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Abstract. We show how to extend any finite probability space into another
finite one which satisfies the conditional construal of conditional probability
for the original propositions, given some maximal allowed degree of nesting
of the conditional. This mitigates the force of the well-known triviality
results.
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1. Introduction

The conditional construal of conditional probability, that is, the CCCP,
is  roughly  the idea that the probability P of the indicative condi-
tional A → B is equal to P (B|A). The idea, still intuitive for many,1

met with a series of “triviality results”, which show the limits of the idea
in its various rigorous formulations [see, e.g., Hájek, 2015; Hájek & Hall,
1994; Hall, 1994; Lewis, 1976].

Suppose you have a field of propositions F on which a probability
function P is defined, forming a probability space. Assume you would
like the P to be defined on conditionals A → B, for A, B ∈ F , so that
the CCCP is satisfied. Are these conditionals already in your space?

1 For example, [Dorst, 2020, p. 595] refers to “the fact that natural language
expresses conditional probabilities as probabilities of (indicative) conditionals”. This
is not an isolated incident; however, since this is a technical note, we have decided
not to report any more sources of similar sentiments.
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Sometimes it is evident they are not, even before we start asking more
difficult questions about the nesting of → and whatever conditions we
might reasonably expect to be satisfied by it (e.g., should A → A equal
1F?). Consider, for example, the space (W = {a, b, c}, P(W ), P ) with
P uniform. In such a case P ({a}|{a, b}) = 0.5; however, there is no
proposition in the domain of P with that probability, so the CCCP can-
not be satisfied (i.e., the space contains no candidate for the proposition
{a, b} → {a}).

It follows from the results of [Hall, 1994; van Fraassen, 1976] that the
only probability spaces2 for which the CCCP is satisfied (and in which
→ meets some sensible minimal conditions) are full; in other words,
they are atomless, that is, for any proposition A such that P (A) > 0,
for any 0 < x < P (A), there is a B such that B ⊆ A and P (B) = x.
From some perspective, these are huge spaces. Suppose you are only
interested in finitely many propositions. It might be surprising, and
unwanted, if your goal is “just” to contemplate conditionals constructed
from those propositions and their Boolean combinations, to be forced to
use an uncountably infinite probability space. We will show here that,
for finite probability spaces, if you specify the maximal degree of nesting
of →, it is always possible to extend your space to a finite one, so that
the CCCP holds for the conditionals constructed from the propositions
from the original space, up to the specified nesting degree.

We shall make all this precise now.

2. The definitions

Definition 2.1 (Extension of a probability space). A probability space
(W ′, F ′, P ′) is an extension of the probability space (W, F , P ) by means

of h if h is a Boolean algebra embedding of F into F ′ such that for any
A ∈ F , P ′(h(A)) = P (A).

That is, an extension of a probability space is a “new” space which
preserves all the “old” probabilities, possibly involving more proposi-
tions. In the context of probabilities of conditionals, extensions have
been used, e.g., by van Fraassen [1976]. More generally, in formal phi-
losophy it is quite natural to use extensions when investigating the cap-
turing of the same phenomena in various contexts which differ in how

2 Of cardinality higher than 2.
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many other aspects of the relevant situations are taken into account. One
may in such cases speak of “the same” propositions even if the various
objects in question belong to the event algebras of different spaces; the
crucial thing is the measure-preserving nature of the embedding which
defines the extension. For example, given a probability space, it might
be asked whether all pairs of propositions possess a “statistical common
cause”, while the affirmative answer might be given by a procedure for
producing a desired extension, in which such a “common cause” exists for
each pair of the images of the original propositions [Marczyk & Wroński,
2014]. If the elements of W are taken to be epistemically possible worlds,
and if P is some agent’s credence function, one can contemplate exten-
sions in which W ′ consists of suitably “fine-grained” worlds from W ,
corresponding to the fact that the agent started taking more factors into
account.

Following [Hall, 1994], we will use the term “model” to refer to a
probability space enjoined with an interpretation of →:

Definition 2.2 (Model). A quadruple (W, F , P, →) is a model iff (W,
F , P ) is a probability space and → is a total function from F ×F into F .

The models we will be interested in are those in which the proba-
bilities of conditionals equal the corresponding conditional probabilities,
and the → satisfies the conditions of the “minimal logic of conditionals”
[van Fraassen, 1976, p. 277].

Definition 2.3 (Satisfying the CCCP). A model (W, F , P, →) satisfies

the CCCP with regard to Prop ⊆ F iff for any A, B, C ∈ Prop:

(∗) P (A → B) = P (B|A);
(I) (A → A) = W ;

(II) A ∩ (A → B) = A ∩ B;
(III) (A → C) ∩ (A → B) = A → (C ∩ B);
(IV) (A → C) ∪ (A → B) = A → (C ∪ B).

3. The result

Here is the main result of this note:

Theorem 3.1. Suppose a finite probability space (W, F , P ) is given.

There exists a finite model (W ′, F ′, P ′, →) such that:
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• (W ′, F ′, P ′) is an extension of (W, F , P ) by means of some Boolean

algebra embedding h;
• (W ′, F ′, P ′, →) satisfies the CCCP with regard to the image of h.

Before we embark on the proof, a few introductory remarks. We will
be extending a probability space with W = {w1, . . . , wn} and measure
P on F to a new one with W ′ = {w1,1, w1,2, . . . , w1,k, . . . , wn,k}. That
is, each of the original wi’s will effectively be “split” into k elements; the
extension homomorphism will take each wi into the set {wi,1, . . . , wi,k}.
The k number is constant for all wi’s; we need to make sure it is big
enough that all the required conditional probabilities can be made to
“fit inside” the new space. We calculate the k as follows: first, label
each P ({wi}) in some unique way; second, define Fn as the set of all
subsets of W of cardinality at least 2 which do not include wn; third,
fully expand the product

∏

S∈Fn
P (S) so you end up with a sum of values

of expressions involving your previously introduced labels; fourth, set k
to be the number of such expressions occurring in that sum (even though
in some cases the values of these expressions might be identical).

For example, set n = 4, W = {w1, w2, w3, w4} and P ({w1}) = a,
P ({w2}) = b, P ({w3}) = c, P ({w4}) = d. Then we expand the product
∏

S∈F4
P (S) as (a+ b+ c)(a+ b)(a+ c)(b+ c) = a3b+a3c+a2b2 +a2b2 +

a2bc + a2bc + a2bc + a2bc + a2c2 + a2c2 + ab3 + ab2c + ab2c + ab2c + ab2c +
abc2 + abc2 + abc2 + abc2 + ac3 + b3c + b2c2 + b2c2 + bc3, therefore k = 24.
And so our extension will include a W ′ consisting of 96 elements.

Were we only interested in the cardinality of the extension, we could
just give the appropriate formula. However, in the proof below we will
actually refer to the expressions inside the sums

∏

S∈Fi
P (S) for vari-

ous i’s. Given some canonical labelling of the probabilities of singleton
propositions, and the above definition of Fi, we hereby define Sum(i) as
the sum being the expansion of

∏

S∈Fi
P (S). Assume the expansion pro-

ceeds via the same algorithm for each i (below we will use expressions like
“the jth element of Sum(i)”). Continuing the previous example, “a2c2”
is an element of Sum(4), as we have seen, but it is not an element of
e.g. Sum(1). If a = 0.75, b = c = 0.1, and d = 0.05, then 0.000025 is
the value of some expression from Sum(1) (of c2d2, for example)3, but
it is not the value of any expression from Sum(4).

We will sometimes mention Sum(i) below (when referring, e.g., to
some expression in Sum(i)), but also sometimes use it: if we divide by

3 We will omit quotes from now on.
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Sum(i), we of course divide by the value of the sum. Context, as usual,
will disambiguate.

The proof below assumes that the F in Theorem 3.1 is the full pow-
erset of the W ; the supposition is harmless, since the spaces in question
are finite, and is made in the interest of set-theoretical clarity.

Proof of Theorem 3.1. Let Ω = (W, P(W ), P ), where W = {w1, w2,
. . . , wn} (that is, n > 2: in smaller spaces the issue of the CCCP is triv-
ial) and P ({wi}) = xi. Let Fi = {S ⊂ W : wi /∈ S ∧ #S ≥ 2}; of course
#Fi = const. Let Ω′ = (W ′, P(W ′), P ′) and W ′ = {w1,1, w1,2, . . . ,
w1,k, . . . , wn,k}, where k is the number of the elements of the sum Sum(i)
defined as the expansion of the product

∏

S∈Fi
P (S), using the labelling

of the probabilities P ({wi}), for various i, by xi.
For xi,j being the j-th element of Sum(i), set P ′({wi,j}) :=

xi·xi,j

Sum(i) .

Define Ai := {wi,j : 1 ≤ j ≤ k}. Notice that

P ′(Ai) =
∑k

j=1 P ′({wi,j}) =
xi·

∑

k

j=1
xi,j

Sum(i) = xi = P ({wi}).

Therefore, if we define the homomorphism h by setting h({wi}) := Ai

(with all the other cases handled recursively), we see that Ω′ is an ex-
tension of Ω by means of h. We now need to add to it the function → so
that it becomes a model satisfying the CCCP with regard to the image
of h.

For any X ⊆ W , let IX be its set of indices, i.e., IX := {i : wi ∈ X}.
Of course, both IX∪Y = IX ∪ IY and IX∩Y = IX ∩ IY hold.

The reasoning to come will make use of the fact that each Aj can be

partitioned into sets Si,A
j ⊆ Aj such that for i ∈ IA, j /∈ IA we have:

P ′(Si,A
j ) =

xi·xj

P (A) .

Let us argue that such sets Si,A
j exist. Here goes: since j /∈ IA,

then P (A) is a value of some expression in Sum(j). Therefore Sum(j) =
P (A) · c = c · (

∑

k∈IA
xk), but since i ∈ IA, then

∑

k∈IA
xk = xi + s, and

so Sum(j) = cxi + cs. Let us, then, put the following definition:

Si,A
j := {wj,y :

∑

P ′({wj,y}) = cxi}.

That such wj,y’s exist follows from the definition of P ′. Note, then, that

P ′(Si,A
j ) =

∑

x∈Si,A

j
P ′({x}) =

xj ·cxi

Sum(j) =
xj ·cxi

c·P (A) =
xi·xj

P (A)

as required.
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It is easy to see that
⋃

i∈IA
Si,A

j = Aj .

We now have everything in place to define →. Let us, then, for any
A, B ∈ P(W ), put

h(A) → h(B) :=
⋃

i∈IA∩IB
(Ai ∪

⋃

j /∈IA
Si,A

j ),

defining → in some arbitrary way for inputs outside the image of h
(recall that the definition of a model requires → to be a total function
from P(W ′)).

Notice that (∗) from Definition 2.3 holds for the h-images of the
original propositions:

P ′(h(A) → h(B)) =
∑

i∈IA∩IB

(

P ′(Ai) +
∑

j /∈IA
P ′(Si,A

j )

)

=

=
∑

i∈IA∩IB
xi +

∑

i∈IA∩IB

∑

j /∈IA

xjxi
∑

k∈IA
xk

=

=
∑

i∈IA∩IB
xi +

∑

i∈IA∩IB

(1−
∑

k∈IA
xk)·xi

∑

k∈IA
xk

=

=

∑

i∈IA∩IB
xi

∑

k∈IA
xk

= P ′(h(A)∩h(B))
P ′(h(A)) =

= P ′(h(B) | h(A)) = P (B | A).

What remains now is to show that conditions (I)–(IV) of Definition 2.3
are satisfied in the same domain.

(I): h(A) → h(A) =

=
⋃

i∈IA
(Ai ∪

⋃

j /∈IA
Si,A

j ) =
⋃

i∈IA
Ai ∪

⋃

i∈IA

⋃

j /∈IA
Si,A

j =

=
⋃

i∈IA
Ai ∪

⋃

j /∈IA

⋃

i∈IA
Si,A

j =
⋃

i∈IA
Ai ∪

⋃

j /∈IA
Aj = W ′.

(II): h(A) ∩ (h(A) → h(B)) =

=
⋃

i∈IA
Ai ∩

⋃

i∈IA∩IB
(Ai ∪

⋃

j /∈IA
Si,A

j ) =

=
⋃

i∈IA∩IB
Ai =

⋃

i∈IA
Ai ∩

⋃

i∈IB
Ai = h(A) ∩ h(B).

(III): (h(A) → h(C)) ∩ (h(A) → h(B)) =

=
⋃

i∈IA∩IC
(Ai ∪

⋃

j /∈IA
Si,A

j ) ∩
⋃

i∈IA∩IB
(Ai ∪

⋃

j /∈IA
Si,A

j ) =

=
⋃

i∈IA∩IB∩IC
(Ai ∪

⋃

j /∈IA
Si,A

j ) = (h(A) → (h(C) ∩ h(B))).
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(IV): (h(A) → h(C)) ∪ (h(A) → h(B)) =

=
⋃

i∈IA∩IC
(Ai ∪

⋃

j /∈IA
Si,A

j ) ∪
⋃

i∈IA∩IB
(Ai ∪

⋃

j /∈IA
Si,A

j ) =

=
⋃

i∈IA∩(IB∪IC )(Ai ∪
⋃

j /∈IA
Si,A

j ) = (h(A) → (h(C) ∪ h(B))).

Thus we were able to construct the required extension. ⊣

Due to the fact that the composition of two embeddings is an embed-
ding, iterating the construction used in the proof allows us to achieve an
arbitrary level of nesting of → for the (images of the) original proposi-
tions and still satisfy the CCCP. In the parlance of [Hájek & Hall, 1994],
this is an argument for a weakened variant of the “Universal tailoring
version” of the “hypothesis” underlying the CCCP: “for each P there is
some → such that the CCCP holds” [Hájek & Hall, 1994, p. 76]. Once
we specify the maximal degree of nesting of →, then indeed, there is; it’s
just that we may need to move to a different  larger, but still finite 
space with a measure P ′, which agrees with P on all the propositions on
which P is defined.

It might be observed that satisfying the CCCP in the sense used
throughout this note is not straightforwardly preserved by conditionali-
sation. Suppose PE is the measure with the same domain as P , defined
in the usual way, that is  under the assumption that P (E) > 0  as
PE(·) := P (·|E). Suppose a finite model (W, F , P, →) is given which
satisfies the CCCP with regard to some Prop ⊆ F . Then, typically 
that is, for most choices of E such that P (E) > 0, and for most choices
of Prop  the model (W, F , PE, →) will not satisfy the CCCP with re-
gard to Prop. However, it is simply a matter of running the above
construction again to achieve the needed model. The belief update of
conditionalisation, then, if one wants to preserve satisfying the CCCP
with regard to some class of propositions, becomes a two-step operation:
first, we change the measure; second, we extend the probability space.

A loose end: the reader will surely have noticed that while we have
fine-tuned → to behave properly with respect to the h-images of the
propositions from the original space, we have allowed its operation on
“new” propositions to be arbitrary, also in the case of pairs where only
one element is “new” (i.e., which does not belong to the image of h). It
remains to be seen whether (while keeping the space finite) → can be
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made to function in a way resembling the conditions of minimal logic in
such cases, too; and if so, then to what extent.
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