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Defusing a Paradox to a Hypodox

Abstract. One way of resolving a paradox is to defuse it to a hypodox.
This way is relatively unknown though. The goal of this paper is to explain
this way with varied examples. The hypodoxes are themselves a broad
class: both the Truth-teller and the 21st birthday of someone born on 29th
February can be construed as hypodoxes. The most familiar kind of relation
between paradoxes and hypodoxes is exemplified by the relation between
the Liar and the Truth-teller. This article concerns a second kind where a
paradox is defused to a hypodox by restricting or rejecting some granted
principles. The Liar paradox has this second kind of relation to a Liar
hypodox, which will be introduced. In some cases, defusing a paradox to a
hypodox is only a partial resolution, as the hypodox itself may then need
resolving. Even so, such a partial resolution decomposes a complex problem
into more easily understood problems. Moreover, I compare the result of
defusing a paradox to a hypodox with the results of resolving paradoxes in
other ways. I give four examples. The first is mainly pedagogic, concerning
a birthday. The second is a lightweight legal case, presenting a parking
voucher paradox. The third is a formal system in which a Liar and Liar-like
sentences are hypodoxical. The fourth is a philosophical critique of ways of
solving Bertrand’s chord paradox.

Keywords: Hypodox; Paradox; Bertrand’s Chord Paradox; Liar Paradox;
Liar Hypodox; Curry’s Paradox; Yablo’s Paradox, Epimenides Paradox,
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over a hypodox; Ship of Theseus; Water-and-wine Problem

1. Introduction

One way of resolving a paradox is to defuse it to a hypodox. This way
is relatively unknown though, and consequently is overlooked where it
could be useful. In this article, I explain this way, while providing varied
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examples. Moreover, I compare the result of resolving a paradox in this
way with the results of resolving it in other ways. Where a paradox can
be defused to a hypodox, I will talk about defusion as a relation from
that paradox to that hypodox, even where that relation extends across
systems. Just so, a legal antinomy in one legal system might relate to
a legal hypodox in another. In some cases, such as the Liar paradox or
Bertrand’s chord paradox, defusing a paradox to a hypodox is only a
partial resolution, as the resultant hypodox itself then needs resolving.
Nevertheless, this intermediary step towards a full solution is a way of
dividing a paradox into more easily understood problems.

A Truth-teller is a self-referential sentence such as ‘This sentence
itself is true’ that says of itself that it is true. But is it? Construed
as a hypodox, it is true xor not true, yet there is a lack of a granted
principle determining whether it is true. (Let ‘xor’ extend English with
an explicitly exclusive disjunction.) The semantic value of the Truth-
teller is underdetermined. Indeed, there are a number of hypodoxes of
self-reference. An ‘autological’ adjective is true of itself. Is ‘autological’
autological? Construed as a hypodox, either it is xor it is not, yet there
is a lack of a granted principle determining which.

Construed this way, the Truth-teller is a paradigm hypodox.

Put simply, a hypodox ‘might consistently take either truth-value but
we have no basis for determining which’.

(Eldridge-Smith, 2007, p. 178)

This generalizes (e.g., for a multi-valued logic, and for other semantic
and modal values, such as whether something is necessary). Moreover,
whether some things are hypodoxical may depend on contingent circum-
stances. That is, in certain circumstances, the matter is underdeter-
mined, whereas it is determined (or even incompatibly overdetermined)
in others. Furthermore, hypodoxes are not paradoxes, as per the follow-
ing contradistinction.

Whereas a paradox incompatibly overdetermines something by granted
principles, in some cases given apparently possible circumstances, a
hypodox is compatible with granted principles yet underdetermined for
lack of a granted principle that determines the matter, in some cases
given apparently possible circumstances.

(Eldridge-Smith, 2007, 2008, 2022, 2023, endnote 3)

Granted Principles are granted mechanisms or bases for reasoning.
They vary from system to system, but in natural language, the principles



Defusing a paradox to a Hhypodox 569

one person grants may differ from another. Principles include inference
rules, axioms, distinctions or criteria, conceptual principles, and even
conventions. Rules (including formation, structural and inference rules)
and axioms of a formal system are among its principles. An example of
a conceptual principle is the comprehension schema in naive set theory,
loosely speaking, that for any condition, there is a set of things that sat-
isfy it. Another example is the Principle of Indifference, loosely speaking,
that unless there are relevant differences, possible outcomes are equally
probable, which is used in some theories of probability. Circumstances
include contingencies, stipulative definitions, mere regularities, and re-
ceived or common opinions. Circumstances may be assumed or given as
premises.

Paradoxes and hypodoxes occur in natural language reasoning, in
some theories and some systems. Some things that are paradoxical un-
der some circumstances may be hypodoxical under another; and, some
things that a paradoxical under one set of granted principles may be
hypodoxical under a different set of granted principles (cf. Da Ré et al.,
2020, Introduction).

One kind of relation between paradoxes and hypodoxes is exemplified
by the relation between the Liar, ‘This sentence itself is false’, and the
Truth-teller. Also, Russell’s paradox has that kind of relation to whether
the set of all self-membered sets is self-membered. That kind of relation
between paradoxes and hypodoxes is symmetric. Indeed, many pairs of
a paradox and a hypodox are related as duals in that way (Mackie, 1973,
p, 298; Eldridge-Smith, 2007, 2008, 2012, 2022, 2023).

This article concerns a relation of a another kind between paradoxes
and hypodoxes, which is not a symmetric. Some paradoxes can be de-
fused to hypodoxes. Since a paradox incompatibly overdetermines some-
thing by granted principles, it may be appropriate to question those
principles. One may reject, restrict, revise or replace some principle (be
that a rule of inference, axiom schema, conceptual principle, or etc) to
determine the matter. A correct solution must also justify the particu-
lar rejection, restriction, revision or replacement. But my point here is
that the result of such a rejection, restriction, revision or replacement
sometimes is that the matter becomes underdetermined by the resid-
ual granted principles (Eldridge-Smith, 2012). When this happens, a
paradox is defused to a hypodox.

Conversely, granting additional principles or removing a restrictive
condition on some granted principle may make something that was hypo-
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doxical become paradoxical (Eldridge-Smith, 2012). When this happens,
a hypodox is enfused to a paradox. Of course a goal of adding princi-
ples, if they can be justified, is to determine such hypodoxical matters;
nevertheless, granting additional principles sometimes overachieves this
goal and incompatibly overdetermines the matter.1 So, defusion maps
paradoxes to hypodoxes (and, in some cases, to other things); enfusion
maps hypodoxes to paradoxes (and, in some cases, to other things).

I explicate the defusion relation with reference to sets that respec-
tively represent a paradoxical dilemma and a dilemma over a hypodox.
Section 2 supplies definitions of these. In section 3, I compare the result
of defusing a paradox to a hypodox with the results of other ways of
resolving a paradox. This method of comparison will be referenced in
subsequent sections, especially the last. In section 4, I discuss a peda-
gogical example involving birthdays. In section 5, I defuse a lightweight
legal paradox to a hypodox. In section 6, I give a technical example of
defusing a Liar Paradox to a hypodox. I conclude with a philosophical
example, discussing how these considerations apply to Bertrand’s chord
paradox in section 7. In that section, I also briefly discuss von Mises’
water into wine problem.

2. Some definitions

Let me define a few things.

2.1. A paradox results in one or more paradoxical dilemmas

Some things of various kinds are said to be paradoxes. These include
conclusions (Quine, 1976; Sainsbury, 2009), riddles (Sorensen, 2003),
arguments (Mackie, 1973), and inconsistent sets (Lycan, 2010; Rescher,
2001; Schiffer, 2003). According to my definition, some things of each of
these kinds are paradoxical:

A paradox is something that incompatibly overdetermines something
by granted principles, in some cases, given apparently acceptable cir-
cumstances.

1 One example of this in the literature is Mortensen & Priest’s Truth Teller

Paradox. By adding a principle that a Truth-teller sentence is neither true nor false,
Mortensen & Priest (1981) derive a contradiction. In this way, in my terminology,
they enfuse a hypodox to a paradox.
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Among the things a paradox incompatibly overdetermines are one or
more sentences (or statements or propositions, as the reader pleases).
Such sentences may be indicative or modal, declarative or imperative.
(For modal examples, please see Eldridge-Smith (2022)). By incom-
patibly overdetermining a sentence, a paradox results in a paradoxical
dilemma. To define these, I will make use of an exclusive ‘or’ connective.

For any sentences A and B, ‘A xor B’ takes a designated value just
if exactly one of {A, B} takes a designated value. Let a sentence of
the form ‘A xor B’ be called an alternation in which A and B are
alternatives.

Some logics have just one designated value, namely, true. The definition
allows for logics with more than one designated value.

A paradox results in a sentence A iff either it is given in the circum-
stances, or the paradox’s circumstances are conjointly possible and A
follows by granted principles assuming those circumstances. It may
follow using a system of deduction, semantic reasoning, metatheoreti-
cal reasoning, a calculus (such as a probability calculus) or reasoning in
natural language. The circumstances may be a null set; some paradoxes
do not depend on any particular circumstances.
A paradox incompatibly overdetermines a sentence A iff there is a sen-
tence B such that each of {A xor B, A, B} results from the paradox.

A paradox incompatibly overdetermines something (by definition) and
what it overdetermines can be represented or expressed by a sentence.
Therefore, for each paradox, there are some sentences A and B, such
that the paradox results in each of {A xor B, A, B}.

Thus, the paradox results in a paradoxical dilemma represented by the
result set {A xor B, A, B}. (N.b. These are results that hold conjointly,
unlike multiple conclusions in a sequent calculus).

I add the following notes:

1. Not every sentence qua sentence that is incompatibly overdeter-
mined by a paradox is itself a paradoxical sentence. In a paradoxical
dilemma sentences A or B may or may not be paradoxical. For exam-
ple, some paradoxes (and given circumstances) result in this paradoxical
dilemma: {Athens is the capital of France xor Athens is not the capital
of France, Athens is the capital of France, Athens is not the capital of
France}. But none of these sentences is paradoxical. (Even though at
least one of these results qua conclusion is a paradoxical conclusion.)
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2. According to some consequence relations, incompatibly overde-
termining a sentence will be sufficient for inconsistently overdetermining
many sentences, even every sentence in the language.

3. The above definitions do not assume that the consequence relation
is classical, although many paradoxes are presented as though classical
reasoning is granted.

4. I make many claims about results, particularly those about para-
doxical dilemmas, in a meta-language. My meta-language is natural
language extended with some formal devices. The consequence relation
in the metalanguage I am using is one that preserves designated val-
ues. (Its sentential and quantificational logic is that of 1PLITCHv4, as
specified in section 6.)

2.2. Hypodoxes

Some things of various kinds are hypodoxical. The Truth-teller is such
that one could add a principle such that it is true and one could instead
add a principle that it is false. One could add a principle that sentences
like a Truth-teller are false, since they have no Truth-maker.2 Instead,
one could add a principle that sentences like a Truth-teller are true, since
they have no ‘False-maker’. (Were one to resolve the Truth-teller in either
of these ways, one would need to justify one of these ways while showing
that the other is untenable or at least unjustifiable.) This suggests the
following general account.

Something, X, is a hypodox iff it is underdetermined by granted prin-
ciples, in given circumstances in some cases, and these circumstances
(if any) and principles are consistent with adding a principle so that it
would result that X is the case and consistent with instead adding an-
other principle so that it would result that X is not the case; but no such
principle has been granted, usually because it has not been justified.

Were the granting of just one such additional principle justified, the
matter would be determined and the hypodox resolved. Alternatively,
one might resolve the hypodox by justifying that it has some sort of gap,
especially a truth-value gap, or some kind of glut, especially a truth-
value glut. And there are other ways, a fair number of which will be
implicit in the next section about different results of resolving a paradox
in different ways.

2 This will determine the semantic status of a Truth-teller but not a Liar sentence,
since if a Liar sentence is false, it is consequently true.
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Let ‘U’ stand for the operator ‘It is underdetermined for lack of a
granted principle whether ...’. Then a sentence A is hypodoxical iff U(A).

If a paradox is defused to a hypodox, then for some sentence A that was
incompatibly overdetermined by the paradox, U(A). Moreover, there is
some sentence B, incompatible with A (usually, ∼A) such that the
paradox resulted in the paradoxical dilemma {A xor B, A, B}. But
then U(B) results from A xor B and U(A). Thus, defusing a paradox to
a hypodox results in a dilemma over a hypodox {A xor B, U(A), U(B)}

I add the following notes.
1. It is not necessary for the overdetermination or underdetermina-

tion of A to be expressible in the object language; so long as it is the case
and the dilemma over a hypodox can be expressed in the meta-language.

2. In a logical system with a strong negation operator, ∼, that takes
a designated value to an undesignated value, and vice versa, then A
is paradoxical iff ∼A is paradoxical, and A is hypodoxical iff ∼A is
hypodoxical.

3. for the same A and B, a paradoxical dilemma and a dilemma over
a hypodox are contraries; this is because a fortiori of being overdeter-
mined, A and B are both determined if the paradoxical dilemma obtains;
whereas A and B are both underdetermined if the hypodox obtains. This
accords with what was said in the previous section, hypodoxes are not
paradoxes.

3. Results of resolving a paradox in a Hendecagon of Opposition

There are different results from resolving a paradox in different ways. In
this section, these results are compared with respect to the general form
of a paradoxical dilemma. Defusing a paradox to a hypodox results in a
dilemma over a hypodox. This is distinguishable from nine other results
of resolving a paradox in different ways. These together with accept-
ing the paradoxical dilemma itself make up eleven results of resolving a
paradox in different ways. These results are related as contraries.

Consider the Ship of Theseus paradox.

Over a period of years, in the course of maintenance a ship has its
planks replaced one by one  call this ship A. However, the old planks
are retained and themselves reconstituted into a ship  call this ship B.
At the end of this process there are two ships. Which one is the original
ship of Theseus? (Clark, 2012, p. 230)
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Notice that this paradox contains no apparent use of negation. Nev-
ertheless, it results in a paradoxical dilemma (PD), {either Ship A xor
Ship B is the ship of Theseus, Ship A is the ship of Theseus, Ship B is
the ship of Theseus}. It is a simple (PD) result of the form A xor B, A,
B. The result is obtained by using conceptual principles about identity
and the above circumstances. (The only logic required is the definition
of an alternation.) The ship of Theseus is just one entity. The only
alternatives for the identity of that one entity are ship A and ship B.
Hence, the above alternation is the case. In virtue of being maintained,
ship A is the ship of Theseus. In virtue of being constituted from the
same materials into the same structure, ship B is the ship of Theseus.3

The Ship of Theseus could be defused to a hypodox by justifying
(by non-ad-hoc reasoning) that neither continued maintenance nor being
composed of the original components in the original way was sufficient
for identifying the ship of Theseus. This would involve restricting those
principles or arguing neither conclusively determines which is the ship

3 Clark himself believes the Ship of Theseus should be represented by two argu-
ments with incompatible conclusions, rather than one argument (Clark, 2012, pp. 160–
161). He seems to think this is characteristic of an antinomy, as a subclass of para-
doxes. Another case for two argument presentations of some other paradoxes such
as Newcomb’s problem and the Monty Hall problem is made by Olin (2003). Olin’s
point is that different authorities have staunchly defended each of two incompatible
conclusions with respect to these problems. Olin does not actually use the label
‘antinomy’ but considers such two-argument paradoxes a philosophically significant
type of paradox. (I note that Newcomb’s problem, like the Ship of Theseus, proves a
paradoxical dilemma; and I note that there is nowadays a consensus on the solution
to the Monty Hall problem.) If Olin is right, one would expect that the same agent
cannot consecutively defend both arguments as seeming sound. One finds similar
definitions of ‘antinomy’ in some dictionaries, e.g., Cook (2009). Cook (2013, pp. 14–
16) argues however that it is not significant whether an antinomy is presented as two
arguments or one, because the two arguments can be combined into one argument.
Moreover, paradoxes that Quine lists as paradigm ‘antinomies’ like the Liar, Russell
and Grelling’s can be presented as two arguments, although they are usually pre-
sented as one. They then trivially satisfy a two-argument definition of ‘antinomy’.
Furthermore, this issue seems irrelevant to definitions of paradoxes in terms of incon-
sistent sets whose elements seem individually acceptable (Lycan, 2010; Rescher, 2001;
Schiffer, 2003). Finally, typically concluding with contraries is another superficial
difference between the likes of the Ship of Theseus and the Liar (which typically con-
cludes with the conjunction of contradictories). Again, this is a superficial difference
if the contrary conclusions can be combined into one argument by adjunction. In any
case, these matters do not seem to affect the fact that the likes of the Ship of Theseus,
the Liar and Russell’s paradoxes prove paradoxical dilemmas. Whether they do so in
the same or separate proofs is irrelevant.
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of Theseus. In either case, as a result {either Ship A xor Ship B is the
ship of Theseus, it is underdetermined whether Ship A is the ship of
Theseus, it is underdetermined whether Ship B is the ship of Theseus}.
This result is a Dilemma over a Hypodox (DH). Remember ‘U’ stands
for the operator ‘It is underdetermined whether’, then a dilemma over a
hypodox, an (DH) result, has the general form {A xor B, U(A), U(B)}.
With respect to a formal system implementing such a solution, these
claims are made in the metatheory. These claims, particularly U(A) and
U(B), may or may not be expressible in the objectlanguage.

In comparison, I outline a classification of other results with conve-
nient labels in parentheses. These have some general forms that represent
how these results differ from a paradoxical dilemma and each other.

Ideally, one justifies a determined (Det) result by finding fault with
the proof of one or more of the members of the paradoxical dilemma so
that the only results left are {A xor B, A} xor {A xor B, B}. Note that
it follows from {A xor B, A} that B does not have a designated value.
The Ship of Theseus would be determined if it could be justified that
just one of its principles applies. I add the following minor point. A
special case of a Determinate (Det) result worth labelling separately is
a To Be Determined (TBD) result. That is, whether A xor B will be
determined. Given such a situation, {A xor B} is either given or follows
by still granted principles, and there is reason to accept that whether A
xor B will somehow be determined.

‘(Both)’ labels a result when fault is found in the proof of A xor B,
but not the proofs of A and B; so a (Both) result can prove {A, B}
while denying A xor B. In our metatheory, we will express that denial as
asserting ∼(A xor B), although this may not be expressible in the object-
language. In some cases, a formal system implementing such a solution
may not have an exclusive negation and may not have an ‘xor’ connec-
tive. A special case of this result, where A and B are contradictory, is
a dialetheic result. A dialetheia is a true contradiction; nevertheless,
this is not a paradoxical dilemma. That is, in a metatheory about the
system one can assert each of {∼(A xor ∼A), A, ∼A}. This is clearly
not the same as being committed to a paradoxical dilemma. Moreover,
although some contradictions are asserted in some paraconsistent logics,
such as LP, no paradoxical dilemma is asserted in LP. (PD) and (Both)
results are incompatible. Note that a subclass of the (Both) result is the
{A or B, A, B} result because that result is compatible with the more
general {∼(A xor B), A, B} result. Moreover, a (Both) result is not
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necessarily dialetheic. The Ship of Theseus could be resolved to yield
a (Both) result, if there is reason to reject the uniqueness of that ship.
That would not necessarily be a dialetheic solution.

An (RSC) result is a reductio of a self-contradiction, S, that was pur-
ported to be possible in proving the paradoxical dilemma. The Barber
paradox is resolved this way. Given the scenario about the circumstances
(S) of the Barber, a paradoxical dilemma followed. But the circum-
stances are not possible, which is an (RSC) result for the Barber. I note
that Quine (1976) classifies the Barber as veridical on the basis that this
is its resolution.

A (DIS) result obtains when the paradox at issue is resolved by mak-
ing a distinction. Or at least when the paradoxical dilemma is resolved
by making a distinction such that whether A xor B depends on distin-
guishing whether C xor D. Given the situation {A xor B, C xor D, C
−→ A, D −→ B} follows by still granted principles and a valid distinc-
tion. William James (1907) said a scholastic adage was ‘whenever you
meet a contradiction you must make a distinction’. I do not think this
way is mandatory; it would be ad hoc to resolve the Ship of Theseus
by distinguishing the rebuilt Ship of Theseus from the well-maintained
Ship of Theseus. Nevertheless, making a distinction is one useful way
of resolving a paradox among a number of ways. Consider for example
Wrangham’s Goodness Paradox (Wrangham 2019, Ch. 13). Some argue
that humankind is naturally peaceful. Others argue that humankind is
naturally violent. Apparently, there are authoritative reasons for both
positions. Wrangham would distinguish between reactive aggression and
proactive aggression. Then he argues: if one is talking about reactive
aggression, humankind has low reactive aggression as a result of its evo-
lution; but if one is talking about proactive aggression, humankind is
prone to perpetrate proactive aggression.4

(MinI) for ‘Minimally indeterminate’ is a result where it is justified
that whether A xor B is indeterminable. That is A xor B, but it is
indeterminable which. Let ‘D’ stand for ‘It is determinate whether . . . ’.
Then, given the situation, {A xor B, ∼D(A), ∼D(B)}. The difference
between (DH) and (MinI) is that a (DH) result can subsequently be

4 I hear an objection that this is disambiguation, and therefore that the original
argument was fallacious. But this would only be disambiguation if ‘aggression’ is
ambiguous between ‘reactive aggression’ and ‘proactive aggression’, which it is not.
Making a distinction to resolve a paradox, as in the case of the Goodness Paradox, is
not the same as pointing to the fallacy of ambiguity in an argument.
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resolved by justifying an additional principle that determines whether
A xor B. However, if one succeeds in justifying a principle that resolves
an indeterminacy then the matter was not indeterminate. For (MinI)
says that there is no principle that determines the matter at all, so
there won’t be one subsequently justified and hence accepted that will
determine the matter (not in the same system anyway).5 Among other
approaches, (MinI) might be used to represent an epistemic island, or
the result of a supervaluation solution (cf. Fine, 1975). For example, a
(MinI) result for the Ship of Theseus would be that it is an epistemic
island such that Ship A xor Ship B is the Ship of Theseus but it is
impossible to know which.

A (MaxI) result is maximally indeterminate. Whether A, B, and A
xor B are all indeterminable. {∼D(A xor B), ∼D(A) & ∼D(B)}. Again,
it has somehow been determined that no extra principle that determines
the matter can be justified and hence granted.

A (None) result obtains if it is justified that some expressions in the
paradoxical dilemma have no value, somehow do not actually express
anything, or are not even in a language. There is nothing to determine
because none of the members of the paradoxical dilemma have a desig-
nated or undesignated value, even if they are allowed in the language.
Let ‘V’ stand for ‘. . . has a value’ and angle brackets for some canonical
convention for naming the expression they enclose. Then {∼V(<A>),
∼V(<B>)}. This could be the result of a value gap solution or a non-
closure solution, that is the language or domain is not closed under some
principle. It is difficult to see how this result could obtain in the case
of the Ship of Theseus, but it has well-known applications to the Liar
sentence as a result of some solutions to the Liar paradox inside formal
systems that implement a non-closure solution or a gappy solution.

(Neither) is a different result where {∼A, ∼B} is somehow justified.
This means that the proof of all the members of the paradoxical dilemma
have been rejected and the negations of both A and B are proven.

(Revenge) is the last result in this list. Some of the best paradoxes
have revenge paradoxes. A revenge paradox might result in a number
of ways, for example {A xor B, ∼A, ∼B}. (Revenge) might result from
proving A and B are not the case and finding faults in their original

5 Personally, I think (MinI) is a hard resolution to justify, because obviously there
is or was a principle that determined the matter if there was a (PD) result to resolve,
even though that principle (or principles) incompatibly overdetermined the matter.
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proofs, while nevertheless the reasoning for A xor B still follows. This
result is still paradoxical. I note that, in classical logic, ‘A xor B’ is
equivalent to ‘∼A xor ∼B’. So, if the granted principles include classical
logic, then this result is still a paradoxical dilemma; that is, it would still
be a (PD) result; but I am not stipulating whether the logic is classical,
so I include a (Revenge) result as a separate result. (Nonetheless, I am
open to eliminating this separate type of result if it can be proven that
it is always reducible to another paradoxical dilemma (PD) result.)

This list of distinguishable results is not exhaustive, although it is
sufficient for our purposes. Moreover, please note that some adjustments
to other results must be made if the paradoxical dilemma is such that {A
xor B xor C, A, B}. A corresponding dilemma over a hypodox would be
{A xor (B xor C), U(A)), U(B xor C))}. Other adjustments are equally
straightforward.

Besides, our taxonomy only compares and relates one general char-
acteristic  different results of resolving a paradoxical dilemma. Other
details of a particular solution will vary with particular characteristics of
that solution. Accordingly, for example, the above taxonomy of results
of resolving a paradoxical dilemma in different ways does not determine
what results from treating a disjunction of a paradox and a hypodox
according to a particular solution that does not defuse the paradox to
a hypodox. In contrast, for a solution that defuses the paradox to a
hypodox and uses truth-functional disjunction, the solution to this dis-
junction is itself a hypodox. Section 6.6 will exemplify this point with
respect to a (Mini) solution in comparison to results of an (DH) solution
for a Liar sentence disjoined with a Truth-teller.

Imagine the above listed results together with a paradoxical dilemma
(PD) form an hendecagon of opposition. Imagine (PD) is on the top
vertex and each contrary result is at another vertex. ((TBD) can be
listed outside the polygon beside (Det), as it is simply a variation of a
(Det) result.) Consider the relations along sides and diagonals between
vertices of the hendecagon. The result at a vertex is contrary with the
results at other vertices, excepting that (DIS) is not strictly contrary
with (Det). Let these last two form the base of the hendecagon. I think
that each result is incompatible with the original paradoxical dilemma,
and hence contrary to it (in the sense that one cannot be committed
to both results at the same time in the same way). I already argued in
the previous section that the paradoxical dilemma (PD) and the corre-
sponding hypodox with the same alternation are incompatible. That is,
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Whether A xor B cannot be both incompatibly overdetermined (PD) and
underdetermined (DH) in the same way at the same time given the same
principles. I also argue it cannot be incompatibly overdetermined (PD)
and determined (Det) at the same time. And, I would argue the same
holds for (PD) with respect to the results positioned at other vertices.

Transitional relations are also of interest. Apart from (Revenge), the
results of such transitions are explicit in the list above. Nevertheless,
how the transition from a paradoxical dilemma to a particular result is
achieved or how a transition from one result to another is achieved is left
open. I have made only occasional short comments on some approaches
that may be used to justify that result. Most transitions, except to
(RSC), require an alteration to the set of granted principles. One can
evidently do this within natural language reasoning, but normally al-
tering the principles of a logical system would involve using a different
logical system. The transitional relation from (PD) to (DH) is defusion,
as mentioned; and the converse relation is enfusion. Enfusion involves
accepting an extra principle (or extending the application of one); any
transition to (Dis) requires accepting some distinction. The relations
from (DH) to (Det) and from (DH) to (Dis) are also of interest. These
represent preferred ways of resolving a hypodox. Conceivably, one might
defuse a paradox (PD) to a hypodox (DH) by restricting one or more
principles, and subsequently resolve that hypodox (DH) by extending
another principle or accepting a new principle or distinction that deter-
mines the matter, yielding a (Det) or (Dis) result in the end. This is
the two step approach that was mentioned in the introduction. It will
feature again in the last section on Bertrand’s chord paradox.

I will demonstrate using this taxonomy of hypodoxes, paradoxes,
their relations and these contrary results of resolving a paradoxical di-
lemma to compare and critique proposed solutions to some paradoxes.

4. A pedagogic example: Frederica’s 21st birthday – paradox,

hypodox, determined date, or non-event?

This section expounds on a pedagogic example first put forward as a
hypodox in my (2012) in contrast to W. S. Gilbert’s birthday paradox
(Gilbert and Sullivan, 1879).

Frederica has a dilemma about when to celebrate her 21st birthday.
Born on 29th February, she has reason to celebrate on the 28th February
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or 1st March. Her initial preference is for both. However, her orthodox
parents maintain:

(1) A person has one, and only one, birthday per annum.

By (1) and the given scenario about the circumstances, Frederica faces
the dilemma of her birthday being on just one of 28th February or 1st
March. At this stage, she believes she lacks any further principle to
determine the matter, and thus that matter is underdetermined and she
faces a hypodox (DH).

However, her parents subsequently each persist in giving her further
counsel. This year, her American father rationalizes:

(2) Frederica’s birthday is on 28th February, because she was born on
the last day of February.

However, her English mother argues that:

(3) Frederica’s birthday is on 1st March, because she was born on the
day after 28th February.

If Frederica accepts (1), (2) and (3), she faces a contradiction, corre-
sponding to a paradoxical dilemma, (PD) in our list above. From (1) it
follows that Frederica’s 21st birthday is on 28th February xor 1st March
xor some other day of that year, and from (2) it is 28th February, but
from (3) it is 1st March. (1) poses an alternation over which she seems
forced to choose, and her dilemma is paradoxical in this case because the
conjunction of (2) and (3) contradicts (1). (1) is a convention, a weak
kind of principle. (2) and (3) are also conventions.

Frederica however argues that she is mindful of the scholastic adage
that when faced with a contradiction, make a distinction (James, 1907,
lecture 2). Frederica would distinguish between the ‘birthday that in
each non-leap year is 365 days after the last birthday and on the actual
birth day and month in a leap year’ and the ‘birthday that in each non-
leap year is 365 days before the next birthday and on the actual birth day
and month in a leap year’. Then (2) is about the former, (3) about the
latter, and (1) can be replaced by a principle saying there is just one of
each kind of birthday per annum. Federica argues the apparent paradox
is veridical and teaches that a distinction must be made to accommodate
the anomaly in the calendar and avoid contradiction. Moreover, to as-
suage her pragmatic parents, Frederica claims her solution will work in
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the long run. Now Frederica argues she can celebrate each kind of birth-
day respectively on 28th February and 1st March. This corresponds to
a (Dis) result in our hendecagon.

However, Frederica’s parents reject her distinction as unpragmatic.
Her mother says that Frederica’s distinction has no empirical basis. Her
father says that her distinction is not coherent with his partially ordered
set of beliefs. Her parents say the apparent contradiction is a falsidical
paradox because Frederica reasons using an erroneous convention. Her
parents differ of course over which convention is erroneous. Her father
says (3) is unwarranted; her mother says (2) is unwarranted. Each parent
maintains a determinate (Det) result either way.

Suppose that Frederica is persuaded by her parents to maintain the
convention (1) and confused as to which of (2) or (3) is unwarranted
but now suspects both. If she had a reason to reject just one of (2) or
(3), she would know when to celebrate her birthday. However, it now
seems to Frederica that exactly one of (2) or (3) is not the case and
yet there seems no basis for determining which. She considers this to
be so, because she considers the reasons given for each of (2) and (3)
equally cogent, but also she now considers neither to be conclusive; and
yet there does not seem to be any other accepted principle that would
determine which is correct. In this case, she now faces a hypodox (DH)
again. Notice that she no longer faces a paradoxical dilemma (PD).

If she can now justify an additional principle (or find a reason) that
proves that just one of (2) or (3) determines her birthday in a non-
leap year, she would determine the matter, as per a (Det) result in our
hendecagon.

As time passes, perforce of having thought about it so long, she
somehow accepts (1) and that it is indeterminable which one of (2) or (3)
applies to her birthday in a non-leap year to the exclusion of the other.
She believes she will never know when to celebrate her 21st birthday. She
feels despondently that when to celebrate her birthday is an inaccessible
epistemic island. This result corresponds to (MinI) in our hendecagon.

Progressing past this slough, a scarier thought confronts Frederica.
(1) might also be indeterminate if (2) and (3) are. If so, this result
corresponds to (MaxI) in our hendecagon.

Frederica remonstrates to her mother about never being able to know
when to celebrate. However, her mother chides Frederica for her reason-
ing. Her mother says there is a cogent reason for celebrating on 1st
March, viz. Frederica was born on the day after 28th February and the
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reason given by her father, viz. that she was born on the last day in
February, does not contradict that she was born on the day after 28th
February. So how can it be unknowable that she should celebrate on 1st
March when there is an uncontradicted cogent reason for it?

The next day, there is a glimmer of hope based on new informa-
tion. Frederica reasons she might accept (1), but she now considers that
whether (2) or (3) is correct is determined by some acceptable principle
that she has evidence exists. This is because she has heard from her twin
brother (who has been indentured with pirates till his 21st birthday) that
he is coming home, and therefore she (mistakenly) believes he has found
a principle that resolves the matter. Thus, she believes she is justified
in a (TBD) result.

However, a subsequent missive from her brother disavows that there
is any principle for deciding in favour of (2) or (3). So Frederica, on
further reflection, instead rejects her parental convention about (1). She
thus has different options. She returns to her preference for both (2) and
(3); which from her new way of reasoning is now a (Both) result in our
hendecagon. All ends more or less well, except that her brother arrives
home after the festivities with further news.

Her brother informs her that killjoys, pirates and Quine do indeed
deny (1). Yet worse, Quine replaces (1) with yet another competing
convention:

(4) ‘a birthday has to match the date of birth; and February 29 comes
less frequently than once a year’. (Quine, 1976, p. 1)

Quine reasons as it were that birthdays are not closed under a per annum
principle like (1). With respect to those born on 29th February, their
birthday occurs usually every four years, given principle (4). (‘Usually’
because a century is only a leap year if it is divisible by 400.) Frederica’s
twin, Frederic was indentured to a pirate king till his 21st birthday,
according to Gilbert & Sullivan’s operetta Pirates of Penzance. Frederic
reasons on the one hand that he is turning 21, having almost lived for 21
years; and on the other hand, ‘reckoning by [his] natal day,’ he has only
had five birthdays and is therefore five ‘and a little bit older’. Frederic is
in a bind, because the pirate king maintains he is indentured till his 21st
birthday. With respect to Frederica’s original dilemma {(1), (2), (3)},
Sir Gilbert and Quine resolve it as an unprincipled self-contradiction.
They deny that (1) is a convention. Thus, they consider (1), (2), and
(3) only as conjointly self-contradictory assumptions on Frederica’s part.
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They maintain that Frederica’s 21st birthday is neither on 29th February
nor 1st March nor any other day that year. This is an (RSC) result in
our hendecagon.

By Quine’s and piratical reckoning, the twins’ 21st birthday will be
many more than 21 years pending. Quine concludes that a person can
have lived 21 years and yet only have had 5 birthdays. He says this is
an example of a veridical paradox, where the conclusion is after all true.
It is a consequence of an anomaly in the calendar and Quine’s premise
(4) that a birthday has to match the date of birth.

However, Frederica believes her brother has been hoodwinked by
an argument from authority. Neither pirates, Sir Gilbert nor Professor
Quine are really authorities on birthdays. She vindicates her own po-
sition against Quine by researching the definition of ‘birthday’ in the
Oxford English Dictionary (OED 2020b). In that authority a birthday
is an anniversary, which itself is defined as an annual commemoration,
except in some extended usages such as ‘two-week anniversary’ (OED
2020a). Also, from this reasonable search, Frederica finds nothing in the
OED stating or entailing that a birthday must match the day and month
of birth for those born on 29th February. Frederica is arguably correct;
in any case, (1) and not-(4) is implied by OED definitions.6

This case is pedagogic. In my opinion the question of the date of
Frederica’s 21st birthday is hypodoxical, but clearly this is debateable.
Nonetheless, I am not a pirate. Nor would I object to Frederica enjoying
two birthdays for the price of one. Next is a lightweight case where I do
maintain a particular result.

5. A lightweight legal example: The parking voucher paradox

Here is a paradoxical story of mine (comprised of a scenario of circum-
stances plus some related arguments). It ranks say 3 on Sainsbury’s
Richter scale of paradoxes from 1 to 10, wherein the Barber paradox

6 I note that Frederica has anachronistically accessed version 3 of the OED. Curi-
ously, the OED v2 definition of ‘anniversary’, read on its own, might appear to support
Quine; but if one also reads the OED v2 definition of ‘birthday’, one will find that
these two OED v2 definitions combined also support Frederica’s case against Quine’s
convention (4). Conceivably, Quine may have accessed some other dictionary; but he
cites no source for his interpretation of ‘birthday’. Yet the conventional extension of
this term is critical to discussion of Gilbert’s paradox and Frederica’s dilemma.
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ranks 1 and the Liar and Russell’s are examples of 10 (see Sainsbury,
2009, pp. 1–2).

I have some casual lecturing. I drive from my other workplace to
the university and park my car. The sign reads ‘Pay parking 9am to
5pm’. Not paying for parking my car within these times risks being fined.
Accordingly, I pay for parking by putting coins into the parking voucher
vending machine. The amount I have inserted will pay for parking till
4:59pm, so the machine tells me. I print the voucher that says I have paid
for parking till 4:59pm. I place it on the top of my car’s dashboard so that
it can be clearly read through my car’s windscreen. Then I dash to my
lecture. It is my first lecture on paradoxes in 2009. ‘Can I be legitimately
fined?’ I ask of the class as a segue into our topic. The initial student
response is concern that the lecture finishes at 4pm. I assure students it
will, but that I will be staying at the university past 5pm.

On the one hand, I rationalize that I cannot be legitimately fined.
I argue there is no time between 4:59 and 5:00pm at which I can be fined.
Parking vouchers can only be purchased in whole minutes. Certainly,
there is no other whole minute between the times of 4:59 and 5:00pm,
and one can park in that place freely at 5pm. Therefore, there is no
minute before 5pm for which I did not pay for parking and by 5pm
parking is free. In other words, I have paid for parking for minutes up
to and including 4:59; once 4:59 has ended, I have not paid for parking;
but at 5:00pm parking is free. This is apparently acceptable reasoning
as to why I cannot be legitimately fined for parking in this place at 30
seconds after 4:59pm.

On the other hand, I am required to pay till 5pm and could be fined.
Indeed, some students do argue that I can be fined for parking some
seconds after 4:59 (i.e. some seconds after the time reaches 4:59) and
before 5:00pm. Some even argue I can be fined for parking exactly at
5pm. Some also argue that I can be fined retrospectively after 5:00pm,
as my car was evidently parked there at 5pm but with a ticket paid till
4:59pm. There is then some apparently acceptable reason why I can be
legitimately fined for being parked in this place and only having a valid
ticket till 4:59.7

7 By serendipity, this situation had also actually occurred for me once years
before, when I was parking to go to a logic reading group. Having paid for a parking
voucher till 4:59, I put the situation to the group. Robert Meyer agreed that my
reasoning for not being legitimately fined made sense and was bemused by the case;
other logicians in the group thought that nevertheless I could be fined, but did not say
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This is not simply a disagreement. Either argument is apparently
acceptable on its own. Yet accepting both conclusions is apparently
accepting a contradiction, given the common-sense premise ‘There is just
one time from which parking is legally free’. There are a number of ways
of representing this as a paradoxical dilemma. I prefer this one: {There
is no nameable minute for which I did not pay for parking before 5pm
xor parking is legally free only from 5pm, There is no nameable minute
for which I did not pay for parking before 5pm, Parking is legally free
only from 5pm}.

A parking inspector may decide to fine me or not, but the issue
remains whether or not it is legitimate to fine me. The matter might be
settled by some by-law; for argument’s sake, I assume it is not.8

The principles I applied are based on implications I drew from the
sign and the ticketing being in minutes. I presume there is just one time
from which parking is legally free. Then I reason that (1) What the sign
says about having to pay for parking between 9am and 5pm implies I
can be fined. However, I also reason that (2) I can be fined only if there
is a nameable minute for which I did not pay for parking before 5pm,
and that implies I cannot be fined.

Actually, my solution to this paradox is to maintain that none of the
supporting arguments for (1) and (2) make either of these conclusions
certain in this case. The argument for (2) infers from ticketing in minutes
that there is no minute before 5pm for which I did not pay for parking.
This reasoning is defeasible; but it is underdetermined whether it is
controverted in this situation. Moreover, the reasoning from what the
sign actually says to (1) is also defeasible. It is brought into question in
this situation because ticketing is in minutes; but it is not controverted
by that fact on its own. I maintain the sign and the ticketing in minutes
do support but underdetermine which of (1) or (2) is the case because
they do not provide indefeasible support for either (1) or (2), which
are contraries in the given situation. The alternation ((1) xor (2)) is
nevertheless supported by the situation. This is an example of a legal
hypodox. It is underdetermined which of (1) xor (2) applies in this case;

what was wrong with my reasoning. I think their view was based more on pragmatic
cautionary considerations than pure reason.

8 Some legal fiat may settle the matter. Roy Cook, in an informal conversation,
pointed out there is probably some such by-law somewhere. Nevertheless, there may
not be such a by-law, and the case as presented may be all there is to determine the
matter.
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something that could be addressed by a by-law, but as it happens in
this case, is not; so the above contradiction can be defused to a legal
hypodox. This is an example of an (DH) result.

6. A formal example: Defusing the Liar paradox to a hypodox

In this section I defuse a Liar and some Liar-like paradoxes to hypodoxes
in a formal system. This is a formal example of defusing a paradox to a
hypodox, which was reasonably requested by a referee. (A reader unin-
terested in a formal example but interested in a philosophical example
may wish to skip to the next section.)

The Liar paradox will be resolved to a Liar hypodox, not the Truth-
teller. That is, the Liar and the Truth-teller will be distinct hypodoxes
in our system. I provide a formal deductive system in which the Liar
sentence is either the case xor not, yet it is underdetermined which it is.
Moreover, in a semantic model for this system, the Liar sentence may
consistently either be true or not true. Defusing the Liar to a hypodox
is a partial solution to the Liar. That is, the hypodoxes of this system
are consistent but determining their semantic values is a residual issue.
Various arguments motivating and supporting this defusion of the Liar
and Liar-like paradoxes can be found in (Eldridge-Smith, 2019, 2020).
The system presented here is similar to those systems. Each is a First-
order Predicate Logic with Identity, a Truth predicate, Canonical names
and Hypodoxes (1PLITCH) system. Accordingly, I label the system here
1PLITCHv4 (‘v4’ for ‘version 4’) or just 1PLITCH. I call its unquantified
fragment ‘1PLITCHv3’. Fragments of 1PLITCHv3 and v4 without a
truth predicate are classical. In 1PLITCH, the applications of a number
of rules are restricted for some formulas containing the truth predicate.
These are identity elimination (=E), (∀E) and (∃I). Since the diagonal
theorem depends on (=E) being unrestricted in its proof, the diagonal
theorem is not universally valid in our system. Also, the introduction and
elimination of the truth predicate is restricted. Moreover, in reasoning
with the semantic rules of 1PLITCH, substitution of identicals is subject
to the same restrictions as (=E) in the deduction system.

PLITCHv4 implements a general solution to Liar-like paradoxes that
use a truth predicate if the following conjecture is correct. (Eldridge-
Smith (2019, 2020) argue in support this conjecture.)
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Conjecture 6.1 (Conjecture on a dependency of Liar paradoxes). In
a system that restricts rules for introducing and eliminating its truth
predicate, T, to instances where it predicates a canonical name of a sen-
tence, then each formulation of the Liar or a Liar-like paradox depends
on swapping, within the scope of an occurrence of T, a canonical name
of a T-sentence and a non-canonical term.

A canonical name is one from which the expression named can be
mechanically determined and which can be mechanically formed for any
given expression. Following Tarski (1936), let a formulation of a paradox
be an exhibited derivation in some object language, even a fragment of a
natural language. A T-sentence is one in which the ‘T’ predicate occurs.
Swapping a canonical name of a T-sentence and a non-canonical term
involves substitution, instantiation or generalization. This may happen
tacitly where derived rules (or schemas) are used, as is conjectured to
be the case in derivations of the Liar using Gödel’s self-refential lemma.

I begin by introducing a language and the deduction system. Then
I list a selection of Liar-like paradoxes and Truth-teller-like hypodoxes.
In formulations of these I mark the inferences that fail in our deduc-
tion system with an asterisk. This ‘*’ is attached to the name of the
inference that fails. Thereby a formulation shows both a derivation and
which inference is invalid in our deduction system. I give a semantics
for 1PLTICHv4, briefly discuss the solution and make some comments
on how it avoids some revenge strategies. A referee also reasonably won-
ders how this system might compare to a classification system based on
a fixed-point semantics, particularly that of (Cook, 2020, 2022). I com-
ment on this.

6.1. A language for 1PLITCH

Consider a first order language, L, with identity extended with canonical
names for its expressions, a truth predicate, T, and a syntactic self-
predication function, sp. A canonical name for an expression ψ is rep-
resented by <ψ>. Please think of them as quote names for this basic
language. A quote name is formed by prefixing the expression it names
by an opening quote and suffixing it by a closing quote. Herein, angle
brackets ‘<’ and ‘>’ are used to represent quote marks in the language.9

9 Using arithmetization rather than quote-names with the sp-function presents
some technical complications (Quine, 1995). Nevertheless, such functions can be used
with arithmetization (Smullyan, 1957).
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The terms of L include lower case letters ‘a’ through ‘o’ as individual
constants, and variables ‘x’, ‘y’ and ‘z’. These may be subscripted. As
well, canonical names of the form <φ> are terms, where φ is a well-
formed formula of the language. There are also functional terms, called
sp-names, of the form sp(<ψ(x)>), where ψ(x) is a 1-place open formula
of the language. The above are the only terms of the language. Individ-
ual constants, variables and functional terms of the form sp(<ψ(x)>)
are non-canonical terms. Individual constants, canonical names and
functional terms of the form sp(<ψ(x)>) are closed terms. A term is
T-free iff it contains no occurrence of ‘T’. A canonical name is T-free
iff the expression it names contains no occurrence of ‘T’. An sp-name,
sp(<ψ(x)>), is T-free iff the formula ψ contains no occurrence of ‘T’.
Clearly, individual constants and variables are T-free.

The n-place predicate letters of L include: One 0-place predicate
letter (i.e. a closed sentence): ‘Q’; three 1-place predicate letters ‘C’,
‘G’, and ‘T’; and two 2-place predicate letters ‘R’, and ‘=’. Except
‘T’ and ‘=’, predicate letters may be subscripted. A predicate ‘F’ is
introduced by definition as a notational abbreviation of ‘∼T’.10

If ψ is an n-place predicate letter and t1, . . . , tn are terms, then
ψ(t1, ..., tn) is an atomic formula of L. (The identity predicate is infixed
between two terms.) If all its terms are closed terms, ψ(t1, ..., tn) is an
atomic sentence. This applies to the T predicate as well. A sentence of
the form T(δ) where δ is a closed term is an atomic T-sentence. So T(a)
and T(<∼Ta>) are both atomic formulae.

If ∆ and Γ are formulas, so are (∼∆), (∆ ∨ Γ), and (∀v(∆)), for
each variable v. Strictly, nothing is a formula except by the above.
Nevertheless, a conjunction (∧), implication (→), biconditional (↔), and
an xor connective (⊕) are introduced by classical definitions, as well as
the existential quantifier (∃).

The formulas of L include, if β and γ are terms: (β = γ), (β =
<T(β)>), T(γ), T(<T(γ)>), S(γ), R(γ, β), sp(∼T(x)), (β = <∼T(β) ∨
Q>). In practice, parentheses are often elided.

A formula is closed iff it has no free variables. A sentence is a closed
formula. A T-sentence is any sentence containing the T-predicate, even

10 An identity premise for the Simple Liar is incompatible with defining falsity
as truth of the negation. Let me illustrate this remark. As in section 6.3, ‘l = Fl’
is such an identity premise, where ‘l’ is an individual term. One cannot replace this
occurrence of ‘F’ with the truth of the negation of ‘l’, because ‘T∼l’ is ill-formed.
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inside a canonical name used in that sentence. Every sentence of the
language is either a T-sentence or a T-free sentence.

6.2. The deduction system for 1PLITCHv4

1PLITCH has rules for introducing and eliminating its logical vocab-
ulary: ∼,∨, ∀, =, T. The self-predication function, sp, is also used to
introduce some identities between non-canonical names of sentences and
canonical names for those sentences. The rules for negation and conjunc-
tion introduction and elimination are classical rules. Assumptions may
be introduced into a derivation. Undischarged assumptions are premises.
Disjunction, material implication, and material equivalence are defined
in terms of negation and conjunction in a classically standard way; as
a result, classically standard rules for introducing and eliminating these
binary connectives can also be used. The use of these sentential rules in
derivations is often simply noted as ‘SL’ for ‘Sentential Logic’. Existential
quantification is defined in terms of negation and universal quantification
in a classically standard way. The rules for ∀ introduction, identity in-
troduction, and ∃ elimination are classically standard rules. Restrictions
on Identity Elimination (=E) and universal quantifier elimination (∀E)
restrict their use for swapping a non-canonical name of a T-sentence with
a canonical name of that sentence within the scope of an occurrence of
the T-predicate. The restriction on (∀E) also applies to (∃I).

The rules TI and TE only introduce or eliminate the truth predicate
where it is predicated of a canonical name of a closed sentence. In
practice, its syntactic introduction or elimination will be governed by
a derived schema below, used in effect as an axiom schema, which is a
restricted form of Tarski’s T-schema.11

(CT-Schema) T<φ> ↔ A, where φ is a closed sentence for which <φ>
is a canonical name.

Each and every instance of the above schema is derivable from no
premises and is called a T-biconditional. The T-biconditionals are a
subset of the T-sentences. The self-predication function is a syntactic
function devised by Quine (1995).

• The self-predication of ‘x is green’ is ‘ “x is green” is green’.
• The self-predication of ‘x is not true’ is ‘ “x is not true” is not true’.

11 The difference is that Tarski’s T-schema can be used to predicate truth of any
name of a sentence, canonical on non-canonical (Tarski, 1944).
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The sp function for our language is defined as follows:

• sp(<ψ(x)>) = <ψ(<ψ(x)>)>, where ψ(x) is a formula with one free
variable.12

Each and every instance of the above identity is derivable from no
premises in 1PLITCH. Some formulations of the Liar paradox depend
on a syntactic function, like the sp function, others depend on a premise.
Our language and deductive system allow for the representation of both
such formulations.

Consider the relevance of this function for our topic. In formalized
English, the self-predication of ‘the self-predication of (x) is not true’ is
‘The self-predication of “the self-predication of (x) is not true” is not
true’. In 1PLITCH this can be formulated:

• sp(<∼T(sp(x))>) = <∼T(sp(<∼T(sp(x))>))>.

This is an identity that can be used in deriving a Liar paradox. It has the
same form as: a = <∼Ta>, which is an identity premise for a Liar. The
constant, ‘a’ might be interpreted as denoting my favourite sentence; so
that this premise represents the identity (made true in a model) that my
favourite sentence is ‘My favourite sentence is not true’. Nevertheless,
the identity statement above that is an instance of the sp function is true
by definition of the function. Moreover, consider:

• sp(<T(sp(x))>) = <T(sp(<T(sp(x))>))>.

This functional identity has the same form as e = <Te>, which is an
identity premise for a Truth-teller.

This sort of self-predication generally holds in 1PLITCH, as per the
following lemma, which we obtain by the definition of the syntactic self-
predication function:

Lemma 6.1 (The Self-predication Lemma). Given a syntactic function
to the effect of self-predication, sp, and canonical naming of a language’s
expressions in the language, for any open sentence ψ(x) in the language,
the following identity is true:

• sp(<ψ(sp(x))>) = <ψ(sp(<ψ(sp(x))>))>.

12 Remember our angle bracket expressions are quote names. There is more
technical complexity if Gödel numbers are used (Quine, 1995). Eschewing this com-
plexity, quote names are used in our language. They are sufficient to show that the
Liar paradox can be defused to a hypodox. I note also that although our results do
not depend on arithmetic, they are compatible with arithmetic of course.
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An instance, related to Curry’s paradox (using the truth predicate), is:

• sp(<T(sp(x)) → Q>) = <T(sp(<T(sp(x)) → Q>)) → Q>.

The above has the same form as:

• c = <Tc → Q>.

The first of these identities is assured in our system.
Some rules are restricted so that non-canonical names for a T-sen-

tence are not swapped for canonical names within the scope of an occur-
rence of the T-predicate.

(=E) For any closed terms t1 and t2 and formula φ, provided both t1 and
t2 are T-free, or t1 does not occur in the scope of an occurrence
of ‘T’ in φ, {φ(t1), t1 = t2} ⊢ φ(t2),

(∀E) For any formula φ, variable v, and closed term γ, ∀v(φ(v)) ⊢ φ(γ),
where γ replaces all and any v in φ provided γ is not a canonical
name for a T-sentence or no occurrence of the variable v occurs in
the scope of ‘T’.

In other words, the derivational rule for ∀ Elimination is to replace all
occurrences of v with the same closed term, any closed term except a
canonical name of a sentence containing ‘T’ if any of those occurrences
of v is in the scope of T. The same restriction applies to the rule for ∃
Introduction.

(∃I) For any formula φ, variable v, and closed term γ, φ(γ) ⊢ ∃v(φ(v)),
where v replaces any γ in φ unless that occurrence of γ occurs in
the scope of ‘T’ and γ is a canonical name for a T-sentence.

Notice that all classical uses of (=E) are deductively valid in the
T-free fragment of 1PLITCH. Thus, the restriction on (=E) does not
invalidate any classical theorems in that T-free fragment. A similar com-
ment holds with respect to the quantificational rules of 1PLITCH. The
restrictions on (=E) and (∀E) affect only instances involving sentences
that were not part of the language of the classical calculus. Nevertheless,
the restriction on (=E) is a little over restrictive and two rules are added
to compensate.13

13 I would add a third rule in an extension of this system to validate some more
inferences that cause no paradoxes but are not validated by our restricted (=E) rule.
However, it is a complex rule that we do not need for our present task of defusing
Liar-like paradoxes to hypodoxes.
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Reflexivity of identity is assured by the standard rule for =I. The
deduction system also has a rule for symmetry of identity (Sym=), such
that t1 = t2 ⊢ t2 = t1, as well as a rule for transitivity of identity:

(Trans=) {t1 = t2, t2 = t3} ⊢ t1 = t3.

Let us consider how the restrictions on our rules affect one method of
diagonalization.

Lemma 6.2 (The Restricted Diagonal Lemma). Given canonical naming
of a language’s expressions and a diagonal function to the effect of self-
predication, sp, then for any T-free ψ(x), there is a closed formula φ

such that: φ ↔ ψ(<φ>).

Proof.

(1) ψ(sp(<ψ(sp(x))>)) ↔
ψ(sp(<ψ(sp(x))>))

SL

(2) sp(<ψ(sp(x))>) =
<ψ(sp(<ψ(sp(x))>))>

Self-predication lemma

(3) ψ(sp(<ψ(sp(x))>)) ↔
ψ(<ψ(sp(<ψ(sp(x))>))>)

(1) (2) = E provided ψ is T-

free. ⊣

In particular, let ψ(x) be ∼T(x), then, except that the use of = E in the
proof above is invalid for this predicate, there would be some formula,
λ, such that:

(5) λ ↔ ∼T(<λ>) – The Restricted Diagonal Lemma*.

This route to the Liar is invalid in 1PLITCH (cf. McGee, 1990, pp. 24–
25, Theorems 1.2 and 1.3). Let us consider the Liar-like paradoxes we
would defuse to hypodoxes in the next section.

6.3. The problem space and the deductive part of its defusion

Consider table 1 (Eldridge-Smith, 2008, p. 91 ff.). Let the listed identi-
ties hold, where Q is some other sentence. Eldridge-Smith (2008) gives
formulations of each of these showing that the consequence in the third
column follows given the “ordinary laws of logic”, as Tarski (1936) puts
it, and an instance of his well-known T-schema. Our “problem space”
includes formulations using this naive reasoning to derive problematic
consequences such as those listed in the table. Given this naive reasoning
and the identities of sentences a through d in table 1:
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Common
name

Identity Consequence Given Q Given ∼Q

Liar a = <∼Ta> Ta ↔ ∼Ta over-
determined

over-
determined

Unquantified
Epimenides

b = <∼Tb ∧ Q> ∼Tb ∧ ∼Q Over-
determined

b is false

Curry c = <Tc → Q> Tc ∧ Q c is true over-
determined

ESP paradox
/ hypodox

d = <∼Td ↔ Q> ∼Q over-
determined

under-
determined

Truth-teller e = <Te> T<Te> ↔ Te under-
determined

under-
determined

Epimenidean
Truth-teller

f = <Tf ∨ ∼Q> Tf ∨ Q under-
determined

f is true

Curried
Truth-teller

g = <Tg ∧ ∼Q> ∼Tg ∨ ∼Q g is false under-
determined

ESP hypodox
/ paradox

h = <Th ↔ Q > Q under-
determined

over-
determined

Intrinsic truth i =<Ti ∨ ∼Ti> Ti ∨ ∼Ti i is true i is true

intrinsic
falsity

j = <Tj ∧ ∼Tj> ∼Tj j is false j is false

Simple Liar l = <Fl> Tl ↔ Fl over-
determined

over-
determined

Table 1. Some self-referential unquantified sentences in the problem space

The Liar proves that sentence a is both true and false, whereas sentence
b is provably false and therefore ∼Q, and sentence c is provably true,
so Q follows; but d can be true or false and Q still follows!

(Eldridge-Smith, 2008, p. 91)

For each row, in each circumstance in the table that is overdetermined,
the sentence named by that letter is paradoxical; and in each circum-
stance that is underdetermined, the sentence named by that letter is
hypodoxical.

For each of the above overdetermined cases, a derivation either uses
the identity directly or uses an instance of the diagonal lemma.14 How-
ever, as per the previous section, an instance of the diagonal lemma is

14 Some other informal proofs in the literature appeal to ‘meaning’, stipulating
that there is a sentence λ that means that ‘λ’ is not true. We instead restrict our
attention to formal proofs appealing to substitution of identicals or diagnonalization.
Still other proofs in the literature use stipulative definitions where we are using identi-
ties. Nevertheless, our formal language and system has been specified to use identities
rather than definitions.
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only valid if the corresponding derivation using (=E) is valid. That use
of (=E) is invalid in our system. Here is a multi-conclusion formulation
of the Liar  it may conclude with (3), (4), (5), (6), (8), (11), or (12).
The derivation (1) to (3) is like that of Tarski’s formulation (1936; 1944).

.
(1) a = <∼Ta> Premise
(2) T<∼Ta>↔ ∼Ta CT-schema
(3) Ta ↔ ∼Ta (1), (2) (=E)*
(4) Ta ∧ ∼Ta (3) SL (classical Sentential

Logic)
(5) (Ta ↔ ∼Ta) ∧ ∼(Ta ↔ ∼Ta) (3) SL
(6) Q (4) or (5), SL
(7) T<∼Ta> ⊕ Ta (2) SL
(8) Ta ⊕ Ta (1), (7) (=E)*
(9) ∼Ta ↔ ∼Ta SL
(10) ∼T<∼Ta> ↔ ∼Ta (1), (9) (=E)*
(11) T<∼Ta> ↔ ∼T<∼Ta> (2), (4) SL
(12) Ta ↔ ∼Ta (1) T-schema*

For Tarski, (3) is a contradiction, since it is the negation of a classical
theorem (given double negation). That is, an explicit contradiction,
having the form φ ∧ ∼ φ, can be derived as (5). The second conjunct
of (5) is a logical theorem (given classical sentential logic); so, (3) is
logically equivalent to (5) (given classical sentential logic). Thus, (3)
is a contradiction or at least logically equivalent to one, given classical
sentential logic. Tarski would restrict a formal language from formulating
(1) and (2).

In 1PLITCH, (1) is well-formed. Besides, the Self-predication Lemma
6.1 validates identities with the same form as the identities of a through
l in the table. As is well-known, the Liar need not rely on empirical
premises. Also, (2) is a valid instance of the CT-schema. 1PLITCH
incorporates classical sentential logic. 1PLITCH restricts (=E), so that
(3) and its classical equivalent (8) do not follow from (1) and (2), nor
from (1) and (7). For the same reason, (11) does not follow in 1PLITCH
from (1) and (9). Remember also that Diagonalization is restricted in
1PLITCH (Lemma 6.2) in accord with our conjecture on a dependency
of liar paradoxes (Conjecture 6.1).

Finally, the inference of (12) directly from (1) using the unrestricted
T-schema is a semantic argument. But let’s deal with it here. Seman-
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(1) k = <To> Premise
(2) n = <∼Tk> Premise
(3) o = <Tn> Premise
(4) T<To> ↔ To CT-schema
(5) T<To> ↔ T<Tn> (3), (4) (=E)*
(6) T<Tn> ↔ Tn CT-schema
(7) T<To> ↔ T<∼Tk> (5), (6) SL, (2) (=E)*
(8) T<∼Tk> ↔ ∼Tk CT-schema
(9) T<To> ↔ ∼T<To> (7), (8) SL, (1) (=E)*

Table 2.

tically, (1) assures that ‘a’ is a name for ‘∼Ta’, albeit a non-canonical
name. Given that ‘a’ names that sentence, (12) is an instance of the
unrestricted T-schema, but it is not an instance of the CT-schema. This
unrestricted use of the T-schema is invalid in 1PLITCH.

Theorem 6.1. Each of Ta, Tb, Tc, Td, Te, Tf, Tg, Th, Ti, Tj and Fl
are underdetermined by the deductive system of 1PLITCHv4.

Proof. As per (3) above, the consequence listed in the table for the Liar
is naively valid but invalid in 1PLITCH, viz. Ta ↔ ∼Ta. Similar formu-
lations that would derive the consequences listed for identities b, c, d, f, g,
h, j and l are invalid in 1PLITCH. For example, {c = <Tc → Q>, T<Tc
→ Q> ↔ (Tc → Q)} 0 Tc ∧ Q, where ‘⊢’ represents the consequence
relation for 1PLITCH. The consequences tabled for e and i are theorems
of 1PLITCH. Nevertheless, in 1PLITCH, Ti ∨ ∼Ti 0 Ti. This is clearly
because of the restriction on (=E). Indeed, for this reason, 1PLITCH’s
deductive system underdetermines each of Ta, Tb, Tc, Td, Te, Tf, Tg,
Th, Ti, Tj and Fl regardless of whether Q or ∼Q is the case, given the
tabled identities and corresponding instances of the CT-schema. For ex-
ample, ∼(Tj ∧ ∼Tj) 0 ∼Tj. Moreover, Tj 0 T<Tj ∧ ∼Tj>. 1PLITCH
does not determine any of Ta, Tb, Tc, Td, Te, Tf, Tg, Th, Ti, Tj and Fl
by any of the means in the formulation of the Liar above, even if Q or ∼Q
is given as a premise. The reader can work through the details modelled
on the multi-conclusion formulation of the Liar. Given Conjecture 6.1,
1PLITCH does not determine any of them by any other means. ⊣

“Chain Liars” are avoided by the same restrictions, as per the exam-
ple in table 2.
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Thanks to the work of Prior, Geach and Church, we have a fair
summation of the variations of the Cretan Liar paradox and how to
generalize them (Prior, 1958, 1961). Eldridge-Smith (2008, 2022) gives
hypodoxes corresponding to the original Epimenides and Geach’s varia-
tion. Supposing all other Cretan statements to be false, then Epimenides
the Cretan’s statement (E) is paradoxical. However, if in those circum-
stances, Epimenides had instead said (I) ‘Some Cretan statement is true’,
that statement would be hypodoxical. In contrary circumstances, sup-
posing all other Cretan statements to be true, then if Epimenides had
said (O) ‘Some Cretan statement is false’, this is paradoxical in those
circumstances. This is Geach’s variation. Eldridge-Smith also points
out a hypodoxical dual for Geach’s variation. If in those circumstances,
Epimenides had instead said (A) ‘Cretans always tell the truth’, that
statement would be hypodoxical. Had there been no other Cretan state-
ment and Epimenides said just one of these things, then if it were (E)
or (O) it would be paradoxical, or if it were (A) or (I) it would be
hypodoxical. Here are these contingently paradoxical and hypodoxical
statements arranged in a square of opposition.

(A) C<∀x(Cx → Tx)> (E) C<∀x(Cx → ∼Tx)>

(I) Some C are T (O) Some C are not T

contradictory

contrary

subcontrary

su
b
al

te
rn

su
b
altern

While these scenarios and being able to pair all the above paradoxes
and hypodoxes is interesting, that is a focus of Eldridge-Smith (2008,
2022). This article is focused on defusing the paradoxes to hypodoxes.
Towards that end, I want to highlight some classical consequences of
these paradoxes. Consequence 2 is commented on by Church (1946).

Common
name

Premise Consequence 1 Consequence 2

Epimenides C<∀x(Cx → ∼
Tx)>

∼ ∀x(Cx →∼
Tx)

∃x(Cx ∧ Tx)

Geach C<∃x(Cx ∧
∼Tx)>

T<∃x(Cx ∧
∼Tx)>

∃x(Cx ∧ ∼Tx)
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By Church’s (1946) lights it seems paradoxical to conclude there is
a true Cretan statement merely from the premise that a Cretan says
that all Cretan statements are not true. (One can naively derive a con-
tradiction if circumstances are such that all other Cretan statements
are not true.) Here is a formulation of Church’s variation of the Epi-
menides showing where an inference using (∀E) is invalid in 1PLITCH.
This is typical of the way in which 1PLITCH defuses variations of the
Epimenides.

(1) C<∀x(Cx → ∼Tx)> Premise
(2) T<∀x(Cx → ∼Tx)> ↔

∀x(Cx → ∼Tx)
CT-schema

(3) ∀x(Cx → ∼Tx) Assumption
(4) C<∀x(Cx → ∼Tx)> →

∼T<∀x(Cx → ∼Tx)>
(3) (∀E)*

(5) ∼T<∀x(Cx → ∼Tx)> (1), (4), →E
(6) ∼(∀x(Cx → ∼Tx)) (5), (2), SL
(7) ∼(∀x(Cx → ∼Tx)) (3)-(6) ∼I [3]
(8) ∼T<∀x(Cx → ∼Tx)> (2), (7) SL
(9) ∃x(Cx ∧ Tx) (7) PL

There are other examples, of course, not the least is Yablo’s Para-
dox. (For hypodoxes for this and other examples using lists of sentences
referring to each other, please see (Eldridge-Smith, 2008).)

(Y1) ∀k > 1(∼ T (Yk)).
(Y2) ∀k > 2(∼ T (Yk)).

...
(Yn) ∀k > n(∼ T (Yk)).

...
Given such a list, part of the paradox may be derived as in table 3. Note
that our language L cannot express this sort of quantification. (Also, to
avoid confusion, this derivation uses quote marks for canonical naming.)

If our system was extended to represent this sort of quantification,
lines (4) and (5) above show how the restrictions on our rules of inference
would restrict the derivations of consequences that would otherwise lead
to paradox.

In considering how 1PLITCH addresses the problem space of liar-like
paradoxes, first, we have been inspired by Church to identifying para-
doxical consequences that follow by naive reasoning involving the truth
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(1) ∀k > n (∼T(Yk)) Assumption
(2) ∀k > (n+ 1) (∼T(Yk)) from (1) by arithmetic
(3) T‘∀k > (n+ 1) (∼T(Yk))’ ↔

∀k > (n+ 1) (∼T(Yk))
CT-schema

(4) T‘∀k > (n+ 1) (∼T(Yk))’ (3), (2), SL
(5) T(Yn+1) identity of list entry (Yn+1), (4)

(=E)*
(6) ∼ T (Yn+1) (1) (∀E)*
(7) ∼ (∀k > n(∼ T (Yk))) (1)-(6) ∼I [1]
(8) ∃k > n(T (Yk)) (7) PL

Table 3.

predicate. Secondly, we have argued the deductive system of 1PLITCH
avoids these consequences. Thirdly, we have demonstrated that a rep-
resentative variety of unquantified variations of the Liar are underde-
termined by this deduction system. Fourthly, in virtue of paradoxical
consequences being avoided for a selection of quantified variations of
the Liar that are expressible in 1PLITCH, I conjecture that quantified
variations are also underdetermined.

6.4. Semantics

The semantics is designed to assure the inferences of 1PLITCH, including
their restrictions. The semantics is standard for atomic formula without
the truth predicate. It is also standard for disjunction and negation,
except that the rules are expressed so that they cannot be instantiated
using a non-canonical name for a sentence. As is standard, α = β is true
iff those terms denote the same thing in the domain. The domain, D,
includes the well-formed formulas of the language (wffs). So the domain
is a set of objects and wffs, but the domain itself does not include names
of either of these. An interpretation, I, assigns an interpretation to
individual constants using a denotation function, den(). The denotation
of canonical names is fixed; each canonical name denotes the well-formed
formula for which it is a syntactically well-formed canonical name. In
other words, for any formula, ψ, den(<ψ>) = ψ. Also, the denotation of
sp-terms is fixed in the semantics by rule 1b below, so that it accords with
the sp syntactic function. A model of L, M, determines which members
of the domain satisfy T-free atomic formulas, that is, satisfy the n-place
relations that are assigned to predicates by an interpretation, I. A set of
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sentences, E, is an extension of truth for L, given M. The set E includes
all atomic sentences made true by the model as well as sentences true in
accord with the semantic rules below, sentences such as a Truth-teller
may or may not be in E, as M does not determine this. Nevertheless, it is
either in E or not. The semantic rules can be applied consistently either
way. Accordingly, it can be asserted in the metatheory that a Truth-teller
sentence is hypodoxical. Moreover, the Liar sentence may or may not be
in E, and the semantic rules can still be applied consistently either way.
Accordingly, it can be asserted in the metatheory that the Liar sentence
is hypodoxical. Indeed, the semantic rules are such that each of Ta, Tb,
Tc, Td, Te, Tf, Tg, Th, Ti, Tj and Fl could be consistently in E or not.
Each is hypodoxical.

It must be borne in mind that E is a set of sentences, not names of
sentences. Thus, if ‘a’ is a non-canonical name for ‘∼Ta’, ‘a’ cannot be
a member of E because ‘a’ is a term, not a sentence. The sentence ‘Ta’
is either in E or it is not. If it is, that sentence is true; if it is not, ‘∼Ta’
is true and is in E. It will become apparent that the rule governing this,
which corresponds to the CT-schema, also maintains our restriction on
substitution of identicals in such cases. That is an interesting feature
of the semantics for 1PLITCHv4. The difference among the hypodoxes
in this semantics between Truth-teller hypodoxes and Liar hypodoxes is
also interesting, and we will return to this when comparing the classifi-
cation of hypodoxes in 1PLITCHv4 with another classification.

Here are our semantic rules with (labels), for a model, M, and set of
sentences, E:

1. (Basis) For any atomic sentence, ψ(t1, t2, ..., tn), that is not an
atomic T-sentence, ψ(t1, t2, ..., tn) is true in (M,E) iff (den(t1), den(t2),
. . . , den(tn)) ∈ I(ψ).

1a. In particular, for any atomic identity sentence and terms t and
r, t = r is true in (M, E) iff den(t) = den(r).

1b. Also, any identity syntactically assured by the definition of the
sp-function is true in the semantics. That is, for any one-place formula
ψ(x), den(sp(<ψ(x)>) = den(<ψ(<ψ(x)>)>).

2. (Sync) For any sentence (i.e. closed formula) φ for which <φ> is
a canonical name, φ is true in (M,E) iff den(<φ>) ∈ E.

3. (CT) For any sentence φ for which <φ> is a canonical name,
T<φ> is true in (M,E) iff den(<φ>) ∈ E.

4. (Negation) For any sentence φ for which <φ> is a canonical name,
∼φ is true in (M, E) iff φ is not true in (M,E).
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5. (Disjunction) For any sentences φ and ψ for which <φ> and <ψ>
are respectively canonical names, (φ ∨ ψ) is true in (M,E) iff φ is true
in (M,E) or ψ is true in (M,E).

6. (Sentential definitions) Remember other sentential connectives are
defined syntactically using ∼ and ∨.

7. (∀). If in φ(v) no occurrence of v is in the scope of a T-predicate,
(∀v)φ(v) is true in (M,E) iff, for each closed term γ, φ(γ) is true in (M,E).
If in φ(v) some occurrence of v is in the scope of a T-predicate, (∀v)φ(v)
is true in (M,E) iff, for each closed term γ that is not a canonical name
of a sentence itself containing T, φ(γ) is true in (M,E).

8. (∃ definition) Remember existential quantification is defined syn-
tactically using ∼ and universal quantification.

The (Sync) rule assures members of E as truths, and that any sen-
tence made true by the model, M, is a member of E. The (CT) rule as-
sures that any sentence φ has the same truth-value as T<φ>. The (CT)
rule and the (Negation) rule avoid substitution of identicals by referring
to a sentence using its canonical name on the right-hand-side of their
biconditionals. The (CT) rule together with (Negation), (Disjunction)
and (Sentential definitions) validate every instance of the CT-schema.
Otherwise, use of these rules is reasonably clear.

In the semantics of PLITCHv4, each sentence, φ, and a sentence
T<φ> have the same semantic value. However, if γ is a non-canonical
name for the sentence φ, it will not necessarily follow that Tγ has the
same value as φ. Here PLITCH differs from many other theories. If
in the model, M, circumstances are true such that φ would have been
naively liar-paradoxical, it is now hypodoxical in 1PLITCHv4: it is un-
derdetermined by the deduction system (if our Conjecture 6.1 is granted),
and either is a member of E or not, and it could be either. Moreover,
if φ would have been naively liar-paradoxical, φ and T<φ> have the
same semantic value but Tγ has the other semantic value. Furthermore,
even though (γ = <φ>) ∈ E, the semantic rules do not license using
substitution of identicals to obtain a contradiction from this and the
deduction rules invalidate its use in such a case.

PLITCHv4 defuses the Liar to a hypodox. It validates all sentences
and inferences that were valid in T-free classical logic (for L). Neverthe-
less, it falls short as a theory of truth though. Without going into details,
it needs further extension to validate some more inferences involving T-
sentences that would not reintroduce paradox (Eldridge-Smith, 2020). It
would also be ideal to further extend it to resolve the hypodoxes. Still,
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PLITCHv4 demonstrates that the Liar can be defused to a hypodox in
a formal system.

6.5. Revenge Stratagems

Two typical stratagems for reformulating a Liar paradox against a partic-
ular solution are strengthening (which often involves using an exclusive
negation) and forming a particular disjunction (cf. Rossi, 2019, pp. 213–
214).

1PLITCH uses classical negation. I have used a strengthened form of
the Liar as a standard example. ‘Is false’ is simply defined as ‘is not true’.
Accordingly, l = <Fl>, is treated in much the same way as a = <∼Ta>.
Moreover, I have an objection to defining another falsity predicate, F*,
as truth of the negation, so that F*<A> iff T<∼A>. l1 = F*(l1) is not
syntactically well-defined. That is, T(∼l1) is syntactically ill-formed.15

The other typical stratagem for finding a Revenge Liar for a particu-
lar solution is to use its delimiting concept in a disjunctive predicate with
‘... or is not true’. If it is claimed that the Liar sentence is meaningless,
then what about ‘This sentence is either meaningless or is not true’?
If it is claimed that the Liar sentence lacks a truth-value (i.e. has a
truth-value gap), what about ‘This sentence lacks a truth-value or is not
true’? If it is claimed the Liar sentence is indeterminate, what about
‘This sentence is either indeterminate or is not true’? If that sentence
is indeterminate then it is true; but if it is true, it is not indetermi-
nate. So it is not indeterminate. But then, if it is true, it is not true;
and if it is not true, it is true. If these sentences are not expressible
in the object-language implementing the solution, they are nevertheless
expressible in a metatheory about that solution using natural language
as a metalanguage. Let us consider such an example for our present
theory or some extension of it. My least favourite sentence is ‘My least
favourite sentence is either underdetermined or not true’. Let U be a
predicate ‘... is underdetermined’. Consider the argument from table 4.

For this derivation, the inferences of lines 6, 12 and 14 would be
invalid in an extension of 1PLITCH. While this is not a full defence
against any conceivable attempt to formulate a revenge Liar paradox,
it does indicate how the defusion of the Liar to a hypodox could be
maintained in response to similar attempts.

15 This objection relates to another argument for my restriction on substitution
of identicals given in (Eldridge-Smith, 2020).
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(1) u = <Uu ∨ ∼Tu> Premise (where U is a predi-
cate)

(2) T<Uu ∨ ∼Tu> ↔ (Uu ∨ ∼Tu) CT-schema
(3) Uu Assumption
(4) Uu ∨ ∼Tu 3 SL
(5) T<Uu ∨ ∼Tu> 2, 4 SL
(6) Tu 1, 5 (=E)*
(7) ∼Uu 6, If a sentence is true, it is

not underdetermined.
(8) ∼Uu 3-7 ∼I [3]
(9) T<Uu ∨ ∼Tu> Assumption
(10) Uu ∨ ∼Tu 9, 2, SL
(11) ∼Tu 10, 8 SL
(12) ∼T<Uu ∨ ∼Tu> 11, 1 (=E)*
(13) ∼T<Uu ∨ ∼Tu> 9-12 ∼I [9]
(14) ∼Tu 13, 1 (=E)*
(15) Uu ∨ ∼Tu 14 SL
(16) T<Uu ∨ ∼Tu> 2, 15 SL
(17) Tu 1, 16 (=E)

Table 4.

6.6. Comparison with a Fixed-point classification

A Liar-like sentence in 1PLITCHv4 is a hypodox. If tn is a non-canonical
name for a sentence φ, then if φ was a liar-paradoxical sentence, then
in 1PLITCHv4, Ttn has a different truth-value than T<φ>, however,
both are underdetermined by M. In some cases, this is given certain
circumstances. Namely, the circumstance in which it was naively para-
doxical. In 1PLITCHv4, if φ is a Truth-teller hypodox, then Ttn has the
same truth-value as T<φ>, however, both are underdetermined by M.
Intrinsic truths are such that T(tn) is underdetermined by M, while φ is
true; and intrinsic falsehoods are such that T(tn) is undetermined by M,
and φ is false. 1PLITCHv4 thus exemplifies defusing Liar-like paradoxes
to hypodoxes in a formal system. It meets the objective of this article. I
note that I would recommend extending 1PLITCHv4 before discussing
what such a system means for a theory of truth. Nevertheless, we can
compare the above categories with a more sophisticated classification.

In a Kripkean fixed-point semantics, the fixed points are partially
ordered. At the lowest fixed point, grounded sentences are true(T) xor
false(F), and ungrounded sentences are in a gap or take a third value.
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Let us say, following others, that those sentences that do not take a
value of T or F at a fixed-point are pathological (ρ). The pathological
sentences themselves are classified according to the semantic values they
can take in certain higher fixed points. In connection with classifying
pathological sentences, a number of researcher’s have progressed adding
intensional operators to a fixed-point semantics, including (Rosenblatt
and Szmuc, 2014) and (Tourville and Cook, 2020). I will make a brief
comparison with Cook’s recent classification of pathological sentences.

Cook (2020, 2022)) gives a classification of intensional statuses of
pathological sentences based on the semantic statuses a pathological sen-
tence eventually obtains at higher fixed points. The characterisation of
these intensional statuses is a sophisticated piece of work. I will give
only a simplified characterisation in table 5, merely sufficient for our
present comparison. Let σ be an assignment function that is used to
designate an indefinite fixed point in a fixed-point semantics. Also, let
σ* be the valuation of sentences and names of sentences at σ (Cook,
2022, p. 86). Accordingly, ‘∃σσ*(γ) = T’ says that there is a fixed-point
σ such that the sentence that ‘γ’ denotes is true at the fixed point σ.
Fixed-points are partially ordered, with a minimal or initial fixed point,
for a model, M. Moreover, let σ1 and σ2 be fixed points such that σ2

≥ σ1. In the following table, what is listed in a row as the basis for an
example sentence belonging to a classification can be applied generally
to other sentences belonging to that classification.

All of Ta, Te, Ti, Tj, Tcc, Tbc, Tuc and their negations are hy-
podoxical in 1PLITCHv4. This reflects the simplicity of 1PLITCHv4,
for better or worse (cf. Rosenblatt and Gallovich, 2022). Depending on
one’s purpose, a four-valued system might provide a better comparison
(Da Ré et al., 2020). Nevertheless, 1PLITCHv4, having so restricted
substitution of identicals, the truth values of sentences like Ta, Ti, Tj,
Tcc, Tbc, and Tuc may differ from the truth values of sentences using
canonical names. Both 1PLITCHv4 and Cook’s semantics are inten-
sional semantics, and yet both are also compositional.

Since all sentences like Ta through Tl and Tcc, Tbc and Tuc are
hypodoxical and thus are either true or not true in the semantics of
1PLITCHv4, any complex sentence of which they are truth-functional
components will also be either true or not true in the semantics of
1PLITCHv4. For example, if Te1 and Te2 are both true in (M,E), then
T<(∼Tuc ∨ Te1) ∧ Te2> will be true in (M,E).

There is nevertheless some accord between the two classifications over
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Classification Example Identity basis

Paradoxical Liar a = <∼Ta> ∀σ(σ*(a)=ρ), a is
pathological at every
fixed point

Semi-classical Truth-teller e = <Te> ∃σ(σ*(e)=T) and
∃σ(σ*(e)=F) and
∀σ1(∃σ2(σ2*(e)=T
xor σ2*(e)=F)

Semi-true/
Strictly un-
boundedly
true

Tautology-
teller

i =<Ti ∨ ∼Ti> ∀σ1(∃σ2(σ2*(i)=T))

Semi-false/
Strictly un-
boundedly
false

Contradiction-
teller

j = <Tj ∧ ∼Tj> ∀σ1(∃σ2(σ2*(j)=F))

Non-true cc = <∼Tcc ∨ Te> ∃σ(σ*(cc)=ρ) and
∃σ(σ*(cc)=F) and
∀σ1(∃σ2(σ2*(cc)=ρ

xor σ2*(cc)=F))

Non-false bc = <∼Tbc ∧ Te> ∃σ(σ*(bc)=ρ) and
∃σ(σ*(bc)=T) and
∀σ1(∃σ2(σ2*(bc)=ρ

xor σ2*(bc)=T))

Unstable Instability-
teller

uc = <(∼Tuc ∨ Te1)
∧ Te2>, where e1

= <Te1> and e2 =
<Te2>

∃σ1(∀σ2≥σ1)
(σ2*(uc)=ρ) and
∃σ1(∀σ2≥σ1)
(σ2*(uc)=T) and
∃σ1(∀σ2≥σ1)
(σ2*(uc)=F)

Table 5. Cook’s classification of pathological sentences in an intensional fixed-
point semantics

the semi-true, -false and -classical with respect to the canonical names
of such expressions. Sentences that are semi-classical in an intensional
fixed-point semantics are a subclass of the hypodoxes in 1PLITCHv4.
Sentence i is semi-true in an intensional fixed-point semantics; by com-
parison in 1PLITCHv4, Ti is hypodoxical, Ti ∨ ∼Ti is a valid theorem,
and T<Ti ∨ ∼Ti> is true. In the case of j, it is semi-false in an in-
tensional fixed-point semantics; by comparison in 1PLITCHv4, Tj is
hypodoxical, Tj ∧ ∼Tj is false, and T<Tj ∧ ∼Tj> is false.
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7. A philosophical critique of various solutions to Bertrand’s

chord paradox referencing our classification of results and

demonstrating an advantage of defusing it to a hypodox

as an intermediate step towards Jaynes’ solution

Let us consider Bertrand’s chord paradox (Bertrand, 1889, p. 4).

What is the chance that a randomly inscribed chord of a circle is longer
than the side of an inscribed equilateral triangle?

(Clark, 2012, p. 22)

Using three methods of randomly drawing such a chord, Bertrand dem-
onstrates that the probability is a half, a third and a quarter. Thus,
there are at least three different answers. The paradox fits a paradoxical
dilemma. The definite description implies uniqueness: there is just one
probability that a random chord of a circle is longer than an equilateral
triangle inscribed with its points on the circle. However, there are mutu-
ally exclusive answers. Furthermore, there are reasons supporting each
of these answers that the probability is a half, a third and a quarter.
The set of these answers and the statement that there is just one such
probability form a paradoxical set of the form of (PD), even though there
are at least three alternatives in this case. (There may be arguments for
other alternatives, but that will make no essential difference to our com-
mentary.) Let the probability in question be P(Q). There are arguments
for each member of {P(Q) is a half xor a third xor a quarter xor some
other value, P(Q) = half, P(Q) = third, P(Q) = quarter}.

Bertrand himself considers the problem ill-posed. His thought seems
to be that a principle of probability, the principle of indifference, fails
to apply in this case even though it seems as though it does. There
are a number of ways this could be so. Here are three of them. First,
I take Bertrand to mean that the problem actually has no answer (None).
Secondly, the application of the principle of indifference is refuted by the
contradiction itself. This option is expounded by Shackel (2007). I will
take issue with this option shortly. Thirdly, some argue that the princi-
ple of indifference can only apply given an additional stipulation about
how the probability is to be calculated. ‘The trouble with the original
question is that it fails to specify how the chord is to be randomly se-
lected’ says Clark (2012, p. 23). Thus, Clark supports Marinoff’s (1994)
solution, which Shackel summarizes as follows. ‘The claim is that the
paradox poses a problem whose identity is indeterminate, and which can
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be resolved into a number of distinct determinate problems which are not
themselves ill-posed in the primary sense’ (Shackel, 2007, p. 163). I take
this strategy to be first reducing the paradox to an indeterminate result,
such as (MinI) or (MaxI) in our hendecagon; then making a distinction
to obtain determinate results similar to (DIS) in our hendecagon. This
approach has two inadequacies. First, if the issue is that the probability
is indeterminate, then neither restricting nor adding a principle should
resolve the issue. That is, strictly speaking ‘indeterminate’ implies there
is no way of determining the probability. Yet making a distinction is in
effect restricting principles or adding a principle. At least it could be
construed that way. The matter would be quite different if the problem
posed were first construed as a hypodox, that is, if the issue was that
the probability is underdetermined for lack of a principle determining
the matter. Then a distinction could be made that had the nett effect
of adding a principle to resolve the hypodox. Secondly, simply saying
‘When the method of random selection is adequately specified, a deter-
minate answer is available’ (Clark, 2012, p. 24), only partially addresses
the issue. A complete solution should explain why the method of ran-
dom selection needs to be specified. (Clark (2012, p. 255) himself makes
essentially this same point about what is required of a solution to the
Two Envelope Paradox.)

There are other options for resolving this paradox. If an alternate so-
lution could explain why the presumption that there is one probability is
unreasonable, one could argue for rejecting the alternation but retaining
multiple values for P(Q) yielding a result like (Both) in our list.

Jaynes (1973) takes a somewhat different approach. He defends a
determinate solution, a (Det) result in our hendecagon. He considers
that the problem is after all well-posed. He appeals to additional prin-
ciples (unknown to Bertrand and not accepted by Clark and Marinoff)
concerning maximum entropy and transformation groups (Jaynes’ own
enhancement of the principle of indifference). Jaynes argues that there
is a unique solution and that the other answers are incorrect. That is,
Jaynes’ solution entails the alternation, because he upholds one answer
(a half) and finds fault with the reasoning for the other erstwhile pur-
ported answers. To correctly calculate the probability in question a chord
drawn at random must have a uniform chance of being drawn. The fault
he finds is that the other methods do not actually uniformly distribute
the chance of drawing any individual chord, whereas he argues that the
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method supporting a probability of a half does uniformly distribute the
chance of drawing any individual chord.

Jaynes’ proposed solution seems to demonstrate how a paradox could
be resolved by deploying or accepting additional principles; but how
would this be a viable solution, given that a paradox is already incom-
patibly overdetermined? Jaynes’ additional principles purportedly show
that all but one answer is actually wrong. Given the relevant alternation,
these additional principles, if accepted, would be ones that constrain the
use of other principles or methods that when unconstrained result in
incompatible conclusions. Although conceivable this would require non-
monotonic reasoning. To see this, consider a case where A xor B is
accepted. Principle P1 is invoked in an argument for A, while principle
P2 is invoked in an argument for B. Both P1 and P2 are granted prin-
ciples (in the case in question they are reasonable methods of random
distribution). Then, it is questioned whether these arguments meet some
proposed additional criterion, based on acceptance of an additional prin-
ciple P3. In the case being considered, this is whether the probability
of drawing a chord is uniformly distributed based on acceptance of the
principles of maximum entropy and transformation groups. Finally, it is
argued that P1 and not P2 conforms to this additional criterion.

One could try to argue this is simply a case of pointing to a fallacy in
the reasoning for other answers. I think this oversimplifies the matter.
Fallacious reasoning is proven by giving an analogous counterexample
that exposes the fallacious reasoning or by justifying an exception (as in
the case of division by 0). What happens, if one accepts Jaynes’ solution,
is that one accepts an additional criterion for random selection because
one accepts that this follows from accepting the principles of maximum
entropy and transformation groups. Apparently, these additional princi-
ples only make a difference in indenumerable sample spaces, or even more
particularly Bertrand-like paradoxes. Jaynes’ solution is not advanced by
giving an independent counterexample, but by arguing for the relevance
of these principles and that these principles (not some counterexample)
imply that all but one answer to Bertrand’s conundrum are wrong.

However, if our reasoning is monotonic, how can additional principles
void a contradiction obtained with less principles? There seem to be two
conceivable explanations. First, perhaps Jaynes was not accepting a new
principle or extending the principle of indifference but was replacing that
concept. Then, the other methods of calculating the probability were
incorrectly validated by the principle of indifference. That is, Jaynes’s



608 Peter Eldridge-Smith

revised principles invalidate the reasoning for all but one competing an-
swer. This is perhaps what Jaynes has in mind. But if this is correct,
Jaynes is committed to his revised principles being the principles that
actually validate all cases where the principle of indifference was con-
sidered adequate. Secondly though, it is conceivable that the principle
of indifference is not sufficient to determine this case involving inde-
numerable possibilities. That is, the problem is a hypodox potentially
resolved by Jayne’s additional principles. The resolution is then done
in two steps. First, argue that the case goes beyond determination by
the principle of indifference, that is, it is consistently underdetermined
by that principle alone, and so is hypodoxical. This corresponds to
an (DH) result, effectively defusing the paradox to a hypodox. Then
secondly Jaynes’s solution resolves this hypodox by accepting additional
principles to uniquely determine the matter.

Shackel (2007) criticises both Marinoff’s and Jaynes’s approaches,
and argues that the paradoxical argument undermines the principle of
indifference. He says he supports Bertrand’s original position that the
problem is ill-posed. The paradoxical argument shows that the principle
of indifference will not yield a unique probability. How on the one hand
can Shackel say the problem is ill-posed and yet on the other hand ad-
mit the paradoxical argument? For Shakel, the argument is a reductio
of the principle of indifference (given that Shackel rejects Marinoff-style
disambiguation in general). This is confirmed by Shackel in his abstract.
Given the principle, one has a contradiction, on which basis the principle
is refuted, says Shackel. If Shackel is correct, the paradox is veridical,
like the Barber, in terms of Quine’s classification. His result would be
an (RSC) result, relative to our list of results, if it were a reductio of an
assumption or purported circumstance. That is, if there were some addi-
tional justification for thinking the principle in question had an exception
or some clear counterexample. Without that, I think using a paradoxical
argument to refute an accepted principle, the principle of indifference, is
ad hoc. Besides, given Jayne’s additional principles, one does not have
a contradiction and therefore has no basis for a reductio argument.

Whether or not any of these solutions is correct, each is an example
of a result of resolving a paradox or a hypodox. I noted that if it is
a paradox, Jaynes’ solution needs a justification for why accepting an
additional principle will reduce the number of good answers to just one.
I am arguing that this can be done in two steps though. First, arguing
for the insufficiency of existing principles to conclusively determine the
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matter, so that as it stands it is underdetermined and hypodoxical. Sec-
ondly, arguing for additional or extended principles that determine just
one answer, and in this way resolving the hypodox. Although Jaynes
himself did not put it this way, Jaynes (1968) can be reconstrued as
arguing for the insufficiency of the principle of indifference in cases like
Bertrand’s paradox, and then in his (1973) arguing that his extended
principles address this.

Interestingly, Jaynes himself thought that such paradoxes are best
considered as overdetermined rather than underdetermined, modelled on
another paradox for which he did not have a solution,

von Mises’ water-and-wine problem [. . . ] Here we are told that a mix-
ture of water and wine contains at least half wine, and are asked: What
is the probability that it contains at least three-quarters wine? On the
usual viewpoint this problem is underdetermined; nothing tells us which
quantity should be regarded as uniformly distributed. However, from
the standpoint of the invariance group, it may be more useful to regard
such problems as overdetermined; so many things are left unspecified
that the invariance group is too large, and no solution can conform
to it. (Jaynes, 1973, p. 490 with his italics)

However, finding a solution to this problem as a hypodox may point
to another additional principle required. Mikkelson (2004) takes this
approach of accepting an additional principle to resolve this problem.
Although Mikkelson does not call the problem underdetermined and a
hypodox, I take the liberty of suggesting that his solution to von Mises
water into wine conundrum may be construed as a solution to this prob-
lem as a hypodox. Pace Jaynes, viewing this problem as inconsistently
overdetermined does not allow this option for resolution, unless one’s
reasoning is non-monotonic. The choice between a paradox (PD) and
its incompatible hypodox (DH) is exclusive. A distinct conundrum like
Bertrand’s Chord problem or von Mises Water into Wine problem cannot
at once be both a paradox and a hypodox.

Let us review the above considerations in comparison to the Ship of
Theseus paradox. The Ship of Theseus is not resolved by the method of
making a distinction. On the one hand, it is not sufficient to resolve that
paradox to say that the ship of Theseus is underspecified, and to say one
needs to specify the principle (or method) by which the ship is identified,
whether as composed of the original planks or being well-maintained. If
it is given that two ships have a claim to the label for different reasons,
‘the ship of Theseus’ is a non-unique identifier (despite its incorporation
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of ‘the’). Therefore, it does not follow that one individual object both
has original planks and has been completely renovated. Most database
designers (unlike philosophers) would simply establish a unique key to
distinguish the two items named ‘the ship of Theseus’ in their database.
But such a “solution” misses the crux of the paradox – it is a paradox of
identity over time, not terms and inferences that presume co-reference.

Arguably, as Shackel characterises it, Marinoff’s solution relies on
‘the probability of a randomly inscribed chord of a circle being longer
than the side of an inscribed equilateral triangle’ not being a unique
identifier and subsequently distinguishing terms for each incompatible
answer. In general, a paradox is not fully resolved by disambiguating
the name of something where what is expected is an explanation of why
there is not a unique thing.

On the other hand, arguably, although identity through time is usu-
ally consistently determined by constant maintenance of a thing or be-
ing composed of original parts, in cases like the Ship of Theseus, these
principles seem to inconsistently overdetermine which is the thing. In
Bertrand’s Chord Paradox there is a principle, the principle of indiffer-
ence, that usually consistently determines the answer, but in this case,
seems to inconsistently overdetermine which is the answer to this prob-
ability conundrum.

As I was saying, if Jaynes had argued first that Bertrand’s chord
problem is actually underdetermined by the principle of indifference,
Jaynes could then argue that the problem can be determined by accept-
ing additional principles to address the lack of a principle to determine
a unique answer. As Jaynes work stands, taken literally, he construes
the problem as apparently inconsistently overdetermined and is not us-
ing non-monotonic reasoning. Hence, he must argue that his principles
replace the principle of indifference.

As Shackel (2007) points out, one expects a solution to such conun-
drums, not just an answer. As a candidate resolution, underspecification
seems to be an answer but not a complete solution. As a second can-
didate resolution, a reductio without some additional justification also
seems to be an answer that is an incomplete solution. As a third candi-
date, Jaynes’ answer would be a solution either if it were first reasonable
to defuse the paradox to a hypodox (DH) or if he somehow indepen-
dently justified his additional principles always replacing the principle
of indifference (Det). I hope my critique of some proposed solutions to
Bertrand’s paradox by comparing their results has illustrated the utility
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of this partial taxonomy, account of hypodoxes, and how it may some-
times be useful to defuse a paradox to a hypodox.
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