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History of Relating Logic.
The Origin and Research Directions

Abstract. In this paper we present the history of and the research direc-
tions in relating logic. For this purpose we will describe Epstein’s Pro-
gramme, which postulates accounting for the content of sentences in logical
research. We will focus on analysing the content relationship and Epstein’s
logics that are based on it, which are special cases of relating logic. More-
over, the set-assignment semantics will be discussed. Next, the Torunian
Programme of Relating Semantics will be presented; this programme ex-
plores the various non-logical relationships in logical research, including
those which are content-related. We will present a general description of
relating logic and semantics as well as the most prominent issues regarding
the Torunian Programme, including some of its special cases and the results
achieved to date.
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1. Introduction

By relating logic we mean any non-classical logic in which one accounts
for the relation of sentences in terms of various connections: content
relationship (analyticity, relevance, etc.), causality, temporal order, pref-
erence order, etc. [see Jarmużek, 2021; Jarmużek and Klonowski, 2021].

The first logics that might be considered to be relating logics were
presented by Richard Epstein in 1976 at a seminar held at Victoria Uni-
versity of Wellington, New Zealand. They were given in response to a lec-
ture on action theory given by Douglas Walton and to the problem of ac-
counting for content relationship for an analysis of conditional sentences.
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Epstein defined his logics in a propositional language that included three
connectives: negation, conjunction, and implication. While the negation
and conjunction were interpreted classically, the interpretation of impli-
cation assumed the truth-condition of the material implication as well
as a special relation between the antecedent and the consequent. Such
a relation was to express the content relationship between the sentences
[cf. Epstein, 1979; Epstein and Walton, 1979; Walton, 1979a,b]. Epstein
decided to represent the content-related relationship between sentences
using an at least reflexive binary relation defined on the set of proposi-
tional variables, extendable onto the set of formulae by means of certain
special conditions. The idea aroused the interest not only of Walton but
also of other seminar participants, including David Lewis, who noticed
that Epstein’s relation could be used to express the content relationship
understood as overlapping of sentence content [see Epstein and Walton,
1979, p. 113; Epstein, 1979, pp. 156–158; Epstein, 1990, pp. 68–70]. Both
Epstein and Walton have argued that many ideas related to the logics
defined by Epstein were developed during the 1976 seminar [see Epstein
and Walton, 1979, p. 113]. This includes not only the concept of content
relationship, but also the proof of completeness for the systems being
analysed, found together with Robert Goldblatt.1 The logics defined
by Epstein were named relatedness logics. A relatedness logic consists
of two systems: the logic S, also known as the Symmetric Relatedness
Logic, and the logic R, i.e., the Nonsymmetric Relatedness Logic, which
is a sub-logic of S.

In the 1980s Epstein presents further logics motivated by the analysis
of content relationship, this time understood as the inclusion of sentence
content. These are the so-called dependence logics, in particular the logic
D, known as the Dependence Logic; the logic DD, known as the Dual De-
pendence Logic; and the logic Eq, known as the Logic of Equality of Con-
tents [see Epstein, 1987]. A detailed description of these systems along-
side the philosophical motivation is given in the monograph [Epstein,

1 From the description given by Epstein [1979, p. 156] it appears that Lewis
introduced not only the notion of content relationship (understood as overlapping
of sentence content) but also a content representing function, the so-called union
set-assignment (see Section 2.3). Moreover, he at least suggested the relationships
that might occur between the function he had introduced and Epstein’s relation [see
Epstein, 1979, pp. 156–158; Epstein, 1990, pp. 68–70]. All these notions and the
relationships that exist between them will be described in further detail at a later
stage (see Section 2.2–2.4).
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1990, pp. 115–143]. Apart from the above, Epstein [1990, pp. 142–143]
also discusses the logic DPC, called the Classically-Dependent Logic.
This logic can be viewed as a special case of dependence logic.

The monograph [Epstein, 1990] contains the most significant results
on the logics defined by Epstein, including an analysis of intensional log-
ics (e.g., modal logic) by means of a certain type of functional semantics
(called set-assignment semantics), which was developed for the analysis
of content relationship of sentences. This work is the cornerstone of the
so-called Epstein Programme formulated by Krajewski [1991].

Although Epstein’s systems may be considered to be examples of
relating logic, the concept of relating logic was only presented in full as
late as 24 years after the publication of Epstein’s monograph. Tomasz
Jarmużek and Bartosz Kaczkowski were the first to do so, with their
paper [Jarmużek and Kaczkowski, 2014] describing the fragment of the
smallest classical mono-relating logic (see Section 3.2). This logic is
defined in a language that includes negation, conjunction, alternative,
implication, and equivalence, which are interpreted classically, as well as
conjunction and implication, which are interpreted in a relating manner,
i.e., accounting for various non-logical relationships. It is worth noting
that implication was the only relating connective in Epstein’s logics.
Although he believed that the relating interpretation of the disjunction
also made sense and his main systems are functionally complete [see
Epstein, 1979, p. 143; Epstein, 1990, pp. 71–72, 121, 77–80, 125].

The concept of relating interpretation of logical connectives was born
out of discussions between Jarmużek and Kaczkowski when they met at
a conference 13th International Workshop for Young Mathematicians.

Logic and the Foundations of Mathematics held in Cracow in 2010. At
the time neither of them was familiar with Epstein’s works. Indeed,
they only discovered Epstein’s works from 1979 to 1990 when working
on a presentation for a conference “Non-Classical Logic. Theory and
Applications” held in Łódź in 2011.2

Jarmużek and Kaczkowski’s insight was in fact very simple; in non-
extensional interpretations of connectives such as conjunction and impli-
cation one usually assumes that the component sentences are somehow
interrelated. This relationship does not have to be content-related. We
often consider sentences to be related because there is some relationship

2 The results presented at this conference are partly included in [Jarmużek and
Kaczkowski, 2014].
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that links the things, facts, states, etc. they refer to. The causal rela-
tionship and temporal order are two obvious examples. The fact that
some sentences are somehow related to each other was formally repre-
sented via a binary relation defined on the set of formulae. This kind of
relation could satisfy various conditions depending on the relationship
which was to be accounted for in a given interpretation of a connective.
Consequently, it became possible to define the foundations of relating
semantics.

In 2020, Jarmużek proposed a general approach to relating semantics
and gave examples of its applications in philosophical logic [see Jar-
mużek, 2021; Jarmużek and Klonowski, 2020, 2021]. In 2019, Jarmużek
and Malinowski showed that relating semantics may be used to define
connexive logics, thus establishing yet another chapter in the research on
relating semantics [see Jarmużek and Malinowski, 2019a,b; Malinowski
and Palczewski, 2021].

The ideas briefly presented above, including the analysis of Epstein’s
content relationship, were first described in the PhD thesis of Klonowski
[2019], written under the supervision of Jarmużek. In this work, which
accounts for the above mentioned results, we will attempt to pinpoint
the key points of the Torunian Programme of Relating Semantics.

Section 2 will briefly describe the analysis of content relationship
in Epstein’s approach and the relatedness and dependence logics which
stem from it, as well as the set-assignment semantics for selected modal
logics. Section 3 will describe the Torunian Programme of Relating Se-
mantics, as well as the general approach to relating logic/semantics; the
main research directions will also be examined, including selected results
of the Toruń Logic Group. In Section 4, as a summary, we will compare
Epstein’s Programme to the Torunian Programme of Relating Semantics.

2. Epstein’s Programme

Epstein’s Programme was formulated by Krajewski [1991] based on the
main results in [Epstein, 1990]. The key facets of this programme can
be expressed as follows:

1. Main assumption: two properties of sentences are significant for log-
ical research: the logical value and the content of sentences.
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Relational approach Functional approach

the content is determined by the content is a (primitive) property
relationship which is of a sentence

a primitive notion

formal tool extensions of relatedness union set-assignments
relation

main adequacy of the representation properties of relations
problem of the content relationship defined by means of

union set-assignments

Table 1. Relational and functional approach to content

2. Main goals: introduction of new content relationship logics  known
as Epstein’s logics (goal 1)  and the semantic analysis of known
non-classical logics based on the main assumption (goal 2).

3. Main assumption of Epstein’s logics: a conditional sentence is true
iff the following conditions are satisfied:
• the antecedent is false or the consequent is true
• the antecedent and the consequent are related because of their

content.

As demonstrated in point 1, the programme postulates that in for-
mal research two sentence properties should be accounted for: the logical
value and the content of a sentence. Logical values are formally repre-
sented by numbers; for example, the classical values, i.e., true and false,
are assigned 1 and 0, respectively. Because of these values, it is possible
to analyse various relationships between sentences thanks to the trans-
formation of the set of formulae into the set of numbers that represent
logical values, i.e., thanks to the attribution of values.

With regards to the content of sentences, Epstein proposes two for-
mal representation methods (cf. Table 1). The first might be called the
relation based approach, and the second the function based approach. In
the first case the generally understood relationship between sentences
becomes the primitive notion and is represented by means of certain at
least reflexive relations defined on the set of formulae. Such relations
are an extension of the so-called relatedness relation (see Section 2.1).
In this approach the content of a sentence is expressed as a set defined
by this relation. In the second case, a sentence’s content is also repre-
sented as a set, but as the output of functions that associated to any
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formula a subset of some fixed set, i.e., as the output of the so-called
set-assignments (see Section 2.1). One can distinguish set-assignments,
the so-called union set-assignments (see Section 2.3), which preserve the
principle of content compositionality. In the first case the key tool for the
analysis is the relatedness relation, whereas in the second set-assignment
(and its special case union set-assignment) is employed.

Epstein’s work introduces the following understandings of a content
relationship:
• an overlap (a common part) of contents [Epstein, 1979, 1990]:

A is content-related to B iff the content of A and the content of B

have something in common, (A)

• an inclusion of content [Epstein, 1987, 1990]:

A is content-related to B iff the content of B is included in
the content of A, (B1)
the content of A is included in
the content of B, (B2)

the content of A and the content of B

are the same. (B3)

These approaches have a relational and functional variant according
to the two methods of representation with regards to sentential context
(see table 1). We will describe these approaches based on the language
of Epstein’s logic, i.e., the following propositional language:

LE := 〈Var, {¬, ∧}, {→}, (, )〉,

where Var := {p, q, r, p1, q1, r1, . . .} is a set of propositional variables.
The set of formulae of LE is defined in a standard way and is denoted by
LE. Following Epstein’s example, we will use the following abbreviations
for any A, B ∈ LE:

A ∨ B := ¬(¬A ∧ ¬B)

A ↔ B := (A → B) ∧ (B → A).

We will also use the following notation:
• the set of sub-formulae of the formula A ∈ LE is denoted by sub(A),
• the set of all subsets of X (the power set of X) is denoted by P(X),
• the set of propositional variables of the formula A ∈ LE is denoted

by var(A),
• the set of ordered (non-ordered) pairs of elements from LE is denoted

by LE × LE (LE + LE),
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• the complexity of formulae in LE is defined in a standard way using
the function c : LE −→ N such that c(A) := 0, for any A ∈ Var.

2.1. Relatedness relation and set-assignment

At this point, we will move on to the description of the relatedness rela-
tion. As mentioned in the introduction, the starting point for Epstein’s
work from 1976 (presented in 1979) was an analysis of how conditional
sentences are interpreted, in particular the shortcomings of interpreta-
tion of such sentences as a material implication. Known examples of the
so-called material implication paradoxes indicate that the component
sentences of true conditional sentences are usually somehow interrelated.

What we’re really concerned with is making p → q true if and only if p

is related to q, and we don’t have p true and q false. But what do we
mean by ‘related’? What does it mean to say that ‘p is related to q’?
Very simply, we’ve decided to take ‘relatedness’ as a primitive notion.
For p, q, . . . can be taken to be anything one wants: sentences in En-
glish, or descriptions of events, or points in space-time, or mathematical
statements, or [. . . ].
For p → q we’re only concerned with whether p is related to q. So
the idea is to take relatedness to be a binary relation, r(p, q). That is,
depending on whatever we are modelling we assume that we’re given
a predicate r(p, q) that holds if p is related to q, and fails if they are
unrelated. [Epstein, 1979, p. 139]

As we can see, the relatedness of sentences is to be the primitive
notion; we do not specify which kind of relationship it represents, thus
leaving various possibilities open. We adopt a general perspective as-
suming that the propositional variables can represent whatever we want.
However, it seems that Epstein narrows this general perspective:

So far we’ve required only one property of relatedness: it is binary. In
Section VI we consider ternary and indeed n-ary relatedness notions
[. . . ].
Do we need to assume any other properties? Several come to mind:
symmetry, transitivity, etc. But these are all specific attributes of
relatedness that may, or may not, apply to specific studies. For our
general study, we need only one more property: reflexivity. That is,
every proposition is related to itself, r(p, p). [Epstein, 1979, p. 140]
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If reflexivity is a generally accepted assumption, can the relatedness
relation allow us to analyse those relationships which are irreflexive or
simply not reflexive?

If we’re trying to model a natural language then this seems reasonable:
every sentence is ‘content related’ to itself. Similarly, if we’re concerned
with modelling actions, then if we think of r(p, q) as ‘p is close to q in
space and time’, a necessary prerequisite for p to ‘cause’ q, then again
reflexivity is natural. (Note well that we do not believe that r(p, q) can
model ‘causation’ by itself; we don’t believe that p → q should be read
as ‘p causes q’; rather p → q should be a prerequisite for ‘p causes q’.)
[. . . ]
Now you are free to require that relatedness satisfy whatever properties
you wish when you want to use this system. However, the only property
that is essential to make the system make sense, and must always be
there, is reflexivity. [Epstein, 1979, p. 140–141]

Consequently, it is possible to state that the notion of relatedness
facilitates an analysis of various relationships provided that these rela-
tionships at least connect any object from the domain with itself. Ep-
stein’s approach using the relatedness relation may be summarised in
the following points:

1. Relatedness of sentences is a primitive notion.
2. Relatedness of sentences is understood to be a relationship between

objects denoted by propositional variables.
3. Relatedness of sentences may be represented by a reflexive relation

defined on the set of propositional variables, i.e., by the relatedness
relation.

4. Using various conditions, the relatedness relation may be extended
onto the entire set of formulae.

5. By requesting further conditions for the relatedness relation and its
extensions onto the entire set of formulae, we make our understanding
of the relatedness of sentences more specific.

The next area of exploration is the description of set-assignment,
i.e., the main tool for the analysis of content and content relationship
introduced by Epstein. This is a mapping s : F −→ P(S), in which F

is a set of formulae and S is a set (non-empty unless stated otherwise).
In the following section, we will focus on the set-assignments for which
the domain is LE. By using special set-assignments s : LE −→ P(S),
satisfying the principle of content compositionality, Epstein [1979, 1990]
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assigns sets to formulae which represent sentences. These sets repre-
sent the content of respective sentences. Such set-assignments will be
described further on (see Section 2.3).

Let us note that an example of set-assignment is provided by the
classical operation of logical consequence defined over LE (which will
be denoted by CnLE

: LE −→ P(LE)). By using such a function, the
content of a sentence A may be considered identical with the set of
values of CnLE

on A. However, the logical consequence may also be
expressed by using the classical relation of logical consequence, i.e., a
certain relation |=LE

⊆ LE × LE.3 Obviously, the restriction of such a
relation to propositional variables is an example of a relatedness relation.
In this case, the content of sentence A may be equated with the set of
sentences which are in relation |=LE

with A. Because of properties such
as reflexivity and transitivity, as well as the mutual definability of CnLE

and |=LE
, the following is true:

A |=LE
B iff CnLE

(B) ⊆ CnLE
(A),

for any A, B ∈ LE. Thus, given a representation of the sentence content,
one can express the content relationship understood as inclusion (B1)
both in the relational and functional approach. Both a set-assignment
and an extension of relatedness relation can serve as the starting point
for analysis of such a content relationship. In the former, based on a
given set-assignment one can produce a certain extension of relatedness
relation, while in the latter one can produce a certain set-assignment
based on a given extension of relatedness relation.

The next area of discussion is the analysis of content relationship us-
ing certain extensions of the relatedness relation as proposed by Epstein;
after that, we will consider an approach to content relationship using set-
assignments which satisfy the principle of content compositionality.

2.2. Extensions of the relatedness relation

Aside from reflexivity, Epstein [1979, p. 141, 1990, pp. 65–67] proposes
other relational conditions which in his opinion are natural in the con-
text of analysis of the broadly understood content relationship. As a
consequence, any relation which satisfies such conditions will be called a
relatedness relation of content.

3 Usually, the domain of the consequence relation is the power set of the set of
formulae; however, in our example the domain is restricted to the set of formulae.
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By a relatedness relation of content (for short: an r-relation) we will
mean a relation R ⊆ LE × LE which satisfies the following conditions:

∀A∈LE
R(A, A), (r1)

∀A,B∈LE
(R(A, ¬B) iff R(A, B)), (r2)

∀A,B,C∈LE
(R(A, B ∧ C) iff R(A, B → C)), (r3)

∀A,B,C∈LE
(R(A, B ∧ C) iff (R(A, B) or R(A, C))), (r4)

∀A,B∈LE
(R(¬A, B) iff R(A, B)), (r5)

∀A,B,C∈LE
(R(A ∧ B, C) iff R(A → B, C)), (r6)

∀A,B,C∈LE
(R(A ∧ B, C) iff (R(A, C) or R(B, C))). (r7)

The following studies selected r-relation properties. To begin, it
should be noted that formulae are in the r-relation when some of the
propositional variables from these formulae are in this r-relation. Ob-
viously, a restriction of an arbitrary r-relation to Var is a relatedness
relation.

Fact 2.1 (Epstein, 1990, p. 67, Lemma 1). Let R be an r-relation. Then,

for any A, B ∈ LE, R(A, B) iff ∃a∈var(A)∃b∈var(B)R(a, b).

The equivalence stated in Fact 2.1 also holds for relations which are
not reflexive yet satisfy all the remaining conditions of an r-relation.
With reference to the equivalence from Fact 2.1, there is a simple method
to extend any relatedness relation to an r-relation.

Fact 2.2. Let Q be a relatedness relation and R ⊆ LE × LE be an

extension of Q onto LE, defined for any A, B ∈ LE as follows: R(A, B) iff

∃a∈var(A)∃b∈var(B) Q(a, b). The R is an r-relation.

Proof. For (r1). By the definition of relatedness relation, for any
A ∈ var(A), Q(A, A). Thus, ∃a∈var(A)∃b∈var(A)Q(a, b). Consequently,
R(A, A).

For (r2). We have: R(A, ¬B), by the definition of R, iff ∃a∈var(A)

∃b∈var(¬B)Q(a, b), by the equality var(¬B) = var(B), iff ∃a∈var(A)∃b∈var(B)

Q(a, b), by the definition of R, iff R(A, B).
For (r3). We have: R(A, B ∧ C), by the definition of R, iff ∃a∈var(A)

∃b∈var(B ∧ C)Q(a, b), by the equality var(B ∧ C) = var(B) ∪ var(C) =
var(B → C), iff ∃a∈var(A)∃b∈var(B →C)Q(a, b), by the definition of R, iff
R(A, B → C).

For (r4). We have: R(A, B ∧ C), by the definition of R, iff ∃a∈var(A)

∃b∈var(B ∧ C)Q(a, b), by the equality var(B ∧ C) = var(B) ∪ var(C), iff
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∃a∈var(A)∃b∈var(B) ∪ var(C)Q(a, b), by the definition of the union and the
laws of classical logic, iff (∃a∈var(A)∃b∈var(B)Q(a, b) or ∃a∈var(A)∃b∈var(C)

Q(a, b)), by the definition of R, iff (R(A, B) or R(A, C)).
For (r5), (r6), and (r7), respectively, we make a similar argument as

for (r2) (r3), and (r4). ⊣

In order to express the content relationship between sentences, un-
derstood as the common part (overlap) of the sentence content (A),
Epstein [1990, pp. 61–68] refers to a symmetric r-relation (for short: an
sr-relation), i.e., an r-relation that is symmetric. A relation R ⊆ LE×LE

is symmetric iff the following condition holds:

∀A,B∈LE
(R(A, B) ⇒ R(B, A)). (r8)

The following fact defines the minimal set of conditions which must
be met by an sr-relation:

Fact 2.3. R is an sr-relation iff R satisfies conditions (r1)–(r4) and (r8).

Proof. “⇒” Obvious.
“⇐” Let R satisfy conditions (r1)–(r4) and (r8). Then, for any

A, B ∈ LE: R(¬A, B), by condition (r8), iff R(B, ¬A), by condition (r2),
iff R(B, A), and by condition (r8), iff R(A, B). Therefore, R satisfies
conditions (r5). The proof that R satisfies conditions (r6) and (r7) is
similar; one only needs to refer to conditions (r3), (r4), and (r8). ⊣

In order to prove that there is a way to represent content relationship
(A) by means of sr-relations we will define a certain set-assignment.4 Let
R be an sr-relation. The sR : LE −→ P(LE + LE) function is defined as
follows:

sR(A) := {{A, B} ∈ LE + LE : R(A, B)}.

The following fact holds:

Fact 2.4 (Epstein, 1990, p. 68, Lemma 2). Let R be an sr-relation.

Then, for any A, B ∈ LE, R(A, B) iff sR(A) ∩ sR(B) 6= ∅.

A similar analysis can be performed for an r-relation, which does not
have to be symmetric. To this end we define two set-assignments for the
same r-relation.5

4 Epstein [1990, p. 68] calls this function subject matter set-assignment associated

with R, where R is an sr-relation.
5 This approach has been proposed by Krajewski [1991, pp. 19–20].
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Let R be an r-relation. The s1R, s2R : LE −→ P(LE × LE) functions
are defined as follows:

s1R(A) := {〈A, B〉 ∈ LE × LE : R(A, B)},

s2R(A) := {〈B, A〉 ∈ LE × LE : R(B, A)}.

Similar to an sr-relation, a relation which is an r-relation but is not
symmetric allows us to express content relationship understood as the
common part of the sentence content:

Fact 2.5. Let R be an r-relation. Then, for any A, B ∈ LE, R(A, B) iff

s1R(A) ∩ s2R(B) 6= ∅.

Proof. “⇒” Assume that R(A, B). Using the definition of s1R, s2R,
〈A, B〉 ∈ s1R(A), and 〈A, B〉 ∈ s2R(B). So s1R(A) ∩ s2R(B) 6= ∅.

“⇐” Assume that s1R(A) ∩ s2R(B) 6= ∅. Therefore, X ∈ s1R(A) and
X ∈ s2R(B), for some X ∈ LE × LE. By the definition of s1R, s2R,
X = 〈A, C〉 and X = 〈D, B〉. Thus, A = D and B = C. Hence
X = 〈A, B〉. Consequently, using the definition of s1R, s2R, R(A, B). ⊣

From here we can move onto the representation of content rela-
tionship understood as the inclusion of sentence content in the sense
of (B1)–(B3). Following Epstein’s [1990] example, one can define a
content dependence relation, a dual content dependence relation and
a content equality relation. It is worth mentioning that Epstein [1990,
p. 122, Lemma 1; p. 137, Theorem 9] defines the content dependence
relation and the content equality relation indirectly by using union set-
assignment (see Section 2.3). In turn, the dual content dependence rela-
tion is understood as the converse of the content dependence relation in
its original formulation. In the proposed description, we will begin with
the relational approach before employing the functional approach on a
subsequent basis.

By a content dependence relation (for short: a d-relation), we mean
a relation R ⊆ LE × LE which satisfies (r1) (reflexivity) as well as the
following conditions:

∀A,B,C∈LE
((R(A, B) and R(B, C)) ⇒ R(A, C)), (d1)

∀A,B,C∈LE
(R(A, B ∧ C) iff (R(A, B) and R(A, C))), (d2)

∀A,B,C∈LE
(R(A, B → C) iff (R(A, B) and R(A, C))), (d3)

∀A∈LE
R(¬A, A), (d4)

∀A∈LE
R(A, ¬A). (d5)
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The content dependence relation allows the representation of a relation-
ship understood as the inclusion of sentence content (B1).

Note that if an r-relation satisfied condition (d1), i.e., if it was a
transitive r-relation, then given conditions (r1), (r4), and (r7) it would be
a universal relation [cf. Epstein, 1990, p. 76]. By (r1), R(A, A) and R(B,

B). By (r4) and (r7), (R(A, A) or R(A, B)) ⇒ R(A, A∧B) and (R(A, B)
or R(B, B)) ⇒ R(A ∧ B, B) respectively. Hence, R(A, A ∧ B) and R(A
∧ B, B). By transitivity (d1), R(A, B).

The following fact shows some similarities between a d-relation and
an r-relation, and also shows that condition (r1) in the definition of a
d-relation can be skipped.

Fact 2.6. Let R ⊆ LE × LE. Then:

1. if R satisfies conditions (d1), (d4), and (d5), then it also satisfies

conditions (r1), (r2), and (r5);
2. if R satisfies conditions (r1), (r2), and (r5), then it also satisfies con-

ditions (d4) and (d5).

Proof. For 1. By (d1), (R(A, ¬A) and R(¬A, A)) ⇒ R(A, A). Hence,
by (d5) and (d4), R(A, A). By (d1), (R(A, B) and R(B, ¬B)) ⇒ R(A,

¬B). Thus R(B, ¬B) ⇒ (R(A, B) ⇒ R(A, ¬B)). Consequently, by
(d5), R(A, B) ⇒ R(A, ¬B) and by (d1), (R(A, ¬B) and R(¬B, B)) ⇒
R(A, B). Hence R(¬B, B) ⇒ (R(A, ¬B) ⇒ R(A, B)). Thus, by (d4),
R(A, ¬B) ⇒ R(A, B). Consequently, R(A, ¬B) iff R(A, B). A similar
argument proves (r5).

For 2. By (r2), R(A, A) iff R(A, ¬A). Thus, by (r1), R(A, ¬A). A
similar argument proves (d5). ⊣

Unlike an r-relation, a d-relation cannot by characterised by the re-
latedness relation and quantifying propositional variables (cf. Fact 2.1),
although its restriction to propositional variables is obviously a related-
ness relation. However, the following fact holds:

Fact 2.7 (cf. Epstein, 1990, p. 123, Lemma 2). Let R be a d-relation.

Then, for any A, B ∈ LE, R(A, B) iff ∀a∈var(B)R(A, a).

Proof. Let A ∈ LE. The proof will be by induction on the complexity
of the LE formulae.

Initial step. Let B ∈ LE and c(B) = 0. Consequently, var(B) = {B}.
It follows that R(A, B) iff ∀a∈var(B)R(A, a).
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Inductive hypothesis. Let n ∈ N. Assume that for any B ∈ LE, if
c(B) ¬ n, then (R(A, B) iff ∀a∈var(B)R(A, a)).

Inductive step. Let B ∈ LE and c(B) = n+1. Consider the following
cases of formula construction in LE:

Let B = ¬C. Then: R(A, B) iff R(A, ¬C), given Fact 2.6.2, iff
R(A, C), by the inductive hypothesis, iff ∀a∈var(C)R(A, a), by the equality
var(¬C) = var(C), iff ∀a∈var(¬C)R(A, a).

Let B = C ∗D, where ∗ ∈ {∧, →}. Then: R(A, B) iff R(A, C ∗D), by
(d2) and (d3), iff (R(A, C) and R(A, D)), by the inductive hypothesis,
iff (∀a∈var(C)R(A, a) and ∀a∈var(D)R(A, a)), by the laws of classical logic,
iff ∀a((a ∈ var(C) ⇒ R(A, a)) and (a ∈ var(D) ⇒ R(A, a))), by the
laws of classical logic, iff ∀a((a ∈ var(C) or a ∈ var(D)) ⇒ R(A, a)), by
the definition of the union, iff ∀a(a ∈ var(C) ∪ var(D) ⇒ R(A, a)), by
equality var(C ∗ D) = var(C) ∪ var(D), iff ∀a∈var(C∗D)R(A, a). ⊣

We can prove that a relation that is reflexive, transitive, and satisfies
the condition stated in Fact 2.7 is a d-relation.

Fact 2.8 (cf. Epstein, 1990, p. 123, Lemma 2). Let R ⊆ LE ×LE satisfy

conditions (r1), (d1) and (†): for any A, B ∈ LE, R(A, B) iff for any

a ∈ var(B) we have R(A, a). Then R is a d-relation.

Proof. For (d2), (d3). Let ∗ ∈ {∧, →}. We have: R(A, B ∗ C), by
(†), iff ∀a∈var(B∗C)R(A, a), by equality var(B ∗ C) = var(B) ∪ var(C), iff
∀a∈var(B)∪var(C)R(A, a), by the sum definition and the laws of classical
logic, iff ∀a((a ∈ var(B) or a ∈ var(C)) ⇒ R(A, a)), by the laws of clas-
sical logic, iff ∀a((a ∈ var(B) ⇒ R(A, a)) and (a ∈ var(C) ⇒ R(A, a))),
by the laws of classical logic, iff (∀a∈var(B)R(A, a) and ∀a∈var(C)R(A, a)),
by (†), iff (R(A, B) and R(A, C)).

For (d4). We have: R(¬A, ¬A), by (†), iff ∀a∈var(¬A)R(¬A, a), by
equality var(¬A) = var(A), iff ∀a∈var(A)R(¬A, a), by (†), iff R(¬A, A).
By (r1) R(¬A, ¬A), so R(¬A, A).

For (d5) we make a similar argument as for (d4). ⊣

In order to show that a d-relation allows for the expression of content
relationship understood as inclusion (B1), it is necessary to define an
appropriate function which is an example of set-assignment. Let R be
a d-relation. The tR : LE −→ P(LE) function is defined as follows:

tR(A) := {B ∈ LE : R(B, A)}.
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The tR : LE −→ P(LE) function is defined as follows:

tR(A) := LE \ tR(A).

The definitions of tR and tR are given by Epstein [1990, p. 122, Lemma 1].
The following fact holds:

Fact 2.9 (Epstein, 1990, p. 122, Lemma 1). Let R be a d-relation. Then,

for any A, B ∈ LE, R(A, B) iff tR(B) ⊆ tR(A).

From here we can define the dual content dependence relation. In this
study a dual content dependence relation (for short: a dd-relation) refers
to a relation R ⊆ LE × LE which satisfies the following conditions: (r1)
(reflexivity), (d1) (transitivity), (d4), and (d5) (dependence between the
formula and its negation). It also needs to satisfy the following further
conditions:

∀A,B,C∈LE
(R(A ∧ B, C) iff (R(A, C) and R(B, C))), (dd1)

∀A,B,C∈LE
(R(A → B, C) iff (R(A, C) and R(B, C))). (dd2)

The dd-relation is designed to allow for the representation of relatedness
understood as the inclusion of sentence content (B2).6

It is easy to see that the converse of a d-relation is a dd-relation.
Consequently, for a given dd-relation we can define the counterparts of
Facts 2.7 and 2.8. To do so, it suffices to modify the condition stated
in Fact 2.7, so also condition (†) in Fact 2.8, as follows (‡): for any
A, B ∈ LE, R(A, B) iff for any a ∈ var(A) we have R(a, B).

As can be seen, (‡) differs from (†) only in the order of quantification:
instead of quantifying over the propositional variables of the second ar-
gument of the relation, we now quantify over the propositional variables
of the first argument.

By modifying the definitions of functions tR and tR, we obtain func-
tions which preserve an appropriate relationship with respect to the
dd-relation. Functions uR : LE −→ P(LE) and uR : LE −→ P(LE) are
defined as follows:

uR(A) := {B ∈ LE : R(A, B)},

uR(A) := LE \ uR(A).

6 It is important to note that Epstein does not introduce the notion of dual
content dependence relation. Nonetheless, he does define a dual version of logic defined
by means of d-relations by modifying the truth-condition for an implication. This logic
may be defined directly using dd-relations (see Section 2.5).
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The following fact holds:

Fact 2.10. Let R be a dd-relation. Then, for any A, B ∈ LE, R(A, B) iff

uR(A) ⊆ uR(B).

Proof. “⇒” Assume that R(A, B) and that C ∈ uR(A). If C 6∈ uR(B),
then C ∈ uR(B). Thus, R(B, C). Hence, by (d1), R(A, C).

“⇐” Assume that uR(A) ⊆ uR(B). Thus, by (r1), B 6∈ uR(A). Con-
sequently, R(A, B). ⊣

The final example of an extension of the relatedness relation analysed
by Epstein is the content equality relation. Here, the term content equal-

ity relation (for short: an eq-relation) refers to a relation R ⊆ LE × LE

which satisfies the following conditions: (r1) (reflexivity), (r8) (symme-
try), (d1) (transitivity), and (d5) (dependence between the formula and
its negation). It is also required to satisfy several further conditions:

∀A,B,C∈LE
(R(A, B) ⇒ R(A ∧ C, B ∧ C)), (eq1)

∀A,B∈LE
R(A ∧ B, B ∧ A), (eq2)

∀A,B∈LE
R(A → B, A ∧ B), (eq3)

∀A,B,C∈LE
R(A ∧ (B ∧ C), (A ∧ B) ∧ C), (eq4)

∀A,B,C,D∈LE
((R(A, B ∧ C) and R(B, A ∧ D)) ⇒ R(A, B)), (eq5)

∀A∈LE
R(A, A ∧ A). (eq6)

The content equality relation is designed to allow the representation
of a relationship understood as sentence content equality (B3).7 In order
to prove that this approach is correct, Epstein defines an auxiliary d-
relation using an eq-relation.

Let R to be an eq-relation. The relation RR ⊆ LE × LE is defined for
any A, B ∈ LE as follows:

RR(A, B) iff ∃C∈LE
(B ∈ sub(C) and R(A, C)).

The following fact therefore holds:

Fact 2.11 (Epstein, 1990, p. 138, Lemma 11). If R is an eq-relation,

then RR is a d-relation.

7 Similar to the d-relation, Epstein [1987, 1990] defines the content equality re-
lation using union set-assignment (see Section 2.3). He also demonstrates that this
relation may be determined through conditions (r1), (r8), (d1), (d5), and (eq1)–(eq6).
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In the following fact, some additional properties of the eq-relation
are specified:

Fact 2.12. If R is an eq-relation, the following conditions are satisfied:

1. ∀A,B,C,D∈LE
((R(A, B) and R(C, D)) ⇒ R(A ∧ C, B ∧ D)),

2. ∀A,B,C∈LE
(R(A, B ∧ C) ⇒ R(¬A, B ∧ ¬C)),

3. ∀A,B,C∈LE
(R(A, B ∧ A) ⇒ R(A ∧ C, B ∧ (A ∧ C))),

4. ∀A,B,C∈LE
(R(A, B ∧ A) ⇒ R(C ∧ A, B ∧ (C ∧ A))),

5. ∀A,B,C∈LE
(R(A, B ∧ A) ⇒ R(A → C, B ∧ (A → C))),

6. ∀A,B,C∈LE
(R(A, B ∧ A) ⇒ R(C → A, B ∧ (C → A))),

7. ∀A∈LE
∀B∈sub(A)R(A, B ∧ A).

Proof. For 1 see [Epstein, 1990, p. 137, Lemma 10].

For 2. Assume that R(A, B ∧ C). By (r8), (d5), and (d1) R(¬A, B ∧
C). By (r1) R(B, B), and by (d5) R(C, ¬C). Thus, by 1, R(B ∧ C, B ∧
¬C). Hence, by (d1), R(¬A, B ∧ ¬C).

For 3. Assume that R(A, B ∧ A). By (r1) R(C, C). Thus, by 1,
R(A ∧ C, (B ∧ A) ∧ C). By (eq4) and (r8) R((B ∧ A) ∧ C, B ∧ (A ∧ C)).
Hence, by (d1), R(A ∧ C, B ∧ (A ∧ C)).

For 4 we make a similar argument as for 3.

For 5. Assume that R(A, B → A). By (eq3) and (d1) R(A, B ∧ A).
An argument similar to that for 3 yields R(A ∧ C, B ∧ (A ∧ C)). Thus,
by (eq3), (r8), and (d1), R(A → C, B ∧ (A ∧ C)). By (r1), (eq3), and 1,
R(B ∧ (A ∧ C), B ∧ (A → C)). Hence, by (d1), R(A → C, B ∧ (A → C)).

For 6 we make a similar argument as for 5.

For 7. The argument is by induction on the complexity of formulae.

Initial step. Let A ∈ LE and c(A) = 0. By (eq6) R(A, A ∧ A).

Inductive hypothesis. Let n ∈ N. Assume that for any A ∈ LE, if
c(A) ¬ n, then for any B ∈ sub(A), R(A, B ∧ A).

Inductive step. Let A ∈ LE and c(A) = n + 1. Consider the con-
struction of formulae in LE.

Let A = ¬C. By (eq6) R(¬C, ¬C ∧ ¬C). Let B ∈ sub(C). By the
inductive hypothesis R(C, B ∧ C). Thus, by 2, R(¬C, B ∧ ¬C).

Let A = C ∗ D, where ∗ ∈ {∧, →}. By (eq6) R(C ∗ D, (C ∗ D) ∧ (C ∗
D)). Let C′ ∈ sub(C) and D′ ∈ sub(D). By the inductive hypothesis
R(C, C′ ∧ C) and R(D, D′ ∧ D). Thus, by 3–6, R(C ∗ D, C′ ∧ (C ∗ D))
and R(C ∗ D, D′ ∧ (C ∗ D)). ⊣
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From here we should return to the problem of representation by
means of eq-relations of content relationship. Facts 2.9, 2.11, and 2.12.7
provide the following conclusion:

Fact 2.13 (cf. Epstein, 1990, pp. 138–139). If R is an eq-relation, for

any A, B ∈ LE, R(A, B) iff tRR
(A) = tRR

(B).

Proof. “⇒” Assume that R(A, B). Since the eq-relation is symmetric,
then using (r8) we can obtain R(B, A). Therefore, by the definition of
RR, RR(A, B) and RR(B, A). Given Fact 2.11, RR is a d-relation. Hence,
by Fact 2.9, tRR

(A) = tRR
(B).

“⇐” Assuming that tRR
(A) = tRR

(B), by Fact 2.9, RR(A, B) and
RR(B, A). Hence R(A, C), where B ∈ sub(C) for some C ∈ LE and
R(B, D), where A ∈ sub(D) for some D ∈ LE. By (d1) and Fact 2.12.7,
R(A, B ∧ C) and R(B, A ∧ D). Hence, by (eq5), R(A, B). ⊣

2.3. Union set-assignment

In his considerations on content relationship and in the content rela-
tionship logics that follow Epstein [1979, 1990] accepts the principle of
content compositionality (with the exception of the logic DPC). As per
this principle, the content of a compound sentence may be determined
by the content of its components.

Epstein [1990, pp. 99–100] does not accept the principle of content
compositionality uncritically; in his opinion it is not certain whether
this principle should be true globally, i.e., in the case of an arbitrary
understanding of content and content relationship. However, he states
that in cases when it is not satisfied:

there is (or should be) some underlying, more primitive notion to which
contents can be reduced and which satisfies a functional relation be-
tween the part and the whole. [Epstein, 1990, p. 100]

In order to formally account for the principle of content composition-
ality Epstein introduces the notion of a union set-assignment, i.e., a
set-assignment s : LE −→ P(S) which satisfies the following condition
for any A ∈ LE:

s(A) =
⋃

{s(a) ∈ P(S) : a ∈ var(A)}.

Following Epstein [1990, pp. 65–68], it is important to highlight that the
union set-assignment satisfies the following equations:
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s(¬A) = s(A),

s(A ∗ B) = s(A) ∪ s(B),

where A, B ∈ LE and ∗ ∈ {∧, →}. Thus, the union set-assignment does
not allow for a representation of such an approach to content according
to which the content of a compound sentence is influenced not only by
the arity of the connective upon which the sentence is built but also by
which specific connective is used to form the sentence.

In order to analyse the content relationship understood as the in-
tersection (overlap) of sentence content (A), Epstein proposes the use
of a non-empty union set-assignment, i.e., a union set-assignment s :
LE −→ P(S) such that for any A ∈ Var, s(A) 6= ∅.

Let s : LE −→ P(S) be a non-empty union set-assignment. The
relation Rs ⊆ LE × LE is defined as follows:

Rs(A, B) iff s(A) ∩ s(B) 6= ∅.

Using this approach the following fact holds:

Fact 2.14 (Epstein, 1990, p. 69, Lemma 3). If s : LE −→ P(S) is a

non-empty union set-assignment, then Rs satisfies conditions (r1)–(r4)
and (r8), i.e., Rs is an sr-relation.

At this point it is important to distinguish some non-empty union set-
assignments. By a K-pair of non-empty union set-assignments (for short:
a K-pair) we mean an ordered pair 〈s1, s2〉 such that s1, s2 : LE −→
P(LE × LE) are non-empty union set-assignments and for any a ∈ Var

the following conditions are satisfied:

s1(a) ⊆ {a} × LE,

s2(a) ⊆ LE × {a},

〈a, a〉 ∈ s1(a) ∩ s2(a).

The above definition of a K-pair is based on the analysis of Krajewski
[1991, pp. 19–20].

Let 〈s1, s2〉 be a K-pair. The relation R〈s1,s2〉 ⊆ LE × LE is defined
as follows:

R〈s1,s2〉(A, B) iff s1(A) ∩ s2(B) 6= ∅.

The resulting relation is an r-relation which does not have to be sym-
metric:

Fact 2.15. If 〈s1, s2〉 is a K-pair, then R〈s1,s2〉 satisfies conditions (r1)–
(r7), i.e., R〈s1,s2〉 is an r-relation.
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Proof. For (r1). By the definition of a K-pair, s1(A) ∩ s2(A) 6= ∅.
Hence, by the definition of R〈s1,s2〉, R〈s1,s2〉(A, A).

For (r2). We have: R〈s1,s2〉(A, B), by the definition of R〈s1,s2〉, iff
s1(A)∩s2(B) 6= ∅, by the definition of union set-assignment, iff s1(¬A)∩
s2(B) 6= ∅, by the definition of R〈s1,s2〉, iff R〈s1,s2〉(¬A, B).

For (r3). We have: R〈s1,s2〉(A, B ∧ C), by the definition of R〈s1,s2〉,
iff s1(A) ∩ s2(B ∧ C) 6= ∅, by the definition of union set-assignment, iff
s1(A) ∩ (s2(B) ∪ s2(C)) 6= ∅ iff s1(A) ∩ s2(B → C) 6= ∅, by the definition
of R〈s1,s2〉, iff R〈s1,s2〉(A, B → C).

For (r4). We have: R〈s1,s2〉(A, B ∧ C), by the definition of R〈s1,s2〉,
iff s1(A) ∩ s2(B ∧ C) 6= ∅, by the definition of union set-assignment, iff
s1(A) ∩ (s2(B) ∪ s2(C)) 6= ∅, by the distributivity of intersection over
sum, iff (s1(A)∩s2(B))∪ (s1(A)∩s2(C)) 6= ∅, by the definition of union,
iff ((s1(A) ∩ s2(B)) 6= ∅ or (s1(A) ∩ s2(C)) 6= ∅), by the definition of
R〈s1,s2〉, iff (R〈s1,s2〉(A, B) or R〈s1,s2〉(A, C)).

For (r5), (r6), and (r7), respectively, we make a similar argument as
for (r2), (r3), and (r4). ⊣

Below we present the original approach to the content dependence
relation, its dual version, and the content equality relation introduced
by Epstein [1987, 1990].

Let s : LE −→ P(S) be a union set-assignment and ⋆ ∈ {⊇, ⊆, =}.
The relation R

⋆
s ⊆ LE × LE is defined as follows:

R
⋆
s(A, B) iff s(A) ⋆ s(B).

Consequently, we arrive at the following fact:

Fact 2.16 (Epstein, 1990, p. 122, Lemma 1, p. 137, Theorem 9). Let

s : LE −→ P(S) be a union set-assignment. Then:

1. R
⊇
s satisfies conditions (r1) and (d1)–(d5), i.e., R

⊇
s is a d-relation;

2. R
⊆
s satisfies conditions (r1), (dd1), (dd2), (d4), and (d5), i.e., R

⊆
s is a

dd-relation;
3. R

=
s satisfies conditions (r1), (r8), (d1), (d5), and (eq1)–(eq6), i.e., R

=
s

is an eq-relation.

2.4. Comparison of two approaches to the representation of content

In this section, we will demonstrate that the transition between the
relational approach and the functional approach does not lead to any loss
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of information regarding the content relationship of sentences. Firstly, it
is important to specify a fact relating to the content relationship analysed
using sr-relations:

Fact 2.17 (Epstein, 1990, p. 69, Lemma 4). 1. Let R be an sr-relation

and Q ⊆ LE × LE be a relation defined as follows:

Q(A, B) iff sR(A) ∩ sR(B) 6= ∅.

Then Q = R.

2. Let s : LE −→ P(S) be a non-empty union set-assignment and t : LE

−→ P(LE + LE) be a function defined as follows:

t(A) := {{A, B} ∈ LE + LE : Rs(A, B)},

i.e., t = sRs
. Then, for any A, B ∈ LE:

t(A) ∩ t(B) 6= ∅ iff s(A) ∩ s(B) 6= ∅.

A counterpart of Fact 2.17 also holds for an r-relation than does not
need to be symmetric:

Fact 2.18. 1. Let R be an r-relation and Q ⊆ LE × LE be a relation

defined as follows:

Q(A, B) iff s1R
(A) ∩ s2R

(B) 6= ∅.

Then Q = R.

2. Let 〈s1, s2〉 be a K-pair and t1, t2 : LE −→ P(LE×LE) be functions

defined as follows:

t1(A) := {〈A, B〉 ∈ LE × LE : R〈s1,s2〉(A, B)}

t2(A) := {〈B, A〉 ∈ LE × LE : R〈s1,s2〉(B, A)},

i.e., 〈t1, t2〉 = 〈s1R〈s1,s2〉
, s2R〈s1,s2〉

〉. Then, for any A, B ∈ LE:

t1(A) ∩ t2(B) 6= ∅ iff s1(A) ∩ s2(B) 6= ∅.

Proof. For 1. We have: Q(A, B), by the definition of Q, s1R
(A) ∩

s2R
(B) 6= ∅, by Fact 2.5, iff R(A, B).
For 2. By Fact 2.15 R〈s1,s2〉 is an r-relation. We have: t1(A)∩t2(B) 6=

∅, by the definition of t1, t2 and by Fact 2.5, iff R〈s1,s2〉(A, B), by the
definition of R〈s1,s2〉, iff s1(A) ∩ s2(B) 6= ∅. ⊣
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It should be emphasised that the above comparison is not a real com-
parison between the relational approach and the functional approach.
Indeed, with regards to the latter, in the previous section we only ac-
counted for union set-assignments. The sR functions where R is an
sr-relation and s1R, s2R where R is an r-relation are not that kind of
functions. However, this is not a problem because the definitions given
by Epstein can be modified easily. In the following discussion we will
define functions determined for appropriate relations, which will be union
set-assignments.

Let R be an sr-relation. The function sR↾Var is extended to a function
s
′
R onto the entire set LE. For any A ∈ LE, we define:

s
′
R(A) :=

⋃

{sR(a) ∈ P(LE + LE) : a ∈ var(A)}.

Function s
′
R is a non-empty union set-assignment. Moreover, the follow-

ing fact holds:

Fact 2.19. Let R be an sr-relation. Then, for any A, B ∈ LE, s
′
R(A) ∩

s
′
R(B) 6= ∅ iff sR(A) ∩ sR(B) 6= ∅.

Proof. “⇒” Assume that s
′
R(A) ∩ s

′
R(B) 6= ∅. If A = B, then using

(r1), R(A, B). Hence, by Fact 2.4, sR(A) ∩ sR(B) 6= ∅. Suppose that
A 6= B. By the initial assumption, there exist C, D ∈ LE such that
{C, D} ∈ s

′
R(A) ∩ s

′
R(B). Given the definition of s

′
R, let a ∈ var(A) and

b ∈ var(B) be such that that {C, D} ∈ s
′
R(a) = sR(a) and {C, D} ∈

s
′
R(b) = sR(b). Therefore, C = a and D = b, or C = b and D = a, or

C = a = b, or D = a = b. Thus, using the definitions of sR and the
sr-relation, either R(a, b) or R(b, a). If R(b, a), then R(a, b) because of
(r8). Hence, R(a, b). Therefore, ∃a∈var(A)∃b∈var(B)R(a, b) and, given 2.1,
R(A, B). Thus, by Fact 2.4, sR(A) ∩ sR(B) 6= ∅.

“⇐” Assume that sR(A) ∩ sR(B) 6= ∅. Hence, by Fact 2.4, R(A, B).
Therefore, by Fact 2.1, ∃a∈var(A)∃b∈var(B)R(a, b). Let a ∈ var(A), b ∈
var(B), and R(a, b). By (r8), R(b, a). Hence, by the definition of sR and
s
′
R, {a, b} ∈ sR(a) = s

′
R(a) and {a, b} ∈ sR(b) = s

′
R(b). Thus, using the

definition of s
′
R, s

′
R(A) ∩ s

′
R(B) 6= ∅. ⊣

The construction of an r-relation R that is not necessarily symmetric
is similar. The functions s1R↾Var and s2R↾Var are extended to s1′

R and
s2′

R, respectively, onto the entire set LE. For any A ∈ LE, we define:

s1′
R(A) :=

⋃

{s1R(a) ∈ P(LE × LE) : a ∈ var(A)},

s2′
R(A) :=

⋃

{s2R(a) ∈ P(LE × LE) : a ∈ var(A)}.
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The ordered pair 〈s1′
R, s2′

R〉 is a K-pair. Moreover, the following fact
holds:

Fact 2.20. Let R be an r-relation. For any A, B ∈ LE, s1′
R(A) ∩ s2′

R(B)
6= ∅ iff s1R(A) ∩ s2R(B) 6= ∅.

Proof. “⇒” Assume that s1′
R(A) ∩ s2′

R(B) 6= ∅. If A = B, then using
(r1), R(A, B). Hence, by Fact 2.5, s1R(A) ∩ s2R(B) 6= ∅. Suppose that
A 6= B. Given the initial assumption, there are C, D ∈ LE such that
〈C, D〉 ∈ s1′

R(A) ∩ s2′
R(B). By the definition of s1′

R, s2′
R let a ∈ var(A)

and b ∈ var(B) be such that 〈C, D〉 ∈ s1′
R(a) = s1R(a) and 〈C, D〉 ∈

s2′
R(b) = s2R(b). Hence, by the definition of s1R, s2R, C = a and D = b.

Thus, R(a, b). Therefore, ∃a∈var(A)∃b∈var(B)R(a, b). Consequently, by
Fact 2.1, R(A, B). Given the above, by Fact 2.5, s1R(A) ∩ s2R(B) 6= ∅.

“⇐” We now assume that s1R(A) ∩ s2R(B) 6= ∅. Hence, by Fact 2.5,
R(A, B). Therefore, by Fact 2.5, ∃a∈var(A)∃b∈var(B)R(a, b). Let a ∈
var(A), b ∈ var(B) and R(a, b). Hence, by the definition of s1R, s2R and
s1′

R, s2′
R, 〈a, b〉 ∈ s1R(a) = s1′

R(a) and 〈a, b〉 ∈ s2R(b) = s2′
R(b). Thus,

according to the definition of s1′
R, s2′

R, s1′
R(A) ∩ s2′

R(B) 6= ∅. ⊣

The presented analysis of content relationship understood as inclu-
sion of content has been stated in both the relational and functional
language. Therefore, also in this case one might enquire about the
preservation of information on the content relationship when passing
from the relational to the functional approach or vice versa. Firstly, we
will examine the content relationship understood as inclusion (B1).

Fact 2.21. 1. Let R be a d-relation and Q ⊆ LE × LE be a relation

defined as follows:

Q(A, B) iff tR(B) ⊆ tR(A).

Then Q = R.

2. Let s : LE −→ P(S) be a union set-assignment and t : LE −→
P(LE) be a function defined as follows:

t(A) := LE \ t
R

⊇
s

(A),

i.e., t = t
R

⊇
s

. Then, for any A, B ∈ LE:

t(A) ⊆ t(B) iff s(A) ⊆ s(B).
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Proof. For 1. Follows from Fact 2.9.
For 2. By Fact 2.16.1 R

⊇
s is a d-relation. We have: t(A) ⊆ t(B), by

the definition of t and by Fact 2.9, iff R
⊇
s (B, A), by the definition of R

⊇
s ,

iff s(A) ⊆ s(B). ⊣

The case of content relationship understood as inclusion in the sense
of (B2) is analogous:

Fact 2.22. 1. Let R be a dd-relation and Q ⊆ LE × LE be a relation

defined as follows:

Q(A, B) iff uR(A) ⊆ uR(B).

Then Q = R.

2. Let s : LE −→ P(S) be a union set-assignment and t : LE −→
P(LE) be a function defined as follows:

t(A) := LE \ u
R

⊆
s

(A),

i.e., t = u
R

⊆
s

. Then, for any A, B ∈ LE:

t(A) ⊆ t(B) iff s(A) ⊆ s(B).

Proof. For 1. Follows from Fact 2.10.
For 2. Given Fact 2.16.2, R

⊆
s is a dd-relation. Here, we have t(A) ⊆

t(B), by the definition of t and by Fact 2.10, iff R
⊆
s (A, B), by the defini-

tion of R
⊆
s , iff s(A) ⊆ s(B). ⊣

The case of content relationship understood as equality in the sense
of point (B3) is similar:

Fact 2.23. 1. Let R be an eq-relation and Q ⊆ LE × LE be a relation

defined as follows:

Q(A, B) iff tRR
(A) = tRR

(B).

Then Q = R.

2. Let s : LE −→ P(S) be a union set-assignment and t : LE −→
P(LE) be a function defined as follows:

t(A) := LE \ tRR=
s

,

i.e., t = tRQ
. Then, for any A, B ∈ LE:

t(A) = t(B) iff s(A) = s(B).
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Proof. For 1. Follows from Fact 2.13.
For 2. By Fact 2.16.3 R

=
s is an eq-relation. We have: t(A) = t(B),

by the definition of t and by Fact 2.13, iff R
=
s (A, B), by the definition of

R
=
s , if s(A) = s(B). ⊣

Let us notice that functions we use in the comparison of relational
and functional approach to analysis of content relationship understood
as inclusion of content are union set-assignments. We have the following
fact:

Fact 2.24. If R is a d-relation, then tR is a union set-assignment.

Proof. Let A, B ∈ LE. We have: B ∈
⋃

{tR(a) ∈ P(LE) : a ∈
var(A)} iff ∃a∈var(A)B ∈ tR(a), by definition of tR, iff ∃a∈var(A)B 6∈ uR(a),
by definition of tR, iff ∃a∈var(A)∼R(B, a), by law of classical logic, iff
∼∀a∈var(A)R(B, a), by Fact 2.7, iff ∼R(B, A), by definition of tR, iff
B 6∈ tR(A), by definition of tR, iff B ∈ tR(A). ⊣

The counterpart of Fact 2.24 obviously holds for dd-relation, so we
can prove the following fact:

Fact 2.25. If R is a dd-relation, then uR is a union set-assignment.

Proof. We make a similar argument as for Fact 2.24, we use (‡) and
the counterpart of Fact 2.7. ⊣

2.5. Epstein’s Logic (Goal 1)

Point 2 of Epstein’s Programme states that the first goal (see goal 1) of
the programme is to introduce propositional logics based on the analysis
of content relationship. Epstein [1979] [see also Epstein, 1987, 1990;
Krajewski, 1991] determines two types of such logics in the language LE.
These logics, which may be considered to be special cases of the relating
logic (see Section 3.1), are as follows:
• relatedness logic: R and S (motivated by the concept of content

relationship as non-empty intersection of contents (A)),
• dependence logic: D, DD, Eq and DPC (motivated by the concept

of content relationship as inclusion of contents (B1)–(B3)).
Epstein’s logics may be determined either by relational semantics

or by functional semantics. The starting point is an introduction to the
notion of relational semantics, founded on models based on the extension
of the relatedness relation.
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By a model over an extension of relatedness relation (for short: an
err-model) we mean an ordered pair 〈v, R〉 such that v : Var −→ {1, 0} is
a valuation of propositional variables and R ⊆ LE × LE is an arbitrary
reflexive relation; in other words, R satisfies at least condition (r1).

An err-model 〈v, R〉 will be called:

• an r-model iff R is an r-relation,
• an sr-model iff R is an sr-relation,
• a d-model iff R is a d-relation,
• a dd-model iff R is a dd-relation,
• an eq-model iff R is an eq-relation,
• a cl-model iff R = |=LE

.

For any err-model M = 〈v, R〉 formula A ∈ LE is true in M (in
symb.: M |= A) iff for any B, C ∈ LE:

v(A) = 1, if A ∈ Var,

not M |= B (in symb.: M 6|= B), if A = ¬B,

M |= B and M |= C, if A = B ∧ C,

M 6|= B or M |= C, and R(B, C), if A = B → C.

The notions of semantic consequence and validity are defined in a
standard way with respect to the true formula in an err-model, i.e., for
any set X ∪ {A} ⊆ LE and any set of err-models M:

• A is valid in M iff ∀M∈MM |= A.
• A is a semantic consequence of X in M iff ∀M∈M(∀B∈XM |= B ⇒

M |= A).

The next step involves defining functional models. To this end, the
notion of model based on set-assignment is introduced below. In this
context, a model based on a set-assignment (for short: an sa-model)
refers to an ordered triple 〈v, s, t〉 where v : Var −→ {1, 0} is a valuation
of propositional variables, and s : LE −→ P(S) and t : LE −→ P(T ) are
set-assignments.

An sa-model 〈v, s, t〉 will be called:

• a u-model iff s = t and s is a union set-assignment,
• a nu-model iff s = t and s is a non-empty union set-assignment,
• a K-model iff 〈s, t〉 is a K-pair,
• a cn-model iff s = t and s = CnLE

.

Unlike in the case of relational semantics, we introduce different def-
initions of the notion of true formula in a model by providing different
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conditions for an implication to be true. For any sa-model M = 〈v, s, t〉,
formula A ∈ LE is true in M iff for any B, C ∈ LE:
• If A is a propositional variable or is constructed using negation ¬ or

conjunction ∧, we accept standard conditions:

v(A) = 1, if A ∈ Var,

not M |= B (in symb.: M 6|= B), if A = ¬B,

M |= B and M |= C, if A = B ∧ C.

• If A is constructed using implication →, we accept one of the follow-
ing conditions:

M 6|= B or M |= C, and s(B) ∩ t(C) 6= ∅, if A := B → C, (∩)

M 6|= B or M |= C, and s(B) ⊇ t(C), if A := B → C, (⊇)

M 6|= B or M |= C, and s(B) ⊆ t(C), if A := B → C, (⊆)

M 6|= B or M |= C, and s(B) = t(C), if A := B → C. (=)

Semantic consequence and validity for a given set of sa-models are
defined in a standard way, i.e., as above by assuming one or another
definition of truth in a model.

Let us now define Epstein’s logics:
• The logic R is defined by the set of all r-models. Moreover, we can

define it by the set of all K-models, accepting the definition of true
formulae in the model with condition (∩).

• The logic S is defined by the set of all sr-models. Moreover, we can
define it by the set of all nu-models, accepting the definition of true
formulae in the model with condition (∩).

• The logic D is defined by the set of all d-models. Moreover, we can
define it by the set of all u-models, accepting the definition of true
formulae in the model with condition (⊇).

• The logic DD is defined by the set of all dd-models. Moreover, we
can define it by the set of all u-models, accepting the definition of
true formulae in the model with condition (⊆).

• The logic Eq is defined by the set of all eq-models. Moreover, we can
define it by the set of all u-models, accepting the definition of true
formulae in the model with condition (=).

• The logic DPC is defined by the set of all cl-models. Moreover, we
can define it by the set of all cn-models, accepting the definition of
true formulae in the model with condition (⊇).8

8 Epstein [1990] also considers logics DPCn, for all n ­ 1. These logics are
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It should be emphasised that Epstein [1990] defines his relatedness
logic R only by means of relational models. Functional models for the
logic R may be defined based on Krajewski’s [1991] analysis. The depen-
dence logics, in turn, are defined mainly by functional models, although
Epstein [1987, 1990] notes that these logics can be defined by appropriate
relational models and specifies what relational conditions are needed for
that.

Below we will present selected results on relatedness logics and de-
pendence logics. Apart from those obtained by Epstein, which we have
already discussed, and those which will be described in the next section,
it is important to mention first and foremost the appropriate axiomati-
sation of the logics R and S presented in [Epstein, 1979] as well as that of
the logics D, DD and Eq presented in [Epstein, 1990]. Another important
result is the functional completeness of the set {¬, →}, which is proven
for the logics S and D [Epstein, 1990]. Moreover, for the dependence
logics D, DD and Eq, an algebraic interpretation has been found in [Ep-
stein, 1987]. In [Epstein, 1990] it has been shown that no many-valued
interpretation with a finite set of values exists for the following logics:
R, S, D, DD and Eq.

It is also worth mentioning Epstein’s work [Epstein, 2005] in which
he describes the so-called paraconsistent counterparts of logics S, D,
DD, and Eq, i.e., the logics PS, PD, PDD, and PEq. These logics are
obtained by modifying the notion of semantic consequence in the case
where there is a non-empty set of premises. Let X ∪ {A} ⊆ LE and
X 6= ∅. The following definitions apply:

• X |=PS A iff there exist B1, . . . Bn ∈ X such that for an arbitrary
nu-model 〈v, s〉 of the logic S:
– 〈v, s〉 |= X ⇒ 〈v, s〉 |= A,
– s(B1 ∧ . . . ∧ Bn) ∩ s(A) 6= ∅.

• X |=PD A iff there exist B1, . . . Bn ∈ X such that for an arbitrary
u-model 〈v, s〉 of the logic D:
– 〈v, s〉 |= X ⇒ 〈v, s〉 |= A,
– s(B1 ∧ . . . ∧ Bn) ⊇ s(A).

defined inductively. Firstly, DPC1 := DPC. Next, assume that DPCn is defined; the
semantic consequence relation (or respectively, the semantic consequence operation)
defined with respect to the class of models DPCn is denoted by |=DPCn

(CnDPCn
,

respectively). Therefore, DPCn+1 is defined in the same manner as DPC but with
models based on the relation |=DPCn

or the function CnDPCn
.
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• X |=PDD A iff there exist B1, . . . Bn ∈ X such that for an arbitrary
u-model 〈v, s〉 of the logic DD:
– 〈v, s〉 |= X ⇒ 〈v, s〉 |= A,
– s(B1 ∧ . . . ∧ Bn) ⊆ s(A).

• X |=PEq A iff there exist B1, . . . Bn ∈ X such that for an arbitrary
u-model 〈v, s〉 of the logic Eq:
– 〈v, s〉 |= X ⇒ 〈v, s〉 |= A,
– s(B1 ∧ . . . ∧ Bn) = s(A).

It is important to note that Epstein’s proposals correspond with the
deliberations on the so-called containment logics discussed in detail in
[Ferguson, 2017].

Epstein and Krajewski [2004] have also presented selected properties
of first order relatedness logic. An extension of relatedness logic to a
first order language was described for the first time in [Krajewski, 1986]
and later in [Krajewski, 1991]. The latter work defines set-assignments
with respect to r-relation, which provides a basis for defining sa-models
for the logic R. Epstein’s Programme is also formulated.

Proposed applications and philosophical foundations of relatedness
logic have been presented by Walton [1979a]. Obviously, the problem of
interpreting conditional sentences so as to account for the content rela-
tionship between sentences, is stated as the key motive for the creation of
Epstein’s logics. The problem of content relationship between sentences,
as well as attempts to express such relationships formally in a manner
similar to that of Epstein, has been discussed by Walton [1982] in terms
of argumentation theory and analysis of reasoning.

Furthermore, a critique of the possibilities of interpreting relatedness
logic as a theory of inference and understanding of the relatedness logic
implication as a certain description of the entailment was presented by
Iseminger [1986].

Walton [1979a] pointed out that the relatedness relation could also be
employed in epistemic logic. In his opinion, in order to eliminate the fun-
damental problem of epistemic logic, i.e., the so-called problem of logical
omniscience, one can replace the material implication with the implica-
tion of relatedness logic. The source of the problem would have been the
impossibility of differentiating in epistemic logic between sentences that
are content related and those that have nothing in common. Accord-
ing to Walton, the relatedness of sentences plays an important role in
epistemic contexts because an agent is not aware of all the consequences



608 Mateusz Klonowski

of its knowledge, being only aware of certain immediate consequences
which it can relate, in terms of content, to its own knowledge [cf. Fagin
and Halpern, 1988]. Moreover, in [Walton, 1979a] the author hinted at
the possibility of using the relatedness relation in formal action theory
for the analysis of causation and sequences of actions. This subject is
examined in further detail in [Walton, 1979b, 1985].

In [Walton, 1979a], the possibility of using the relatedness relation to
describe the analytic implication of William Parry according to Michael
Dunn’s approach was suggested for the first time. The work [Ledda,
Paoli and Baldi, 2019] is also related to this observation, presenting
various algebraic interpretations of a demodalized analytic implication
understood as an implication of the logic D. In an earlier period Paoli
alone presented a series of results related to Epstein’s logics. In [Paoli,
1996], for example, he provided constructive proof of completeness for the
logic S (for an alternative proof see Klonowski, 2018)9 and determined
the limited principle of substitution of equivalent formulae for S. An
analysis of the FDE-fragment of S in an algebraic, matrix, and axiomatic
setting is presented in [Paoli, 1993]. These results were extended to the
FDE-fragments of R, D, DD and Eq in [Paoli, 2007], which also includes
tableau systems for these FDE-fragments.

In the 1980s and 1990s, Epstein’s logics and other related logics were
described in various syntactic (proof-theoretic) ways. Aside from the ax-
iomatic systems introduced by Epstein, Carnielli [1987] defined tableau
systems for S, R, D, and DD. Meanwhile, Fariñas del Cerro and Lu-
gardon [1991] defined sequent systems for a certain modification of the
dependence logics D and DD, and Eq, determined by u-models defined
over a selected union set-assignment. In [Fariñas del Cerro and Lugar-
don, 1997] logics of this kind were extended onto a first order language
and sequent systems for these extensions were defined.

2.6. Set-assignment semantics for non-classical logics (Goal 2)

Point 2 of Epstein’s Programme states the second goal (see goal 2) of the
programme: to define a new type of semantics for various non-classical
logics motivated by an analysis of content relationship. An example

9 The Toruń Logic Group became familiar with Paoli’s works from [Paoli, 1993,
1996, 2007] as well as the works of his team from the University in Cagliari after
Jarmużek’s research stay in Cagliari in 2019.
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of such semantics is provided by a functional semantics based on set-
assignments, i.e., the set-assignment semantics, examples of which are
described in the previous section using the notion of a sa-model. Epstein
[1990] defines set-assignment semantics for the following non-classical
logics:
• modal logic: S4, S5, S4Grz, T, KTB (called the logic B by Epstein),

K, QT, G, G∗ (ch. VI, pp. 145–194);
• intuitionistic logic: IPL, Johansson’s MIL (ch. VII, pp. 195–228);
• multi-valued logic: Ł3, Łn, Łℵ0

, K3, G3, Gℵ0
(ch. VIII, pp. 229–262);

• paraconsistent logic: J3 (ch. IX, pp. 263–287).
As an example, we will now describe Epstein’s functional semantics

for the logics S4 and T. We will also make some comments on the models
for the logic K.

Consider the following modal language:

LM := 〈Var, ¬, ∧,�, (, )〉.

The set of formulae in LM is defined in a standard way and is denoted
by LM. We will use the following formula abbreviations:

A ⊃ B := ¬(A ∧ ¬B),

♦A := ¬�¬A.

It should be emphasised that Epstein [1990, pp. 145–149] also defines
modal logics using LE. In this case, implication → is meant to allow for
defining modality �:

�A := ¬A → A.

In order to define models for selected modal logics, Epstein introduces
the following conditions for the set-assignment s : LM −→ P(S), for any
A, B ∈ LM:

s(A ∧ B) = s(A) ∩ s(B),

s(¬A) = S \ s(A).

Any set-assignment which satisfies such conditions will be called a Boo-
lean set-assignment.

An arbitrary sa-model 〈v, o, s〉 will be called an m-model iff:
• o : LM −→ P(O) is a Boolean set-assignment,
• s : LM −→ P(S) is a Boolean set-assignment such that S ⊆ O.10

10 In this notation we use different letters to denote set-assignments because,
unlike the models for Epstein’s logics, in the models for certain modal logics o is an
auxiliary function via which the s function is defined.
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Let M = 〈v, o, s〉 be an m-model. The formula A ∈ LM is true in M

(in symb.: M |= A) iff for any B, C ∈ LM:

v(A) = 1, if A ∈ Var,

not M |= B (in symb.: M 6|= B), if A = ¬B,

M |= B and M |= C, if A = B ∧ C,

M |= B and s(B) = S, if A = �B.

In the case where Epstein defines modal logics in the LE language
the implication is understood as in the case of the logic DD, i.e.:

〈v, o, s〉 |= A → B iff 〈v, o, s〉 |= A ⊃ B and s(A) ⊆ s(B).

Using the abbreviation we have just introduced, we get:

〈v, o, s〉 |= �A iff 〈v, o, s〉 |= A and s(¬A) ⊆ s(A).

Of significance here is that in the case of Boolean set-assignment s we
have:

s(A) ⊆ s(B) iff s(A) ∩ s(¬B) = ∅.

With the condition s(A) ∩ s(¬B) = ∅ Epstein intends to say that the
contents of A and ¬B are mutually exclusive. Hence, by claiming that A

is necessary, we say that the contents of A and ¬A are mutually exclusive,
and by claiming that A is possible, we say that contents of A and ¬A are
not mutually exclusive. In other words, a necessary proposition excludes
its negation in terms of content, whereas a possible proposition does not
exclude its negation in terms of content.

The definition of truth in an m-model adopted by Epstein allows one
to prove the following fact:

Fact 2.26 (Epstein, 1990, p. 158, Lemma 2). Let M = 〈v, o, s〉 be an

m-model. Then, for any A, B ∈ LM:

1. if A is a classical tautology in LM, then M |= A and s(A) = S, i.e.,

M |= �A,

2. M |= �(A ⊃ B) ⊃ (�A ⊃ �B),
3. M |= �A ⊃ A.

As a result, we can see that the modal axioms (K) and (T) are always
true in an m-model and that any classical tautology must also be true.
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Let us now move on to defining m-models for logics S4 and T. In
what follows we will make reference to the standard understanding of
theorem of normal modal logic and to Kripke’s models for normal modal
logics. However, instead of valuations usually adopted in Kripke’s model,
like Epstein we will use valuations in the form of V : W −→ P(Var).
This change does not influence the truth of the theorem on soundness
and completeness for modal logics that can be expressed using Kripke’s
models.

By an m-model for S4 we will mean an m-model 〈v, o, s〉 such that
o = s and that s satisfies the following conditions:

s(�(A ⊃ B)) ⊆ s(�A ⊃ �B),

s(A) = S ⇒ s(�A) = S,

s(�A) ⊆ s(A),

s(�A) ⊆ s(��A).

Any m-model for S4 〈v, o, s〉 may be reduced to an ordered pair 〈v, s〉.
Epstein proves the following theorem on soundness for the logic S4:

Theorem 2.27 (Epstein, 1990, p. 166, Lemma 6). For any A ∈ LM, if A

is a theorem of S4, then for any m-model for S4 〈v, s〉, 〈v, s〉 |= A, and

s(A) = S.

In order to prove the theorem on completeness, Epstein determines
the way in which an m-model is defined with respect to Kripke’s model.

Let 〈W, Q, V 〉 be a Kripke’s model and let w ∈ W . Then an m-model

generated by 〈W, Q, V 〉 and w refers to an ordered pair 〈v, s〉 such that:
• S := {u ∈ W : Q(w, u)};
• for any A ∈ Var:

v(A) = 1 iff A ∈ V (w);

• for any A ∈ LM:

s(A) := {u ∈ W : Q(w, u) and 〈W, Q, V 〉, u |= A}.

Epstein also proves the following lemma:

Lemma 2.28 (Epstein, 1990, p. 166, Lemma 7a). Let 〈W, Q, V 〉 be a

reflexive and transitive Kripke’s model and w ∈ W . If 〈v, s〉 is an m-

model generated by 〈W, Q, V 〉 and w, then:

1. 〈v, s〉 is an m-model for S4,

2. for any A ∈ LM, 〈v, s〉 |= A iff 〈W, Q, V 〉, w |= A.
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By lemma 2.28 and the standard theorem on completeness, using
reflexive and transitive Kripke’s models, it is possible to obtain the fol-
lowing theorem on completeness for the logic S4:

Theorem 2.29 (Epstein, 1990, p. 166, Lemma 7b). For any A ∈ LM, if

A is not a theorem of S4, then there exists an m-model for S4 〈v, s〉 such

that 〈v, s〉 6|= A and s(A) 6= S.

Let us now define m-models for the normal modal logic T. By an
m-model for T we mean an m-model 〈v, o, s〉 such that s(A) := o(A) ∩ S

and o satisfies the following conditions:

o(�(A ⊃ B)) ⊆ o(�A ⊃ �B),

o(A) = O ⇒ o(�A) = O,

o(�A) ⊆ o(A).

Note that if o : LM −→ P(O) is a Boolean set-assignment then s : LM −→
P(S) such that s(A) := o(A) ∩ S is also a Boolean set-assignment.
Therefore, 〈v, o, s〉 is indeed an m-model.

The following theorem on the soundness for the logic T is proved:

Theorem 2.30 (Epstein, 1990, p. 173, Lemma 18). If A is a theorem of

T, then for any m-model for T 〈v, o, s〉, 〈v, o, s〉 |= A, and s(A) = S.

Epstein modifies the above method of defining an m-model with re-
gards to Kripke’s model. Let 〈W, Q, V 〉 be a Kripke’s model and w ∈ W ,
a modified m-model generated by 〈W, Q, V 〉 and w refers to an ordered
triple 〈v, o, s〉 in which:
• O = W ,
• S := {u ∈ W : Q(w, u)},
• for any A ∈ Var:

v(A) = 1 iff A ∈ V (w),

• for any A ∈ LM:

o(A) := {u ∈ W : 〈W, Q, V 〉, u |= A},

s(A) := o(A) ∩ S.

The following lemma is also proven within Epstein’s work:

Lemma 2.31 (Epstein, 1990, p. 173, Theorem 19). Let 〈W, Q, V 〉 be a

reflexive Kripke’s model and w ∈ W . If 〈v, o, s〉 is a modified m-model

generated by 〈W, Q, V 〉 and w, then:
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1. 〈v, o, s〉 is an m-model for T,

2. for any A ∈ LM, 〈v, o, s〉 |= A if 〈W, Q, V 〉, w |= A.

By the above lemma, Epstein proves the following theorem on com-
pleteness:

Theorem 2.32 (Epstein, 1990, p. 173, Theorem 19). For any A ∈ LM,

if A is not a theorem of T, then there exists an m-model for T 〈v, o, s〉
such that 〈v, o, s〉 6|= A and s(A) 6= S.

The final element considered within this section is the set-assignment
semantics defined for the logic K. Like before, Epstein makes use of m-
models; however, he modifies the definition of a truth in the model by
assuming the following condition for modal formulae:

〈v, o, s〉 |= �A iff s(A) = S.

In this case a question arises as to whether this interpretation is logi-
cally correct. From the syntactic perspective, modal operators are unary
proposition-creating functors. However, in line with the proposed inter-
pretation, modality is a certain type of predicate. Therefore, in these cir-
cumstances we are dealing with a certain category error. Of course, one
can eliminate this problem by assuming a predicative nature of modality,
but then one must also exclude any cases of modality iteration from the
modal language. This, in turn, excludes an analysis of modal logics
understood in a standard way.

3. The Torunian Programme of Relating Semantics

The Torunian Programme of Relating Semantics may be stated as follows
[cf. Jarmużek, 2021; Jarmużek and Kaczkowski, 2014]:

1. Main assumption: there are two sentence properties that are signifi-
cant for logical research: logical values of sentences (the extensional
aspect of logical research) and the connection of sentences in terms
of relationships that occur between that what these sentences refer
to (the non-extensional aspect of logical research).

2. Main goals: to introduce new logics motivated by various properties
because of which we may consider sentences to be related with each
other and the semantic analysis of known non-classical logics based
on the main assumption (see problems α–η).
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3. Main assumption of relating logics: the logical value of compound
sentences constructed using various connectives depends on:
• the logical values of component sentences,
• any form of relationship due to which the component sentences

may be considered to be related one to another.

At this point, it is worth noting that unlike Epstein’s Programme the
Torunian Programme advocates that all types of relationships by which
it may be said that certain sentences are related should be taken into
account. This translates to a huge variety of interpretations of connec-
tives. In particular, just as Epstein did, one may account for all sorts of
content relationships. However, there are also other relationships:

1. objective relationships, such as:
• temporal relationships, expressed in the following example: John

met Barbara and married her;
• causal relationships, expressed in the following example: if you

switch off the light, the room will be dark.
2. subjective relationships, such as:

• preference, expressed in the following example: Barbara drinks
coffee or tea, which she prefers; if John cleans the room, he will
go to the movies, although he would have preferred to only go to
the movies;

• justified beliefs, expressed in the following example: the result
was negative and that’s why, according to John, Peter is alright.

3. normative relationships, such as:
• lawfulness of conduct, expressed in the following example: if John

built a garage, he must have had a permit;
• morality of conduct, expressed in the following example: if John

helped Peter, he did the right thing.

Insights which were similar, at least to some extent, were presented by
Walton [1979a], who highlighted the possibility of using the relatedness
relation to analyse various relationships. However, in many cases the as-
sumption of reflexivity which is assumed in the case of the relatedness re-
lation will be at least non-intuitive. Moreover, the Torunian Programme
postulates not only an analysis of already existing philosophical propo-
sitional logics (relevance, temporal, causal, preference, epistemic, or de-
ontic), but first and foremost it advocates the introduction of some com-
pletely new logics of this kind. In the following section we will describe
selected results which exemplify the implementation of this postulate.
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3.1. A general approach to relating logic and semantics

Before we move on to describe the fundamental problems of relating
logic, we will present a general description referring to the approach
proposed by Jarmużek [2021]. To this end, let us consider a propositional
language, defined for any m, n ∈ N:

Lm,n := 〈Var, {πi : 1 ¬ i ¬ m}, {ρi : 1 ¬ i ¬ n}, {), (}〉,

where:
• {πi : 1 ¬ i ¬ m} and {ρi : 1 ¬ i ¬ n} are sets of logical connectives,
• {πi : 1 ¬ i ¬ m} ∩ {ρi : 1 ¬ i ¬ n} = ∅,
• {πi : 1 ¬ i ¬ m} ∪ {ρi : 1 ¬ i ¬ n} 6= ∅ (tj. m 6= 0 lub n 6= 0).

The set of Lm,n formulae is defined in a standard way and will be
denoted by Lm,n. This language is a general propositional language. The
first of the sets of connectives includes those connectives which we will
interpret extensionally, whereas the second includes those which we will
interpret in a relating manner. Therefore, these sets must be disjoint. As
can be seen, we also assume that at least one of these sets is non-empty.

Below, we will define the relating semantics and logic in a general
manner. This approach will be an interpretation of the language Lm,n.

The first element of relating semantics is the valuation of proposi-
tional variables, i.e., a function v : Var −→ LV whereby LV is a set of
values whose power is greater than or equal to 2.

For any 1 ¬ i ¬ m and 1 ¬ j ¬ n, we define the truth functions:
fπi

: LV ar(πi) −→ LV and fρj
: LV ar(ρj) −→ LV . These functions express

the meaning of connectives indexed i and j, respectively.
The second element of relating semantics is the connection evaluation,

i.e., a function ei : L
ar(ρi)
m,n −→ CLV in which CLV is the set of connection

(logical) values whose power is greater than or equal to 2.
The third element is the set of distinguished logical values and the

set of distinguished connection values: LV + ⊆ LV and CLV + ⊆ CLV .
Connection evaluation allows one to formally grasp the connection

of sentences in terms of various content or extra-content relationships
between that what these sentences refer to. By using the connection val-
ues, one can formally represent connections of various types or a gradable
connection of a single type.

By a relating model (a relating model of language Lm,n), we refer to
an ordered pair 〈v, {ei}1¬i¬n〉 such that:
• v : Var −→ LV is a valuation of propositional variables,
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• {ei}1¬i¬n is a family of connection evaluations, i.e., for any 1 ¬ i ¬ n,

ei : L
ar(ρi)
m,n −→ CLV .

Let M be a relating model. For any 1 ¬ i ¬ m and 1 ¬ j ¬ n the
following truth-conditions can be defined:

M |= πi(A1, . . . , Aar(πi)) iff fπi
(V (A1), . . . , V (Aar(πi))) ∈ LV +,

M |= ρj(A1, . . . , Aar(ρj)) iff [fρj
(V (A1), . . . , V (Aar(ρj))) ∈ LV +

and ej(A1, . . . , Aar(ρj)) ∈ CLV +].

A relating model 〈v, {ei}1¬i¬n〉 is called:
• mono-relating iff for any 1 ¬ i, j ¬ n, ei = ej , i.e., the power of

{wi}i¬n equals 1,
• multi-relating iff there are 1 ¬ i 6= j ¬ n such that ei 6= ej , i.e., the

power of {ei}i¬n is greater than 1.
The relating logic defined using mono-relating (multi-relating) mod-

els is known as a mono-relating logic (multi-relating logic).
A model with two logical values and two connection values is a special

case of a relating model:
• LV = CLV := {1, 0},
• LV + = CLV + := {1}.
Any evaluation of connection may then be equated with a finite relation
defined on the set of formulae:

Ri(A1, . . . , Aar(i)) iff ei(A1, . . . , Aar(i)) = 1.

The relation R ⊆ F k such that F is the set of formulae and k ­ 1
is known as the connection relation or the relating relation. A mono-
relating logic (multi-relating logic) defined using relations is called a
mono-relational relating logic (multi-relational relating logic).

3.2. Research directions and selected results

In the framework of the Torunian Programme, one can distinguish five
general problems which determine the most important directions of re-
search:
• The α problem: to describe formulae and/or principles adequate for

logics determined by distinguished relating models and/or connection
evaluations (the problem of syntactic characterisation).

• The β problem: to describe relating models and/or connection eval-
uations appropriate for the logics determined by distinguished for-
mulae and/or principles (the problem of semantic characterisation).
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• The γ problem: to define philosophical connectives by means of re-
lating connectives; to express new and/or known philosophical logics
in terms of relating logic (the problem of relating reduction).

• The δ problem: to analyse the properties of relating semantics and
the connections between the relating semantics and other semantics
(the problem of characterisation with regards to relating semantics).

• The η problem: to connect the relating semantics to other semantics
(the problem of characterisation with regards to connected seman-
tics).11

Of course, the above problems are not disjoint. For example, γ is re-
lated to α and β. By introducing various philosophical logics described
using relating semantics, one may enquire about their appropriate ax-
iomatisation as well as other adequate syntactic (proof-theoretic) set-
tings. η, in turn, is undoubtedly related to δ and α. When studying
semantics formed from the connection of some other semantics with the
relating semantics it is only natural to ask questions about the connec-
tions between the starting semantics and the relating semantics, e.g., if
the logics determined by a given semantics can also be determined by
the relating semantics. Moreover, as specified earlier, one may consider
axiomatisation and other syntactic (proof-theoretic) settings of the log-
ics defined by means of semantics formed via the connection of some
given semantics and the relating semantics. In the following analysis, we
will describe selected results which contribute to the implementation of
the Torunian Programme through their function as special cases of the
fundamental problems listed above.

The first work to present relating logics other than Epstein’s log-
ics  and consequently extending the founding perspective of Epstein’s
Programme  is the work by Jarmużek and Kaczkowski [2014]. In this
paper they considered the smallest mono-relational relating logic, known
as the logic F and described in the L∧w,→w language with five standard
connectives ¬, ∧, ∨, →, ↔ and two relating connectives ∧w (relating con-
junction) and →w (relating implication).12 The language L∧w,→w is a
special case of the language L5,2. The set of formulae in L∧w,→w is de-
fined in a standard way and is denoted by L∧w,→w . A model of L∧w,→

11 These general problems were officially announced in the call for the 1st Work-
shop On Relating Logic, September 25-26, 2020, https://www.filozofia.umk.pl/

en/department-of-logic/call-for-workshop-on-relating-logic/
12 Jarmużek and Kaczkowski used a different notation and denoted the relating

conjunction and relating implication by △ and #, respectively.

https://www.filozofia.umk.pl/en/department-of-logic/call-for-workshop-on-relating-logic/
https://www.filozofia.umk.pl/en/department-of-logic/call-for-workshop-on-relating-logic/
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consists of a unique version of a mono-relational relating model, i.e.,
an ordered pair of the form 〈v, R〉, where R is a binary relation over
L∧w,→w . Since the logic F had been described semantically, with the
appropriate tableau systems provided on a subsequent basis, one can
say that the paper produced by Jarmużek and Kaczkowski contributes
to analysis of the problem α. The work also suggests possible further
research exploring γ and δ problems.

Unlike the analysis carried out by Epstein, Jarmużek and Kaczkow-
ski’s paper is not about describing two or four logics for a given connec-
tion; rather, it is about describing an entire family of logics of a certain
type, the analysis of which begins by the smallest logic of this given type.
Jarmużek and Kaczkowski demonstrate that a relating logic should be
seen as a certain family of logics. Assuming a language, the starting point
for the analysis of a given family of relating logics would be the smallest
logic defined by all the models of a given language. Using normal modal
logics as an example, we might venture making the following compari-
son: Epstein takes the perspective of someone who is interested in two or
four modal systems because of this or that application of these systems,
whereas Jarmużek and Kaczkowski attempt to employ the perspective of
someone who is asking about an entire family of normal modal logics and
who begins to analyse it using the most basic system, i.e., the normal
modal logic K.

A similar approach can be observed in the work of Jarmużek and
Malinowski [2019a], where relating semantics is used to define a family
of Boolean connexive logics (for short: BCL). The language of BCL, i.e.,
the language LBCL, is a special case of the language L3,1. It includes
three Boolean connectives ¬, ∧, ∨ and also implication →. In a similar
manner to earlier discussions, the set of formulae in LBCL is defined in a
standard way and is denoted by LBCL. A model of LBCL, just as in the
case of the logic F, consists of an ordered pair of the form 〈v, R〉. This
time, however, R ⊆ LBCL × LBCL is a binary relation that satisfies the
following conditions:

∀A∈LBCL
∼R(A, ¬A), (a1)

∀A∈LBCL
∼R(¬A, A), (a2)

∀A,B∈LBCL
(R(A, B) ⇒ ∼R(A, ¬B)), (b1)

∀A,B∈LBCL
R(A → B, ¬(A → ¬B)), (b2)

∀A,B∈LBCL
R(A → ¬B, ¬(A → B)). (b3)
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By Aristotle’s relation we mean any binary relation over LBCL that satis-
fies (a1) and (a2), and by Boethius’ relation we mean any binary relation
over LBCL that satisfies (b1)–(b3).

The first three LBCL connectives, i.e., ¬, ∧, ∨, are interpreted classi-
cally. In turn, the implication → is interpreted in a relating manner as
follows:

〈v, R〉 |= A → B iff (〈v, R〉 6|= A or 〈v, R〉 |= B, and R(A, B)).

The conditions for a connexive relation ensure that the connexive theo-
rems are true. These theorems are attributed to Aristotle and Boethius,
respectively:

Aristotle’s theorems







¬(A → ¬A)

¬(¬A → A)

Boethius’ theorems

{

(A → B) → ¬(A → ¬B)

(A → ¬B) → ¬(A → B).

Aristotle’s (Boethius’) relations ensure the validity of Aristotle’s (Boe-
thius’) theorems.

In [Jarmużek and Malinowski, 2019a] the BCLs were defined seman-
tically, with the complete tableau systems defined in turn. Consequently,
the work falls within the scope of the problem α. Moreover, it also falls
within the scope of the problem γ because the connexive implication
is expressed using the relating implication. The situation is similar in
[Jarmużek and Malinowski, 2019b], where the modal Boolean connexive
logics (for short: MBCL) are described semantically and the complete
tableau systems for the logics under study are provided. In [Klonowski,
2021] for some basic and modal Boolean connexive logics complete ax-
iomatic systems were presented. Apart from the above works, BCLs have
also been analysed by Malinowski and Palczewski [2021]. In this work,
the possibility of using BCL in the analysis of Lewis Carroll’s barber
paradox is presented.

A connexive logic might be characterised syntactically as a set of for-
mulae that includes Aristotle’s and Boethius’ theorems, which is closed
under substitution and Modus Pones and that does not include a law
of symmetry of implication: (A → B) → (B → A) [see Jarmużek and
Malinowski, 2019a; Wansing, 2020]. Hence, BCL may be characterised
syntactically as a connexive logic that includes Boolean logic, i.e., the
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classical logic described with connectives ¬, ∧, ∨ and the following arbi-
trary formula: ¬(A → B) ∨ (¬A ∨ B) (this formula states that the con-
nexive implication strengthens the material implication [see Klonowski,
2021]. This starting point allows one to consider various BCLs in syn-
tactic setting, i.e., as postulated in β.

Note that the work [Jarmużek and Malinowski, 2019b] also falls
within the scope of the problem η as it provides a peculiar connection of
semantics of possible worlds with the relating semantics. The situation
is similar in [Jarmużek and Klonowski, 2020], where connected Kripke’s
models are used together with relating models, this time, however, to
define some kind of deontic logic. In this work the problem of relevance
of deontic sentences is accounted for from the point of view of a given
normative system, understood as a set of certain principles (imperatives
and prohibitions).

In order to express a given setting let us consider a deontic language
LD, a special case of the L5,2 language which includes the standard
connectives ¬, ∧, ∨, →, ↔ and the deontic operators O, P. The set
of formulae in this language is defined in a standard way and is de-
noted by LD. The model of LD has the form of an ordered quadruple
〈W, Q, {Rw}w∈W , V 〉, where 〈W, Q, V 〉 is a Kripke’s model and {Rw}w∈W

is a family of connection relations, i.e., for any world w we introduce a
relation with a fixed arity n Rw ⊆ Ln

D.13 For simplicity we consider mod-
els with a family of unary connection relations, i.e., models with a family
of subsets of the set of formulae LD.14 The standard connectives have
a classical interpretation, while the deontic operators are interpreted as
follows:

M, w |= OA iff ∀u∈W (Q(w, u) ⇒ (M, u |= A and A ∈ Ru)),

M, w |= PA iff ∃u∈W (Q(w, u) and (M, u 6|= A or A 6∈ Ru)).

One can see that in the stated truth-conditions one accounts for not only
the logical value of the component sentence in the accessible deontic
alternatives but also for the question of whether a given sentence is
relevant from the point of view of a given normative system, in a given
alternative. To some extent, this approach is similar to that of Fagin and

13 In [Jarmużek and Malinowski, 2019b] a family of binary connection relations
has been used; similarly in [Jarmużek and Klonowski, 2020].

14 In [Jarmużek and Klonowski, 2020] the subsets of the set of formulae LD are
defined using binary connection relations.
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Halpern [1988], which is based on the so-called awareness function. What
differs the former from the latter is that there is no functor counterpart
of the connection relation in the object language and the connection
relations matter not only in the actual world but also in any accessible
world.

The work [Jarmużek and Klonowski, 2020] falls not only within the
scope of the problem η but also within the scope of the problem α, as
the deontic logics in question have been defined semantically (followed
by the complete tableau systems).

Yet another example of a work that falls within problem α is the
study by Jarmużek and Klonowski [2021], which presents an analysis
of tableau systems for selected classical mono-relating logics (for short:
CMRL). In fact, CMRL are a kind of basis for the mono-relational relat-
ing logics considered so far  not only by the Toruń Logic Group but also
by other logicians. The CMRL language, i.e., the language LCMRL is a
special case of the language L5,4. It includes five standard connectives
¬, ∧, ∨, →, ↔ and four relating connectives: ∧w, ∨w, →w, ↔w. In other
words, LCMRL is an extension of L∧w,→w through the use of two relating
connectives: ∨w and ↔w. The set of formulae of LCMRL is defined in a
standard way and is denoted by LCMRL.

The logics under analysis in [Jarmużek and Klonowski, 2021] are
motivated by selected causal relation properties; moreover, they are de-
fined by means of relating models in the form of 〈v, R〉, where R ⊆
LCMRL × LCMRL is a binary relation satisfying at least one of the fol-
lowing conditions:

∀A∈LCMRL
∼R(A, A), (Ir)

∀A,B∈LCMRL
(R(A, B) ⇒ ∼R(B, A)), (As)

∀A,B,C∈LCMRL
((R(A, B) and R(B, C)) ⇒ R(A, C)), (Tr)

∀A,B∈LCMRL
(R(¬A, B) ⇒ R(A, B)), (E¬1)

∀A,B∈LCMRL
(R(A, ¬B) ⇒ R(A, B)), (E¬2)

∀A,B,C∈LCMRL
(R(A ∧ B, C) ⇒ (R(A, C) or R(B, C))), (E∧1

or )

∀A,B,C∈LCMRL
(R(A, B ∧ C) ⇒ (R(A, B) or R(A, C))). (E∧2

or )

Conditions (Ir), (As), and (Tr) are the well-known relational conditions
of irreflexivity, asymmetry, and transitivity. In turn, (E¬1), (E¬2), (E∧1

or ),
and (E∧2

or ) are the conditions of elimination of negation and conjunction
from the first and the second argument of the relation, respectively.
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A detailed CMRL analysis is presented in [Jarmużek and Klonowski,
submitted; Klonowski, 2019]. In this work, selected meta-logical proper-
ties of CMRL are analysed such as the expressiveness of relating connec-
tives, the ability to define the connection relation, the proof of compact-
ness by the semantic method, as well as the proof of completeness with
regards to axiomatic systems. Consequently, the work falls within the
scope of problems α and δ. The work in question also analyses the logics
described by models with connection relations which satisfy at least one
horizontal and/or vertical condition. By a horizontal condition we mean
a condition in which we do not make reference to the way the formula is
constructed. A vertical condition, however, is a condition for which the
way a formula is constructed is important.

An example of a horizontal condition is provided by the irreflexiv-
ity (Ir), asymmetry (As), or transitivity (Tr), as well as the following
conditions accounted for in [Klonowski, 2019]:

∀A∈LCMRL
R(A, A), (Re)

∀A,B∈LCMRL
(R(A, B) ⇒ R(B, A)), (Sym)

∀A,B∈LCMRL
(R(A, B) or R(B, A)), (Co)

∀A,B∈LCMRL
(A 6= B ⇒ (∼R(A, B) or ∼R(B, A))). (An)

Condition (Re) is the condition of reflexivity, (Sym) is the condition of
symmetry, (Co) is the condition of connexity, and (An) is the condition of
asymmetry. Other important horizontal conditions include the following
two conditions:

∀A,B∈LCMRL
R(A, B), (U)

∀A,B∈LCMRL
∼R(A, B). (∅)

These conditions characterise the universal relation and the empty rela-
tion, respectively.15 Clearly, a logic determined by relating models with
the universal relation corresponds to classical propositional logic.

Examples of vertical conditions include (E¬1), (E¬2), (E∧1

or ), and
(E∧2

or ). Moreover, in [Klonowski, 2019] the following vertical conditions
were considered:
• an introduction of negation ¬:

∀A,B∈LCMRL
(R(A, B) ⇒ R(¬A, B)), (I¬1

)

∀A,B∈LCMRL
(R(A, B) ⇒ R(A, ¬B)); (I¬2

)

15 Note that the relating models based on the universal relation (the models
based on the empty relation) only differ in their valuation.
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• an elimination of the binary connective ∗ ∈ {∧, ∨, →, ↔, ∧w, ∨w, →w,

↔w}:

∀A,B,C∈LCMRL
(R(A ∗ B, C) ⇒ (R(A, C) or R(B, C))), (E∗1

or )

∀A,B,C∈LCMRL
(R(A, B ∗ C) ⇒ (R(A, B) or R(A, C))). (E∗2

or )

∀A,B,C∈LCMRL
(R(A ∗ B, C) ⇒ (R(A, C) and R(B, C))), (E∗1

and)

∀A,B,C∈LCMRL
(R(A, B ∗ C) ⇒ (R(A, B) and R(A, C))); (E∗2

and)

• an introduction of the binary connective ∗ ∈ {∧, ∨, →, ↔, ∧w, ∨w, →w,

↔w}:

∀A,B,C∈LCMRL
((R(A, C) or R(B, C)) ⇒ R(A ∗ B, C)), (Ior

∗1
)

∀A,B,C∈LCMRL
((R(A, C) or R(B, C)) ⇒ R(A, B ∗ C)), (Ior

∗2
)

∀A,B,C∈LCMRL
((R(A, C) and R(B, C)) ⇒ R(A ∗ B, C)), (Iand

∗1
)

∀A,B,C∈LCMRL
((R(A, B) and R(A, C)) ⇒ R(A, B ∗ C)). (Iand

∗2
)

These conditions are a weakened version of Epstein’s conditions and,
together with appropriate horizontal conditions, they allow an expression
of the counterparts of the relatedness logics R, S and of the dependence
logics D, DD in CMRL. We can define:

• r-relations over formulas of LCMRL by (Re), (E¬1), (I¬1
), (E¬2), (I¬1

),
(E∗1

or ), (Ior
∗1

), (E∗2

or ), (Ior
∗2

);
• sr-relations over formulas of LCMRL by (Re), (Sym), (E¬1), (I¬1

),
(E∗1

or ), (Ior
∗1

);
• d-relations over formulas of LCMRL by (Re), (Tr), (E¬1), (I¬1

), (E¬2),
(I¬2

), (E∗2

and), (Iand
∗2

);
• dd-relations over formulas of LCMRL by (Re), (Tr), (E¬1), (I¬1

),
(E¬2), (I¬2

), (E∗1

and), (Iand
∗1

).

Lastly, let us consider once more the definitions of epistemic operators
using the relatedness implication proposed by Jarmużek [2021]. This
issue falls within the scope of the problem γ. The knowledge operator K

is defined as follows:

KA := ⊤ →w A.

Expression ⊤ →w A may be understood as follows: A has at least one
justification which is as good as the best justified statement. By ⊤,
Jarmużek understands the standards of knowledge and the knowledge
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itself is presented classically. In this setting to know that A means the
same as to have a justification for A that is no worse in comparison
to that given for the standard of knowledge, which corresponds with
the classical definition of knowledge. Moreover, since the standards of
knowledge are true sentences in every model, the knowledge must imply
truth (as required by the classical setting). The belief operator B is
defined as follows:

BA := A →w⊥ .

In this case it is stated that to believe in A means the same as to have
a justification for A that is no worse in comparison to that given for the
worst-justified statement. By ⊥ Jarmużek understands the standard of
ignorance, i.e., a sentence that is false in every model.

4. Summary  comparison of programmes

Let us now compare the two presented programmes (see Table 2). Firstly,
while Epstein’s Programme postulates that content relationship should
be accounted for in logical research, the Torunian Programme assets that
any relationship matters if said relationship encourages the conclusion
that the two sentences are connected. In order to define his logics, Ep-
stein adopts at least reflexive relations over the set of formulas which
additionally satisfy certain specific conditions. Nonetheless, it is clear
that they are special cases of connection relations. Hence, Epstein’s
logics are the special cases of relating logics postulated by the Torunian
Programme.

In the monograph [Epstein, 1990] general relational models are de-
scribed of the form 〈v, R1, . . . Rn〉, where v is a classical valuation of
propositional variables and for any i ¬ n, Ri is a connection relation.
As shown above, such models are special relating models of the form
〈v, {ei}1¬i¬n〉. Obviously, in the case of general relating models neither
valuation nor connection evaluation are required to have a two-valued
range.

The main logical research tool used in the framework of Epstein’s
Programme is set-assignment. Both the content relationship logics (Ep-
stein’s logic), and the already known, distinguished, non-classical logics
are described by Epstein [1990] [cf. Krajewski, 1991] via functional se-
mantics based on set-assignments, i.e., by using set-assignments seman-
tics.
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Epstein’s approach Torunian approach

relationships mainly content (relevance, content, causal, temporal,
analyticity) normative, etc.

relations at least reflexive any kind

general relations of formulae evaluations of
relating of any arity connections
models + +

two logical values many logical values

main set-assignment relating
semantics

combined none relating + possible world
semantics semantics

new logics relatedness logics, the smallest logic in a given
dependence logics relating language, e.g., F;

CMRL; BCL; MBCL

Table 2. Programme comparison

In turn, in the framework of the Torunian Programme the main tool
is connection evaluation, which is a kind of generalisation of the relation
that occurs between the formulae. The results obtained to date in the
framework of the Torunian Programme are chiefly based on models with
a single connection relation, which are a particular type of mono-relating
models. We have also mentioned sample works which fall within the
scope of the Torunian Programme and are concerned with connected
semantics of possible worlds with relating semantics.

At this point it is useful to note that Epstein’s logics consist of six
systems, two systems of relatedness logic, and four systems of connection
logic.16 They are all special cases of relating logic. Examples of relating
logics defined based on works that fall within the scope of the Toru-
nian Programme may include: Boolean connexive logics (BCL), modal
Boolean connexive logics (MBCL), and classical mono-relating logics
(CMRL). It is worth emphasising that, with regards to the Torunian
Programme, the starting point for analysis is usually the smallest/basic
relating logic determined in a given language through models which are

16 Apart from the logic DPC, the dependence logic also includes the logic DPCn

for an arbitrary n > 1 (see footnote 8).
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not restricted by additional limitations. A typical example is the F logic
of Jarmużek and Kaczkowski [2014].

Epstein’s research on logics defined by relational models marks the
beginning of the history of relating logics. Although Epstein’s Pro-
gramme focuses above all on the representation of content relationship
and on the set-assignment semantics, there are many results and ideas
within his approach that determine research directions which the Toru-
nian Programme undertakes as a separate concern. In other words, al-
though the Torunian Programme is an attempt to develop certain issues
which have already been discussed by Epstein, there is also an intent to
describe new possibilities and research directions which are not part of
Epstein’s Programme.
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