoted by ⊢S φ.

A0 All L-instances of tautologies of the Propositional Calculus;
A1 ((

∨
a∈Agt C

s
aφ) ∨ (

∨
a′∈AgtO

s
a′φ)) ≡ (φ ∼s φ);

A2 (φ ∼s ψ) → (φ ∼s φ);
A3 (φ ∼s ψ) → (ψ ∼s φ);
A4 (φ ∼s ψ) → ((ψ ∼s χ) → (φ ∼s χ));
A5 H(φ → ψ) → (Hφ → Hψ);
A6 G(φ → ψ) → (Gφ → Gψ);
A7 φ → HFφ;
A8 φ → GPφ;
A9 (φ ∼s ψ) → (Cs

aφ → Cs
aψ);

A10 (φ ∼s ψ) → (Os
aφ → Os

aψ);
R0 from the set of assumptions {φ, φ → ψ}, infer ψ;
R1 if ⊢S φ, then ⊢S Hφ ∧Gφ.

Notice that the formulation of R0 is intended to capture deductive rea-
soning under assumptions, whereas the formulation of R1 allows only for
reasoning on provable formulas. The result that will be proven below
will point out that system S constitutes an axiomatization of validity in
the class of models CSRM.

Proposition 5.1 (Soundness). For any θ ∈ L, if ⊢S θ then �CSRM
θ.
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Proof. An induction on the length of derivations in S. The result
for A0 and R0 is straightforward. In the case of A5–A8 and R1 the
result follows from the correspondence theory for systems of tense logic.
Therefore, we discuss only A1–A4 and A9–A10.

In the case of A1, for the left-to-right direction of the biconditional,
suppose that there is a state w of a model M such that either (i) M, w �

Cs
aφ or (ii) M, w � Os

a′φ, for some a, a′ ∈ Agt. In the sub-case (i) by
Def. 3.2 we get that (φ, φ, s, w) ∈ c(a). In the light of Def. 3.3, Rid =
⋃

a∈Agt(c(a) ∪ o(a)), whence (φ, φ, s, w) ∈ Rid and (φ, φ, s, w) ∈ R.
Thus, by Def. 3.2, M, w � φ ∼s φ. In the sub-case (ii) we get the same
result by replacing c(a) with o(a′) in the previous argument. For the
right-to-left direction of the biconditional, assume that there is no a ∈
Agt such that M, w � Cs

aφ and that there is no a′ ∈ Agt such that M, w �

Os
a′φ. Then, by Def. 3.2, we have that (φ, φ, s, w) /∈

⋃
a∈Agt(c(a) ∪ o(a)).

In the light of Def. 3.3 we can infer that (φ, φ, s, w) /∈ Rid , whence that
(φ, φ, s, w) /∈ R. Finally, by Def. 3.2, we can reach the conclusion that
M, w 2 φ ∼s φ.

In the case of A2, assume that M, w � φ ∼s ψ. Then, due to Def. 3.2
and Def. 3.3, (φ, ψ, s, w), (φ, φ, s, w) ∈ R and, by Def. 3.2, one can infer
M, w � φ ∼s φ.

In the case of A3, assume M, w � φ ∼s ψ. Then, due to Def. 3.2
and Def. 3.3, (φ, ψ, s, w), (ψ, φ, s, w) ∈ R and, by Def. 3.2, one can infer
M, w � ψ ∼s φ.

In the case of A4, assume M, w � φ ∼s ψ and M, w � ψ ∼s χ. Then,
due to Def. 3.2 and Def. 3.3, (φ, ψ, s, w), (ψ, χ, s, w), (φ, χ, s, w) ∈ R and,
by Def. 3.2, one can infer M, w � φ ∼s χ.

In the case of A9, assume that M, w � φ ∼s ψ and M, w � Cs
aφ.

Then, by Def. 3.2, (φ, ψ, s, w) ∈ R and (φ, φ, s, w) ∈ c(a). Due to
Def. 3.3, we also have (ψ, ψ, s, w) ∈ c(a), whence we can conclude
M, w � Cs

aψ. The case of A10 is analogous. ⊣

Proposition 5.2 (Completeness). For any θ ∈ L, if �CSRM
θ then ⊢S θ.

Proof. We rely on the method of canonical models. The canonical
model M for system S is defined as follows:

• W is the set of all maximal S-consistent sets of wffs of L;
• for all w,w′ ∈ W , w ≺ w′ iff {φ : Gφ ∈ w} ⊆ w′ iff {φ : Hφ ∈ w′} ⊆
w;4

4 The equivalence of these two definitions of w ≺ w′ is granted by classical
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• R = {(φ, ψ, s, w) : φ ∼s ψ ∈ w};
• for every a ∈ Agt, c(a) = {(φ, φ, s, w) : Cs

aφ ∈ w};
• for every a ∈ Agt, o(a) = {(φ, φ, s, w) : Os

aφ ∈ w};
• for every p ∈ Var, V (p) = {w : p ∈ w}.

Usual techniques for completeness theory in multimodal languages allow
one to prove that every maximal S-consistent set is closed under deduc-
tion in S: if Γ ⊆ w and φ can be inferred from Γ in S, then φ ∈ w as
well. The same applies to the truth-lemma for the canonical model M,
namely the fact that for every φ ∈ L and w ∈ W , M, w � φ iff φ ∈ w.
What remains to be proven is that M satisfies all the properties of a
strictly relating model.

Consider the first property of Def. 3.3. Assume that (φ, ψ, s, w) ∈ R.
Then, by Def. 3.2, we can infer that M, w � φ ∼s ψ. Thus, due to
the truth-lemma, it follows that φ ∼s ψ ∈ w and, due to the fact that
every maximal S-consistent set of wffs includes all instances of A2, A0
and is closed under deduction, it follows that φ ∼s φ ∈ w, whence that
(φ, φ, s, w) ∈ R as well.

The second and the third property of Def. 3.3 can be dealt with in a
similar way relying on A3 and A4.

Consider the fourth property of Def. 3.3. Assume, for the sake of
contradiction, that Rid 6=

⋃
a∈Agt(c(a) ∪ o(a)). Then, due to the defi-

nition of Rid , either (i) there is (φ, φ, s, w) ∈ R such that (φ, φ, s, w) /∈
⋃

a∈Agt(c(a) ∪ o(a)), or (ii) there is (φ, φ, s, w) ∈
⋃

a∈Agt(c(a) ∪ o(a))
such that (φ, φ, s, w) /∈ R. In the sub-case (i), due to Def. 3.2, we
get that M, w � φ ∼s φ and, by the truth-lemma, φ ∼s φ ∈ w.
Since every maximal S-consistent set includes all instances of A1, then
(
∨

a∈AgtC
s
aφ) ∨ (

∨
a′∈Agt O

s
a′φ) ∈ w and, by the truth-lemma, M, w �

(
∨

a∈AgtC
s
aφ) ∨ (

∨
a′∈Agt O

s
a′φ). This entails that either there is a ∈ Agt

such that M, w � Cs
aφ or that there is a′ ∈ Agt such that M, w � Os

a′φ.
In both cases, by Def. 3.2, we get that (φ, φ, s, w) ∈

⋃
a∈Agt(c(a) ∪ o(a)):

contradiction. In the sub-case (ii), we must have that for some a ∈ Agt,
either M, w � Cs

aφ or M, w � Os
aφ. Therefore, M, w � (

∨
a∈Agt C

s
aφ) ∨

(
∨

a′∈Agt O
s
a′φ) and (

∨
a∈Agt C

s
aφ) ∨ (

∨
a′∈Agt O

s
a′φ ∈ w), by the truth-

lemma. Then, due to the properties of maximal S-consistent sets, φ ∼s

φ ∈ w and from this we can conclude (φ, φ, s, w) ∈ R: contradiction.

results in completeness theory for tense logic [see van Benthem, 1983], and relies on
the bridge-axioms A7–A8.
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Consider the fifth property of Def. 3.3. Assume that (φ, ψ, s, w) ∈
R and that for some a ∈ Agt, (φ, φ, s, w) ∈ c(a). Then, by Def. 3.2,
M, w � φ ∼s ψ and M, w � Cs

aφ. By the truth-lemma, φ ∼s ψ,C
s
aφ ∈ w,

whence, by A9 and the properties of maximal S-consistent sets, Cs
aψ ∈ w

as well. From this we can infer, by the truth-lemma, that M, w � Cs
aψ,

whence, by Definition 3.2, that (ψ, ψ, s, w) ∈ c(a).
The sixth property of Definition 3.3 can be dealt with in an analogous

way. ⊣

As a consequence of Propositions 5.1 and 5.2, system S is not closed
under replacement of provable equivalents (RPE). In particular, even if
⊢S φ ≡ ψ, it may be the case that 0S C

s
aφ ≡ Cs

aψ or that 0S O
s
aφ ≡ Os

aψ,
for some a ∈ Agt and s ∈ Src. For the sake of example, consider the
formulas p and p∧⊤. Due to the fact that S includes all theorems of the
Propositional Calculus, ⊢S p ≡ (p∧⊤). However, there are some maximal
S-consistent sets of formulas s.t., for every φ, ψ ∈ Lh and s ∈ Src, φ ∼s ψ
is not included in those sets (the simplest way of justifying this is by
observing that no axiom of S has the form φ ∼s ψ and that neither
the rule R0 nor the rule R1 allows one to derive formulas of that form
without further assumptions); some of those sets will include Cs

ap but
not Cs

a(p∧⊤) (or Os
ap but not Os

a(p∧⊤)) for some s ∈ Src and a ∈ Agt,
since A9 (A10) is the only axiom of S establishing a logical connection
between pairs of formulas of the form Cs

aφ and Cs
aψ (Os

aφ and Os
aψ), but

this connection relies on an assumption of the form φ ∼s ψ. Moreover,
any logical connection between pairs of formulas of the form Cs

aφ and
Os

aφ always depends on whether one assumes φ ∼s φ to hold or not (the
only relevant principle in this regard is A1).

6. Responsibility and regret

The present section applies the proposed framework to the analysis of
various notions related to responsibility. While in the previous sections
we aimed at general semantic results, making use of the broad class of
relating models CSRM and the weak formal system S, throughout this
section we will assume principles of deductive reasoning that extend the
axiomatic basis of S, as well as additional properties of models, in order
to more closely adhere to the formal definitions of responsibility provided
in [Glavaničová and Pascucci, 2019]. In particular, we take the following
additional axioms:
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A11 Hφ → HHφ;
A12 Gφ → GGφ;
A13 (Hφ ∧Gφ ∧ φ) → GHφ.

These principles force the relation ≺ to be transitive and backward linear
(thus, only forward branching is admissible). The resulting models are
tree-like and can be used to draw a comparison with other frameworks for
non-deterministic time where notions of responsibility have been anal-
ysed; for instance, see the recent systematic analysis based on STIT-logic
that is carried out by Canavotto [2020].

We will analyse notions of avoiding (a certain outcome or a partic-
ipation in it), regret, (a simple version of) agent-regret, and individual
(contributory) responsibility. The last notion is crucial for the debate
on moral and legal responsibility (individual responsibility as we under-
stand it can be either legal or moral, and thus it is a notion applicable
in both law and morality). The two notions of regret were introduced by
Williams [1981] in his analysis of moral luck and Raz [2011] debated them
in the context of responsibility and broadened their understanding. We
will start our discussion with two notions of avoiding, since these notions
will feature in our definitions of (agent-)regret as well as in individual
responsibility (on the importance of the possibility of avoiding a certain
outcome, or participation in it see [Watson, 2004; Braham and Van Hees,
2012]).

The notion of avoiding employed here is rather simple. It is under-
stood as a property of a state w from whose perspective φ never happens
throughout time, which can be equated with the conjunction of three
claims made at w: ‘φ is not the case now’, ‘φ has never been the case’
and ‘φ will never be the case’. Let us now express this notion formally
in the present framework (all notions will be defined relying on purely
syntactic tools available in our language L and on the logical principles
of system S, together with the additional axioms A11–A13):5

Definition 6.1 (Avoiding). The claim ‘φ is avoided throughout time’
corresponds to the following formula:

Aφ =def ¬φ ∧H¬φ ∧G¬φ

5 Glavaničová and Pascucci [2019] introduce a notion of avoidability which is
related to the present notion of agent-avoiding (later in this section): a causal partic-
ipation of the agent in something that was avoidable at some moment in the past.
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w0 @

φ¬φ

w1

¬φ

w2

¬φ

Figure 2. Avoidability

The above definition reads as follows: φ never happens, that is, it is
false at the time of evaluation, and it always has been and always will be
false. The possibility of avoiding φ (avoidability) can be expressed via
PFAφ (that is, there is a past state w and a state w′ in its future from
whose perspective φ is avoided throughout time), as Figure 2 illustrates.

In Figure 2, at the actual state @, φ holds. However, there is a past
state w0 such that there is a state w1 in its future where it holds that φ
is never true: it is false at w1, it is always false in its past (in this model
there is just one state in its past, namely w0), and it is always false in
its future (in this model, the only state in its future is w2). That means
that while φ actually holds, it could have been avoided.

Agent-avoiding is a similar notion but focuses on causal participation
rather than on any event whatsoever (that is, agent-avoiding is a specific
case of avoiding):

Definition 6.2 (Agent-Avoiding). The claim ‘φ is avoided throughout
time by agent a’ corresponds to the following formula:

As
aφ =def ¬Cs

aφ ∧H¬Cs
aφ ∧G¬Cs

aφ

The above definition reads as follows: the agent does not actually
participate, never has participated, and never will participate in φ (that
is, a never causally participates in φ throughout time).

Let us now turn to the notions of regret and agent-regret.

The constitutive thought of regret in general is something like ‘how
much better if it had been otherwise’, and the feeling can in principle
apply to anything of which one can form some conception of how it
might have been otherwise, together with consciousness of how things
would then have been better. [Williams, 1981, p. 27]
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Regret is to be distinguished from a peculiar sub-species of regret, agent-
regret:

a person can feel only towards his own past actions (or, at most, actions
in which he regards himself as a participant). In this case, the supposed
possible difference is that one might have acted otherwise, and the focus
of the regret is on that possibility, the thought being formed in part by
first-personal conceptions of how one might have acted otherwise.

[Williams, 1981, ibid.]

Williams [1981, 30] also notes that agent-regret involves “a wish on the
agent’s part that he had not done it.”

In addition, while Williams reserves agent-regret only to cases of
regret that are integral to an agent’s identity and character (and thus,
‘life-changing’ events), Raz allows it to apply also to a more mundane
kind of regret related to our own conduct and its consequences that we
normally experience. We will follow this broader understanding of agent-
regret. According to Raz [2011, p. 237], agent-regret is important for
the debate because it sheds light on the reasons why we are attached to
the consequences of our actions, even if they are beyond our control: our
actions (and their consequences) are “related to our sense of who we are.”

Our formalisation of regret contains three elements: φ holds; it could
have been avoided; and the agent wishes that it is avoided. The agent’s
wish is here formalised as the agent’s normative preference: that is, what
ought to be the case according to the agent’s normative system. To this
aim, we employ the notation s(a), which explicitly connects a source to
an agent (we recall that s(a) is a possible label for an element of the set
Src). In more detail: φ happened to be the case; yet, according to a’s

preferences (s(a)), it should have never been the case (Os(a)
a H¬φ). For

instance, a’s friend died climbing (φ). Then, agent a deeply regrets this,
and thus has it that it should have been otherwise.

Our definition of regret is then as follows:

Definition 6.3 (Regret). The claim ‘agent a regrets φ’ corresponds to
the following formula:

Rs(a)
a φ =def φ ∧ PFAφ ∧Os(a)

a (Aφ)

The notion of agent-regret is similar, but it focuses on an agent’s
causal participation:6

6 As we indicated above, we take it that causal participation is sufficient for
responsibility; in this way we can account for cases of causal overdetermination.
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Definition 6.4 (Agent-Regret). The claim ‘agent a regrets their con-
tribution to φ’ corresponds to the following formula:

Rs,s(a)
a φ =def C

s
aφ ∧ PFAs

aφ ∧Os(a)
a (As

aφ)

To illustrate how these definitions work, consider how we can employ
a tense operator to talk about regret which concerns past state-of-affairs
rather than those that presently obtain. Regret as related to past can
be expressed as P (φ ∧ PFAφ) ∧ O

s(a)
a (Aφ); agent-regret related to the

past can in turn be formalised as P (Cs
aφ ∧ PFAs

aφ) ∧O
s(a)
a (As

aφ).
The final bit we want to cover in the present section is individual

responsibility, which we will understand as a backward-looking notion of
responsibility for a prohibited state-of-affairs to which the agent causally
participated (thereby, contributory responsibility) while their participa-
tion was avoidable (this notion of responsibility can be perhaps best
qualified as individual blameworthiness). This understanding of respon-
sibility is very useful both in the context of law and in the context of
morality. To give an example, White and Baum [2017, p. 66] note that
generally, “the law punishes those who have caused harm, particularly
the harm that could and should have been avoided.” We can formalise
such a notion of responsibility as follows:

Definition 6.5 (Individual Responsibility). The claim ‘agent a is indi-
vidually responsible for φ’ corresponds to the following formula:

IRaφ =def P (Cs
aφ ∧ PFAs

aφ ∧Os
a¬φ)

This definition contains three core elements:

• a fine-grained notion of causal contribution (which avoids problems
noted at the beginning of our paper, but also improves the notion of
cause);

• the possibility of agent-avoiding, that is, avoidability of the causal
participation rather than avoidability of the event itself;

• a fine-grained notion of prohibition.

That is, an individual has causally participated in φ (Cs
aφ holds in a

past state w); the participation in φ could have been avoided (the past
state w is preceded by a state w1, which in turn precedes a future state
w2 such that, from the perspective of the latter state, the agent never 
throughout the entire course of time  participates in φ, that is, ¬Cs

aφ∧
H¬Cs

aφ ∧ G¬Cs
aφ); and φ should have been avoided (i.e., in the past

state w, Os
a¬φ holds).
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Note that this notion is a notion of historic responsibility (that is,
a backward-looking notion) as opposed to prospective responsibility (a
forward-looking notion). The latter would be here analysed simply as
an obligation that is not past-oriented (in other words, does not contain
an operator for past reference in its scope).

All notions that have been syntactically defined in this section, apart
from the notion of avoiding (Def. 6.1), correspond to hyperintensional
modalities in systems extending S with A11–A13, since replacement of
provable equivalents cannot be safely performed within their scope. In
fact, all these notions involve occurrences of operators of the type Cs

a

or Os
a, which are, in turn, hyperintensional modalities (the addition of

A11–A13 does not affect what we observed on the deductive behaviour
of the latter modalities in S).

7. Concluding remarks and future work

Various semantics can be used to interpret modal languages in normative
contexts. Two recent proposals were taken into account and compared
in this article: a semantics based on relating models and a semantics
based on synonymy models. It turned out that, in the end, the two
semantics are not ‘rival’: synonymy models can be admitted to the family
of relating models, since it is possible to provide a translation function
which takes a synonymy model as an input and gives a strictly relating
model as an output (for instance, the REL-translation employed here).
Our envisaged future research in this area includes translations between
specific classes of models over the two semantic approaches.

Regardless of the semantics one chooses to interpret it, the mul-
timodal language L used in the present work allows one to represent
deontic and causal modalities in a fine-grained manner. Also, as we
pointed out, it allows one to represent interesting notions of regret and
responsibility. From the philosophical point of view, our future aim is
capturing more complex normative notions, such as: group responsibility
(for a simple formal notion of group responsibility [see Glavaničová and
Pascucci, 2019]) vicarious responsibility and retroactive responsibility.
Finally, we plan to deal with ‘positive’ notions of responsibility (e.g.,
praiseworthiness or vicarious praise). In fact, apart from the notion of
prospective responsibility, which can be easily encoded as a present- or
future-oriented obligation in this setting, we focused mainly on responsi-
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bility in the negative sense (i.e., for something wrong). This is so because
such sense seems to be more pressing from a practical point of view.
Thus, positive notions of responsibility are left as another interesting
topic for future research.
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