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Leibnizian Logic of Possible Laws.
A Formal Framework Motivated by Hintikka That

Blocks Lovejoy’s Principle of Plenitude

Abstract. The so-called Principle of Plenitude was ascribed to Leibniz by
A. O. Lovejoy in The Great Chain of Being: A Study of the History of an

Idea [9]. Its temporal version states that what holds always, holds neces-
sarily (or that no genuine possibility can remain unfulfilled). This temporal
formulation is the subject of the current paper. Lovejoy’s idea was criticised
by Hintikka. The latter supported his criticisms by referring to specific
Leibnizian notions of absolute and hypothetical necessities interpreted in a
possible-worlds semantics. In the paper, Hintikka’s interpretative sugges-
tions are developed and enriched with a temporal component that is present
in the characteristics of the real world given by Leibniz. We use in our ap-
proach the Leibnizian idea that change is primary to time and the idea that
there are possible laws that characterize worlds other than the real one.
We formulate a modal propositional logic with three primitive operators for
change, temporal constancy, and possible lawlikeness. We give its axiomat-
ics and show that our logic is complete with respect to the given semantics
of possible worlds. Finally, we show that the counterparts of the considered
versions of the Principle of Plenitude are falsified in this semantics and the
same applies to the counterpart of Leibnizian necessarianism.

-
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Introduction

In the years 1932–1933, Arthur O. Lovejoy gave a series of lectures at
Harvard University, first published in 1936 under the title The Great
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Chain of Being: A Study of the History of an Idea [9].1 The leitmotif of
these historical considerations was the search in different philosophical
systems for the principle that Lovejoy called the Principle of Plenitude

expressed by the slogan that all the metaphysical universe is ‘a plenum

formarum in which all categories of Being are necessarily exemplified’
[9, 55]. In two lectures (especially in V, but also in IX) he devoted
special attention to Leibnizian metaphysics, believing that his Principle
should be treated even as ‘the essential characteristic’ of the totality of all
monads, as a consequence of the Principle of Sufficient Reason, resulting
in the Principle of Continuity [9, 144]. In one of the many formulations
of the Principle of Plenitude sought in Leibniz’s texts, Lovejoy states
that ‘no truths concerning compossibility are contingent’ [9, 171]. This
claim, in a certain temporal specification we adopt, is the subject of
our criticism. We are convinced that Lovejoy’s approach to Leibnizian
metaphysics is misguided and we draw inspiration from a comprehensive
analysis of this issue, developed by Hintikka in [3, 4].

The research presented here follows the main path of Hinitkka’s at-
tack in [3] but with two further interpretative steps concerning Leibniz’s
philosophy. First, we take into account its temporal component. In fact,
Hintikka also considered temporal paraphrases of Lovejoy’s Principle but
he did not specify their relationship to Leibniz’s idea of time. From the
temporal perspective, the mentioned ‘truths concerning compossibility’
are propositions which always hold in some possible world. We adopt
this way of speaking and we take into account some special properties
of time described by Leibniz. In particular, we work with Leibniz’s
original idea that time is secondary to change. Our second addition to
Hintikka’s considerations relates to his discussion of different kinds of
necessity: absolute and hypothetical. Lovejoy considers only the former
one and thus he runs counter to the intentions of Leibniz. In terms
of the semantics of possible worlds, we would say that a given law is
absolutely necessary in some possible world when it always holds in that
world and it is the case in all other possible worlds. In turn, those laws
that characterize some possible world, but do not hold in at least one of
the others, are considered as hypothetically necessary in respect to the
world that they describe, in case that this world is considered as actual.
The contingent laws of our world are constant in it, but they are only

1 The book is still in circulation. Until 2001, twenty-two reprints had been issued,
with a second edition published by Routledge in 2009.
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hypothetically necessary. From our point of view, it is interesting that
both types of necessity as well as contingency applied to laws are not
reducible to mere temporal constancy in a given world, insofar as their
meanings are explained from the perspective of other possible worlds
than the one in which they hold. This is one of the key ideas of Hintikka
that we adopt and so we introduce the notion of possible lawlikeness

into our considerations. Propositions that are possible laws characterize
possible worlds other than ours and they are hypothetically necessary in
these worlds.

As a result of our research, we propose a formalization in which
changeability, constancy, and possible lawlikeness are interrelated in a
way motivated by Leibnizian metaphysics. It is based on the propo-
sitional modal logic LC� which was already associated with Leibniz’s
philosophy of time and change in [12]. LC� deals with two primitive
concepts: change, symbolized by the operator C (it changes whether),
and constancy expressed by �. In LC� we introduce a new primitive
operator ë, to be read: it is a possible law that. We tie it with C and
�, and we axiomatize a new logic LC�ë. The resulting system is inter-
preted in the structures of so-called states of possible worlds. We show
that it is complete with respect to our semantics. Finally, we return to
Lovejoy’s Principle expressed in terms of our logic. It turns out that the
formulated versions of it are false.

We start our presentation with a few explanations of the Principle
of Plenitude and a preformal description of Leibniz’s motivations. Al-
though we are not focused particularly on the exegesis of Leibniz’s texts,
we indicate those of Leibniz’s threads that have led us to the construction
of the logic LC�ë.

1. The Principle of Plenitude

Lovejoy interpreted Leibnizian metaphysics as taking into account a pic-
ture of reality being, in a sense, a system of monads  eternal spiri-
tual individuals  described especially in two theodicean treatises: ‘The
Principles of Nature and of Grace, based on Reason’ [7, G. VI 598–606,
636–642] and ‘The Monadology’ [7, G. V 607–623, 644–652]. In order to
find the idea of a ‘chain of being’, which would allow him to state that
Leibniz’s metaphysics meets the Principle of Plenitude, he referred to a
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fragment of a letter allegedly written by Leibniz, supposedly addressed
to Bayle. Here we read the following

All the different classes of beings which taken together make up the
universe are [. . . ] so closely united that it would be impossible to place
other between any two of them, since that would imply disorder and
imperfection. [. . . ] it is necessary that all the orders of natural beings
form but a single chain, in which the various classes, like so many rings,
are so closely linked one to another that it is impossible for the senses
or the imagination to determine precisely the point at which one ends
and the next begins [. . . ]. [9, 144–145]

On this basis Lovejoy considered the Leibnizian reality as the universe
of sets of all monads, forming, except the most perfect one which is God,
so to speak: a linear order of species. Taking just this view, he stated
that ‘[t]o all appearance reality is full, not only in its minor details but
also in its more general features’ [9, 147].

In Leibniz’s universe, the existence of the extremely perfect monad is
necessary and this follows directly from the fact that it is possible [7, G.
VII 261–262, 167–168]. By virtue of the Principle of Sufficient Reason,
God is the ultimate reason for all other monads to exist [7, G. VII 302–
308, 486–487]. Thus, in Lovejoy’s opinion, it is precisely the Principle
of Sufficient Reason that implies the fullness of reality described by the
Principle of Plenitude, and the latter is supposed to guarantee that in
such an ordered reality there are no gaps. These suggested relationships,
however, are not modeled here.

Lovejoy considers his idea of the ’chain of being’ with reference to the
Leibnizian idea of the real world [9, 171] while aware of the explicit state-
ment of Theofilus that ‘there must be species which never did and never
will exist, since they are not compatible with that succession of creatures
which God has chosen’ [8, 307]. He then addresses the Principle of Pleni-
tude to the whole universe of infinitely many possible worlds to which the
real world belongs. The real world according to Leibniz is a collection of
compossible complete concepts of individual substances, i.e. monads [7, G.
III, 572–576, 662]. The complete concepts are complexes of all (relational

and internal) qualities attributed to monads [7, Ca. 1680–1684, 268]. In
our interpretation, we follow Mates and we extend this vision to every
possible world. Thus, we consider all possible worlds as formed out of
compossible concepts [10, 69–78]. In the case of nonreal worlds, they
are complexes of properties that could be attributed to some individuals
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if the latter existed [10, 64]. The relational notion of compossiblity is
different from the possibility in an absolute sense. The absolutely pos-
sible concepts are those that are not self-contradictory, but not all such
concepts are mutually compossible [7, G. III 572–576, 661–662]. There
are possibilities which never happen, otherwise all non-actual objects
would be impossible [7, F. de C. 178–185, 263–266] and this statement is
explicitly rejected by Leibniz. Interestingly, it is just the contraposition
of Hintikka’s temporal version of the Principle of Plenitude, which we
will identify in a moment as (PM). All compossible complete concepts,
as Russell would say in [11, 79], are under the ‘reign’ of characteristic
contingent laws determining specific ‘general features’ of their reality
[7, G. II 47–59, 333]. Contraries of contingent propositions imply no
contradiction [7, G. IV, 427–463, 310]. One could say in terms of the
semantics of possible worlds that contingent laws are constancies that
describe the real world but their negations are realizable in some other
possible worlds. Examples of contingent laws are truths of facts, includ-
ing the laws of motion, as well as cases of inductive empirical generalities
[7, PA. VI, 266–272, 88]. On the contrary, the absolutely (or metaphysi-
cally) necessary laws  called by Leibniz eternal truths  are those whose
negations are contradictory [7, F de C., 178–185, 264]. They are con-
stancies realized in every possible world. As for the term ‘necessary’
itself, Leibniz notes in a letter to Clark [7, IX, 696] that it is ambiguous
because it can mean either absolute or hypothetical necessity. These
modalities are essentially different and they play the important role in
Leibniz’s defense of himself against necessarianism  a view according
to which everything that is real is also necessary. Taking precisely this
distinction, Leibniz stated that ‘[t]he present world is necessary in a
physical or hypothetical sense, not absolutely or metaphysically.’ [7,
G. VII 302–308, 487].2 Following Leibniz, with regard to the laws, we
would say that hypothetically necessary are those constancies that are

2 Adams reconstructs the two contingency theories on the basis of Leibniz’s writ-
ings falsifying the statement that Leibniz’s philosophy is founded on a general neces-
sitarian claim [1, 9–52]. The distinction between absolute and hypothetical necessity
is considered in the first one which is based on the Leibnizian idea of truth [1, 16–19].
In the second one, the central point is the issue of God’s freedom to choose the real
world. On the basis of both of these theories, Adams believes that Leibniz managed
to defend himself against his early necessarian position. We share this opinion and
use concepts that are involved in the first of the reconstructed theories (and this is in
line with Hintikka’s approach). Cf. also [10, 117–121].
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valid in some world provided this world is realized (that this happens by
the decision of God). All contingent laws of the real world are just of
this kind. However, in general, the laws that characterize other possible
worlds may also be candidates for such necessary propositions. Leibniz
is convinced of the existence of such laws when he writes that

[. . . ] as there exists an infinite number of possible worlds, there exists
also an infinite number of laws, some peculiar to one world, some to
another, and each possible individual of any one world contains in the
concept of him the laws of his world. [6, G II. 40, 43]

In fact, this Leibnizian idea motivates us to introduce in our formaliza-
tion the aforementioned modality of possible lawlikeness which applies to
constancies that occur in other possible worlds than the real one. Both
actual contingent and other possible laws are ‘laws of the general order of
this possible universe with which they are in accord’ [7, G. II, 47–59, 333].

Given this outline of the above distinctions, we can now extract from
the extended historical context the main thread of one of Lovejoy’s nu-
merous arguments that lead him to the ’discovery’ of the alleged Leibniz-
like Principle of Plenitude. It begins with the following line from Russell:

What is called the ‘reign of law’ is, in Leibniz philosophy, metaphysi-
cally necessary, although the actual laws are contingent. [11, 79]

First, as Hintikka points out, Lovejoy asserts the statement that the
compossibility of concepts is nothing more than their possibility (1).
Regardless of Leibniz’s distinction, Lovejoy states that ‘[it] seems plain
that compossibility does not differ in principle from possibility, in the
traditional philosophical sense of the latter term’ [9, 171]. As a result,
Lovejoy states that from the perspective of the real world it must be
the case that, all compossible concepts which are simply possible, are
realized in it (because they form in it the ‘chain of being’) (2). Now,
Lovejoy makes the next step by assuming that all reality is absolutely
necessary (3), and so, all possible concepts (and laws about them) are
just absolutely necessary (4). However, in view of the distinction between
absolute and hypothetical necessity and the quoted passage of Leibniz
[7, G. VII 302–308, 487], assumption (3) is also flawed and this fact
is again noticed by Hintikka.3 Anyway, Lovejoy follows this path and

3 One of Lovejoy’s arguments for (3) is based on the idea that God acts according
to the Principle of Sufficient Reason and in view of the fact that the real world is the
most perfect one from infinitely many possible worlds, God was forced to actualize
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he keeps in his conclusion from (3) the sense of metaphysical necessity
used by Russell, even if he should have used the hypothetical sense. One
could also say that even if Lovejoy would omit (3) (or he would weaken it
using the notion of hypothetical necessity), the reasoning regarding (4)
would be biased by the so-called fallacy of the slipped necessity.4 Rus-
sell’s formulation is not in doubt when understood that it is absolutely
necessary that if anything belongs to the reign of a given law, then it is
subject to that law. However, it does not follow from this that, in the
case where this law is contingent, it applies to any element of its reign
with absolute necessity. But Lovejoy just claims that in the frame of
Leibnizian metaphysics all possibilities that belong to the reign of actual
contingent laws are metaphysically necessary, and moreover, that the
same applies to every possible world, regardless of which one was chosen
by God [9, 171–172].

As we have already said, our formal reconstruction of Lovejoy’s idea
involves elements of the Leibnizian concept of time. We justify this
approach by the fact that the Leibnizian real world itself contains a
temporal component. As Leibniz states, individual concepts constitut-
ing the real world contain past, present and future qualities (predicates)
of monads (individual substances) [7, Ca. 1680–1684, 268], which are
subject to changes. For this reason, we look at the real world as a
series of transforming states [7, G. VII 303, 487] which we understand
as collections of complexes of all qualities that the monads possess si-
multaneously. Changes that consist in acquiring or losing qualities by
monads cause the state of the world to change and, as a result, time
begins to flow being a measure of change [7, GV. 139]. We consider so-
called objective external time which begins with the creation of the real

it. In fact, this justification is not convincing from the perspective of the second of
Leibniz’s contingency theories mentioned by Adams [cf. especially 1, 34–42]. We do
not consider this issue here.

4 The fallacy lies in the confusion between ‘Necessarily, if P then Q’ and ‘if P

then necessarily Q’. As Mates claims, Leibniz realized that reasonings of this type are
incorrect [10, footnote 33, pp. 97–98, p. 117]. Using L for necessity, the fallacy can be
associated with the use of schema (sL) L(A → B) → (A → LB). When (sL) is added
to classical propositional logic extended only by the necessity rule ⊢ A =⇒ ⊢ LA, then
the formula A → LA is derivable. In the case of the Lovejoy’s reasoning as sketched
above, A would represent the statement that from the perspective of the real world all

compossible concepts are simply possible and B  all compossible concepts are realized

in the real world. Sentence (2) would be of the form L(A → B) and conclusion (4):
(A → LB).
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world5, which is ‘an order of successions’ [7, Letter to Clark IIIth, 682]
and infinite in the future [7, G. II, 362].

The laws of any possible world understood in this way are to be true
in all its successive states and so to be true at all times. Now it is clear
that Hintikka’s formulations can be regarded as temporal counterparts
of Lovejoy’s Principle of Plenitude:

What holds always, holds necessarily. (PL)

No genuine possibility can remain unfulfilled
through an infinite stretch of time. [3, 260]

(PM)

In our formalization, we refer to these two versions.
Our aim is to find the counterparts of (PL) and (PM) expressed in

a language with primitive notions of change, constancy, and possible
lawlikeness, and then to falsify these counterparts in the temporal se-
mantics of possible worlds given for that language. First, however, we
model some preformal intuitions that underlie it.

2. From one to many possible worlds

We accept the idea that there are infinitely many, mutually independent
monads forming the set M = {mi}i∈N and infinitely many of their qual-
ities that are elements of Prop = {pk}k∈N. Monads can acquire and lose
qualities never losing their existence. The nonempty set a1 ⊆ M × Prop

is the initial state of the real world.
In general, we consider the following structure: 〈M, Prop, a〉, where

a = {an}n∈N and every an ⊆ M ×Prop. Successive states of a represent
the Leibnizian real world, about which we assume at least two minimal
conditions that must be met at the same time. Firstly, no state of the
real world is empty, i.e., for all an: an 6= ∅. In this way we model the
assumption that in every state of the real world there exist some concepts
that are compossible in an. Secondly, we accept the idea that successive
states of the real world are conditioned by changes in attributions; that
is, for all an there are mi, pk such that: ((〈mi, pk〉 ∈ an and 〈mi, pk〉 /∈
an+1) or (〈mi, pk〉 6∈ an and 〈mi, pk〉 ∈ an+1)). These changes induce the
flow of external time.

5 As Russell notes, this is one of the three senses of time, we can find in Leib-
niz’s philosophy, in addition to time in God’s mind and time based on the mutual
perceptions of monads [11, 152].
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Time begins with God’s choice of the initial state of the real world.
We consider time as linear. The unity of time is identified with its
connectivity.6

Let us take now the propositional language formed out of: atomic
propositions At = {αi

k}i,k∈N; truth connectives ¬, →; modal operators:
C – it changes whether, � – it is necessary that; brackets: ( , ). Atomic
constant αi

k is to mean that quality pk is attributed to monad mi.
We accept the standard definitions of other classical connectives. The

interpretation function int : At → M × Prop assigns meanings to atoms:
int(αi

k) = 〈mi, pk〉.
For any formulas A, B of our language, we describe their satisfaction

on n state of a (|=) in the following way:

• M, Prop, a |=n αi
k iff int(αi

k) ∈ an,
• M, Prop, a |=n ¬A iff M, Prop, a 6|=n A,
• M, Prop, a |=n A → B iff either M, Prop, a 6|=n A or M, Prop, a |=n B,
• M, Prop, a |=n CA iff either both M, Prop, a |=n A and M, Prop, a

6|=n+1 A, or both M, Prop, a 6|=n A and M, Prop, a |=n+1 A,
• M, Prop, a |=n �A iff ∀mn(M, Prop, a |=m A).

For ♦ we accept the semantic condition:

• M, Prop, a |=n ♦A iff ∃mn(M, Prop, a |=m A).

Just from conditions for � and ♦ we know that for every state n of the
real world a:

∀mn(M, Prop, a |=m A) =⇒ M, Prop, a |=n �A, (P�)

M, Prop, a |=n ♦A =⇒ ∃mn(M, Prop, a |=m A). (P♦)

If operators � and ♦ were regarded as formalizing the notions of ne-
cessity and possibility that occur in (PL) and (PM), respectively, then
implications (P�), (P♦) could be regarded as their formalizations. In
connection with our semantics of the states of the real world, one could
say that our �, ♦ express ‘real’ necessity and ‘real’ possibility (or ‘gen-
uine’ necessity/possibility). The crux of all this construction, however,

6 Our ideas are based on research conducted by Futch in [2]. He considers unity,
linearity, and posteriority to change, as the essential attributes of time in Leibniz’s
philosophy. We do not consider here the issue of the justification of temporal reduc-
tionism based on the Leibnizian theory of causality, which plays an important part in
Futch’s analysis. In our formalization, the concept of change gets only an extensional
description.
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is that it is precisely in this one-world semantics, that the meanings of
necessity and possibility are flattened to the temporal sense, just as is
expressed by the truth conditions for � and ♦.

As Hintikka rightly points out in his counter-argument to Lovejoy’s
position, as long as we cannot relate these modalities to a world other
than the real one, they can express only time constancy or instanta-
neous occurrence in this real world. But when interpreted like this, our
temporal versions of the Principle of Plenitude become trivial and do
not express what is crucial to them. Actually, they are mentioned to
establish the relationships between constancy, instantaneous occurrence,
and metaphysical necessity and possibility respectively.

To model the Leibnizian meanings of the considered modalities, we
follow Hintikka’s idea and we consider a structure 〈M, Prop, W 〉, where
M , Prop are as described above and W is at least a two-element set
of Leibnizian possible worlds, such that every w ∈ W : w = {wn}n∈N,
where every wn ⊆ M × Prop, a ∈ W .

We modify the interpretation of the formulas. We refer now to
〈M, Prop, W 〉 and we proceed in an analogical way as described for a

-satisfaction, but we consider satisfaction in any w ∈ W .
Our language is extended now by the primitive operator ë, to be

read: it is a possible law that with the following meaning:

• M, Prop, W , w |=n
ëA iff ∃u∈W /{a}∀k∈N(M, Prop, W , u |=k A).

Now we can see that constancy � in a does not imply lawlikeness in
w. As to contingent laws, they are a-constancies the negations of which
hold in some non-real world. In turn, the fact of being absolutely nec-
essary guarantees a-constancy and impossibility to be non-constant in
any nonreal world.

Now it is also easy to see that the implications:

M, Prop, W , a |=n �A =⇒ M, Prop, W , a |=n ¬ ë¬�A, (∗)

M, Prop, W , a |=n
ë♦A =⇒ M, Prop, W , a |=n ♦A (∗∗)

do not follow from the assumed satisfaction conditions.
We come precisely to Hintikka’s standpoint that in many possible

worlds semantics, both absolutely necessary and contingent laws are not
reducible to constancies in this world in which they are considered.

Our next step is to formulate a logic for the analysis proposed here
and to find counterparts to (PL) and (PM) that are falsified in a certain
generalization of the semantics outlined in this section.
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3. Change, constancy, and possible lawlikeness formalized.
Logic LC�ë

Let us consider so-called L-structures which are tuples 〈W, a〉, where W
is a set of Leibnizian possible worlds with at least two elements, and
a ∈ W is the real world. Every Leibnizian possible world w ∈ W is a set
w = {wn}n∈N of its successive states.

Attributions of qualities to monads are coded using atomic expres-
sions in our language. However, we do not note in this language any
dependencies between the attributions of qualities (and also the monads
themselves) and so the issue of the internal construction of states is irrele-
vant. Thus, states of Leibnizian possible worlds are points this time. For
any L-structure we consider the interpretation function I :

⋃

W → 2At

that assigns to every state the set of atomic formulas that are true in
it. For L and I we define the satisfaction of formulas. We modify the
condition for atomic formulas given in Section 2:

L, I, w |=n αi
k iff αi

k ∈ I(wn)

and we proceed as before:

L, I, w |=n ¬A iff L, I, w 6|=n A,

L, I, w |=n A → B iff L, I, w 6|=n A or L, I, w |=n B,

L, I, w |=n CA iff (L, I, w |=n A and L, I, w 6|=n+1 A) or
(L, I, w 6|=n A and L, I, w |=n+1 A),

L, I, w |=n �A iff ∀kn(L, I, w |=k A),

L, I, w |=n
ëA iff ∃u∈W/{a}∀k∈N(L, I, u |=k A).

For ∨, ∧ and ↔ the satisfaction conditions are standard.
We introduce also two other modal operators ♦, and (uC)k. The first

has a meaning analogous to the meaning given in Section 2:

L, I, w |=n ♦A iff ∃mn(L, I, w |=m A).

The modality (uC)k is to be read: through k states it doesn’t change that

and is understood in the following way:

L, I, w |=n (uC)kA iff ∀m(n ¬ m ¬ n + k =⇒ L, I, w |=m A).

Having any fixed interpretation I, we say that the formula A is valid in

L iff L, I, w |=n A, for every w ∈ W and n ∈ N. A is logically valid iff A
is valid in every L-structure.
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As we have already announced, we base the system of our new logic
LC�ë on the LC� formulated in [12]. In the logic LC� two primitive
operators C and � are used. Originally, LC� was meant to formalize the
Leibnizian idea to treat the notion of change as primitive to time and to
define by change linear infinite time with the first element.

Logic LC�ë is defined as the smallest set which contains:
• all tautologies of classical logic;
• equivalences defining (uC)n:

(uC)0A ↔ A,

(uC)n+1A ↔ (uC)nA ∧ ¬C((uC)nA);
((uC)n)

• LC� axioms of the following forms:

CA → C¬A, (C¬)

C(A ∧ B) → CA ∨ CB, (C∨)

A ∧ ¬CA ∧ CB → C(A → B), (C →)

A ∧ B ∧ CA ∧ CB → C(¬A ∧ ¬B), (C∧)

�A → (uC)nA, for all n  0, (�uC)

�A → ¬C�A, (¬C�)

• specific axioms for ë with the following forms:

¬ ëA ↔ ë¬ ëA, (ë¬)

ëA∧ ëB ↔ ë(ëA∧ ëB), (ë∧)

ëA∧ ë(ëA → B) → ëB, (ë→)

¬C ëA, (ëC)

ëA ↔ ë�A, (ë�)

ë(�A ∨ �B) → (ë�A∨ ë�B); (ë�∨)

• equivalences for ♦:
♦A ↔ ¬�¬A. (�♦)

The primitive rules are: modus ponens, extensionality rule

A[B] ∈ LC�ë and B ↔ D ∈ LC�ë =⇒ A[D] ∈ LC�ë, (rep)

two specific rules for adding modalities ¬C, ë:

A ∈ LC�ë =⇒ ¬CA ∈ LC�ë, (gen¬C)

A → B ∈ LC�ë =⇒ ëA → ëB ∈ LC�ë, (mon ë)
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and the rule of induction from (uC)n to �:

for any n  0: B → (uC)nA ∈ LC�ë =⇒ B → �A ∈ LC�ë . (ω)

The Leibnizian concept of the priority of change over time is expressed
in LC� in a way that for the temporal next operator © understood as

L, I, w |=n ©A iff L, I, w |=n+1 A

the following equivalence is logically valid

©A ↔ (A ↔ ¬CA). (©)

Concerning our new axioms, we note that (ë¬) and (ë∧) express the
redundancy of ë with respect to the negation and conjunction of ë-
formulas. Schema (ë�) describes the redundancy of � in contexts with
ë. (ë�∨) states that ë may be distributed over the disjunction of �-
formulas. The distribution of ë over ë-implication is permitted when
the antecedent is a ë-formula. This is expressed by (ë→) and we call it
the principle of weak slip of ë. According to (ëC), possible laws do not
change.

As it is noted in [12], if we introduce to LC� the operator © using
definition (©) we obtain the system equivalent to the �-fragment of
temporal linear logic LTL extended by the following definition of change
operator:

CA ↔ (A ↔ ¬©A).

Now we can state that LC�ë is sound and complete in respect to our
semantics.

Theorem 1 (Soundness). If A is an LC� ë thesis, then A is logically

valid.

Proof. The logical validity of: (C¬), (C∨),(C →), (C∧) and admissibility
of (gen¬C), may be shown as in [13, 5–6]. Proofs of the logical validity
of (�uC) and (¬C�) follow directly from the satisfaction of �. A proof
of the admissibility of (ω) may be formulated indirectly. We prove the
logical validity of: (ë→) and (ë�∨).

For (ë→) we assume indirectly that there exist L, I, w, k such that
L, I, w |=k

ëA; L, I, w |=k
ë(ëA → B); L, I, w 6|=k

ëB. We obtain that:
(a) for some w0 ∈ W/{a}: ∀n(L, I, w0 |=n A); (b) for some w1 ∈ W/{a}:
∀n(L, I, w1 |=n

ëA → B); (c) ∀w∈W/{a}∃m(L, I, w 6|=m B). From (c) we
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have L, I, w1 6|=m0 B for some m0. From (b) we have L, I, w1 |=m0 ëA →
B. From (a), however, we obtain L, I, w1 |=m0 ë A, so L, I, w1 |=m0 B
which results in a contradiction.

For (ë�∨) we assume indirectly that there exist L, I, w, k such that
(a) L, I, w |=k

ë (�A ∨ �B) and (b) L, I, w 6|=k
ë�A∨ ë�B. From (a)

we obtain that: ∀n(L, I, w0 |=n �A∨�B), for some w0 ∈ W/{a}, which
in turn gives us L, I, w0 |=1 �A ∨ �B. Hence, ∀n(L, I, w0 |=n A) or
∀n(L, I, w0 |=n B). From (b) we have ∀w∈W/{a} ∃n(L, I, w 6|=n �A) and
∀w∈W/{a}∃m(L, I, w 6|=m �B), hence L, I, w0 6|=n0 �A and L, I, w0 6|=m0

�B. Next, we obtain ∃jn0
(L, I, w0 6|=j A) and ∃km0

(L, I, w0 6|=k B),
which results in a contradiction.

Proofs for remaining specific axioms for ë may be formulated in an
analogical way, using truth conditions from the definition of satisfaction.

⊣

As to the completeness of LC�ë, the proof is a modification of the
completeness proof for LC� from [12]. LC� is complete in linear temporal
structures with the first element. Our modification is based on the idea
used in the completeness proof for the propositional dynamic logic PDL

[5]. Having a LC�ë consistent formula A, we construct a model for A
starting from finite consistent subsets built from the set of subformulas
of formula A. As is always the case with a Henkin-style proof, the goal
is to find for formula A, a model in which A is false.

Due to the idea from [5], we use the concept of maximal consistency
relative to some set of formulas. We say that a set X is consistent iff
there is no {B1, . . . , Bn} ⊆ X such that ¬(B1 ∧ · · · ∧ Bn) ∈ LC�ë. X is
Y -maximally consistent iff X is consistent, X ⊆ Y and ∀A∈Y (A 6∈ X =⇒
X ∪ {A} is inconsistent). Thus understood, a Y -maximally consistent
set is finite, if Y is finite.

Let us call Sub(A) the set of all subformulas of the formula A. We
extend Sub(A) by all negations of its elements and formulas ë αi

k, ¬ ë

αi
k, αi

k, ¬αi
k, where αi

k 6∈ Sub(A):

Sub+
ë(A) = Sub(A) ∪ {¬A : A ∈ Sub(A)} ∪ {ëαi

k, ¬ ëαi
k, αi

k, ¬αi
k}.

We also add to the set Sub+
ë(A) all � and ¬� closures of these formulas

from Sub+
ë(A), which are preceded by ë:

Sub+
ë,�(A) = Sub+

ë(A) ∪ {�A : ëA ∈ Sub+
ë} ∪ {¬�A : ëA ∈ Sub+

ë}.
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We denote the set built of Sub+
ë,�(A) and: ¬, →, C,� as Fm(Sub+

ë,�(A)).
It is worth noticing here that Fm(Sub+

ë,�(A)) is formed without new ë-
formulas, although there are ë-formulas in the set Sub+

ë,�(A).
We write ⊢ A instead of A ∈ LC�ë. In the proofs we use two LC�ë

theses:
⊢ �(�A ∨ �B) ↔ (�A ∨ �B), (�∨)

⊢ ëA ↔ëëA. (ëë)

Equivalence (�∨) follows from the fact that � has S4 (in fact S4.3 [12])
properties. We obtain (ëë) from (ë∧) by B/A and (rep).

We assume that A∗ is not a theorem. Thus, the set {¬A∗} is consis-
tent. We extend {¬A∗} to a Sub+

ë,�(A∗)-maximally consistent set and
denote it as a0. Next, we define Cona0

(Sub+
ë,�(A∗)):

X ∈ Cona0
(Sub+

ë,�(A∗)) iff {ëA : ëA ∈ a0}∪{¬ ëA : ¬ ëA ∈ a0}∪

{¬�A : ¬ ëA ∈ a0} ⊆ X and
X is a Sub+

ë,�(A∗)-maximally consistentset. (R)

Cona0
(Sub+

ë,�(A∗)) is nonempty, because of the Lindenbaum Lemma and
the following lemmas on LC�ë consistent sets containing formulas with
modalities ë and �:

Lemma 1. If X is consistent and ëF ∈ X , then the set {�F}∪{¬�A :
¬ ëA ∈ X} ∪ {ëA : ëA ∈ X} ∪ {¬ ëA : ¬ ëA ∈ X} is consistent.

Proof. We assume that X is consistent.
Case 1: {¬ë B : ¬ë B ∈ X} 6= ∅. We assume indirectly, that there

are formulas: ë A1, . . . , ë An, ¬ ë B1, . . . , ¬ ë Bm, ë F belonging to
X such that: ⊢ë A1 ∧ · · · ∧ ë An ∧ ¬ ë B1 ∧ · · · ∧ ¬ ë Bm ∧ ¬�B1 ∧
· · · ∧ ¬�Bm → ¬�F . Applying (ë¬) we obtain: ⊢ë A1 ∧ · · · ∧ ë

An∧ ë ¬ ë B1 ∧ · · · ∧ ë ¬ ë Bm ∧ ¬�B1 ∧ · · · ∧ ¬�Bm → ¬�F. Let
A =: ëA1 ∧ · · · ∧ ëAn and B =: ë¬ ëB1 ∧ · · · ∧ ë¬ ëBm. Applying
(ë∧) we obtain: ⊢ë (A ∧ B) ∧ ¬�B1 ∧ · · · ∧ ¬�Bm → ¬�F . We
derive ⊢ A → B =⇒ ⊢ ¬ ë ¬A → ¬ ë ¬B from (mon ë) and we have:
⊢ ¬ ë¬(ë(A∧B)∧¬�B1 ∧· · ·∧¬�Bm) → ¬ ë¬¬�F . From (ë�) and
(rep) we obtain: ⊢ ¬ ë ¬(ë (A ∧ B) ∧ ¬�B1 ∧ · · · ∧ ¬�Bm) → ¬ ë F ,
which is equivalent to: ⊢ë F → ë (ë (A ∧ B) → �B1 ∨ · · · ∨ �Bm).
Next, we use (ë→) and classical logic to obtain: ⊢ë F∧ ë (A ∧ B) →
ë (�B1 ∨ · · · ∨ �Bm). A and B are conjunctions of formulas preceded
by ë, so in virtue of (ë∧) we know, that ⊢ A ↔ë A, ⊢ B ↔ë B. The
latter and by (ë∧) give us: ⊢ëF∧ ëëA∧ ëëB → ë(�B1 ∨· · ·∨�Bm).
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Applying (ëë) we obtain: ⊢ë F∧ ë A∧ ë B → ë (�B1 ∨ · · · ∨ �Bm),
and again applying (ë∧) and (ëë) we obtain: ⊢ë F ∧ A ∧ B → ë

(�B1 ∨ · · · ∨ �Bm). From (�∨) and (rep) we get: ⊢ë F ∧ A ∧ B → ë

(�B1 ∨ �(�B2 ∨ · · · ∨ �Bm)). Applying (ë�∨) and (�∨) we obtain:
⊢ëF ∧ A ∧ B → ë�B1∨ ë(�B2 ∨ · · · ∨�Bm). If we apply (�∨), (rep)
and (ë�∨), (�∨) m − 1 times, as we have done in last two steps, we
obtain: ⊢ëF ∧ A ∧ B → ë�B1∨ ë�B2 ∨ · · · ∨ ë�Bm. Next, we apply
(ë�): ⊢ë F ∧ A ∧ B → ë B1 ∨ · · · ∨ ë Bm, which is equivalent to: ⊢ë

F∧ ëA1 ∧ · · · ∧ ëAn∧ ë¬ ëB1 ∧ · · · ∧ ë¬ ëBm → ëB1 ∨ · · · ∨ ëBm.
From (ë¬) we infer: ⊢ëF∧ ëA1 ∧· · · ∧ ëAn ∧¬ ëB1 ∧· · ·∧¬ ëBm →
ëB1 ∨· · · ∨ ëBm. Thus, ⊢ëF∧ ëA1 ∧· · · ∧ ëAn → ëB1 ∨· · · ∨ ëBm.
We now have: {ë F, ë A1, . . . ë An, ¬ ë B1, . . . , ¬ ë Bm} ⊆ X . Thus,
we finally obtain that X is inconsistent.

Case 2: for {¬ ë A : ¬ ë A ∈ X} = ∅ the proof is analogical to
case 1. ⊣

Lemma 2. For any w ∈ W, if ë A ∈ Sub+
ë,�(A∗), then: ë A ∈ wn iff

∃u∈W/{a}∀k∈N A ∈ uk.

Proof. We assume that X is consistent.
Case 1: {ë A : ë A ∈ X} 6= ∅. We indirectly assume that there

are formulas ë A1, . . . , ë An, ¬ ë B1, . . . , ¬ ë Bm ∈ X such that: ⊢ë

A1 ∧ · · · ∧ ëAn ∧ ¬ ëB1 ∧ · · · ∧ ¬ ëBm → �B1 ∨ · · · ∨ �Bm. Applying
(ë¬) and (ë∧) we obtain: ⊢ë (ë A1 ∧ · · · ∧ ë An∧ ë ¬ ë B1 ∧ · · · ∧ ë

¬ ëBm) → �B1 ∨· · ·∨�Bm. From (mon ë) we get: ⊢ëë(ëA1 ∧· · · ∧ ë

An∧ ë¬ ëB1 ∧· · · ∧ ë¬ ëBm) →ë(�B1 ∨· · ·∨�Bm). We apply (ëë)
and obtain the following: ⊢ë(ëA1 ∧· · · ∧ ëAn∧ ë¬ ëB1 ∧· · · ∧ ë¬ ë

Bm) →ë(�B1 ∨· · ·∨�Bm). Next, we apply (ë∧), (ëë) and (ë¬) and
infer: ⊢ëA1 ∧· · · ∧ ëAn ∧¬ ëB1 ∧· · ·∧¬ ëBm →ë(�B1 ∨· · ·∨�Bm).
We now proceed in the same way as in Lemma 1. We apply (ë�∨),
(�∨), (ë�) and obtain: ⊢ëA1 ∧ · · · ∧ ëAn ∧ ¬ ëB1 ∧ · · · ∧ ¬ ëBm →
ëB1 ∨ · · · ∨ ëBm. Because {ëA1, . . . , ëAn, ¬ ëB1, . . . , ¬ ëBm} ⊆ X ,
X is inconsistent.

Case 2: for {ëA : ëA ∈ X} = ∅ the proof is analogical to case 1. ⊣

Informally speaking, elements of Cona0
(Sub+

ë,�(A∗)) may be treated
as fragmentary descriptions of the initial states of different possible
worlds containing the same ë -formulas, their negations, and also all
formulas which are not necessary in the sense of ë, and are also not
necessary in the sense of �.
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The set a0 has finitely many elements. Thus Cona0
(Sub+

ë,�(A∗)) is
finite and every X ∈ Cona0

(Sub+
ë,�(A∗)) has finitely many elements. It

is crucial for the next step of our proof.
We extend all elements of Cona0

(Sub+
ë,�(A∗)) and for any αi

j 6∈

Sub+
ë,�(A∗) the set a0 = a0 ∪ {αi

j} to Fm(Sub+
ë,�(A∗))-maximally con-

sistent sets. (Adding αi
j , to a0 makes a0 different from every element of

Cona0
(Sub+

ë,�(A∗)). This will be relevant in the proof of Lemma 7).

Next, we consider an enumeration of all formulas of Fm(Sub+
ë,�(A∗)):

A0, A1, A2, . . . . For every X ∈ Cona0
(Sub+

ë,�(A∗)) ∪ {a0} we define the
sequence (SX

k ) as follows:

SX
0 = X,

SX
2k+1 =

{

SX
2k ∪ {Ak} if this is consistent,

SX
2k ∪ {¬Ak} otherwise,

SX
2k+2 =











SX
2k+1 ∪ {¬(uC)mF}

for some m  0 if Ak = ¬�F
and Ak ∈ SX

2k+1,
SX

2k+1 otherwise.

Every SX
k is well defined in view of the following lemma:

Lemma 3. If X is finite, consistent and ¬�F ∈ X , then there is an

m ∈ N such that X ∪ {¬(uC)mF} is consistent.

Proof. We proceed indirectly. Since X is finite, let
∧

X be the conjunc-
tion of all formulas from X . We have ⊢

∧

X → (uC)mF, for all m ∈ N.
Applying (ω) we obtain ⊢

∧

X → �F . However ¬�F ∈ X , which entails
that X is inconsistent. ⊣

For every X 6= a0:
⋃

n SX
n is Fm(Sub+

ë,�(A∗))-maximally consis-
tent and also

⋃

n Sa0

n /{αi
j} is Fm(Sub+

ë,�(A∗))-maximally consistent. We
know this from the Lindenbaum Lemma.

For every
⋃

n SX
n we define sequence (sn)n∈N in the following way:

s1 =
⋃

n SX
n , sn+1 = {A : A ∧ ¬CA ∈ sn} ∪ {¬A : A ∧ CA ∈ sn}.

The sequence that we denote as a is defined as above with a1 =
⋃

n Sa0

n .
All sequences defined in this way form set W = {a, w, w′, w′′, . . .}.

Note that ¬A∗ ∈ a1 because ¬A∗ ∈
⋃

n Sa0

n .
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Lemma 4. For any w ∈ W/{a} and any k: wk is Fm(Sub+
ë,�(A∗))-

maximally consistent. Moreover, for any k  2, ak is Fm(Sub+
ë,�(A∗))-

maximally consistent.

Proof. We assume inductively that wk is Fm(Sub+
ë,�(A∗))-maximally

consistent and {A : A∧¬CA ∈ wk}∪{¬A : A∧CA ∈ wk} is not consistent.
We have that there exists a finite set of formulas from Fm(Sub+

ë,�(A∗))
such that {A1, . . . , An, ¬CA1, . . . , ¬CAn, ¬D1, . . . , ¬Dm, CD1, . . . , CDm}
⊆ wk and ⊢ ¬(A1 ∧· · ·∧An ∧D1 ∧· · ·∧Dm). Let A1 ∧· · ·∧An = A and
D1 ∧ · · · ∧ Dm = D. We have ⊢ ¬(A ∧ D). Now because of (gen¬C) we
obtain ⊢ ¬C¬(A∧D) and next using (C¬) ⊢ ¬C(A∧D). Now from axiom
(C →) and (rep) we get ⊢ ¬A∨CA∨¬C¬D. From axiom (C∨) we obtain
⊢ ¬A∨CA1 ∨· · ·∨CAn ∨¬C¬D and from (C¬) we get ⊢ ¬A∨CA1 ∨· · ·∨
CAn ∨ ¬CD. Since {A, ¬CA1, . . . ¬CAn} ⊆ wk we get ¬CD ∈ wk. From
(C∧) we obtain ⊢ ¬D1 ∧· · ·∧¬Dm ∧CD1 ∧· · ·∧CDm → C(D1 ∧· · ·∧Dm).
We have {¬D1, . . . , ¬Dn, CD1, CDm} ⊂ wk so C(D1 ∧ · · · ∧ Dm) ∈ wk

and next CD ∈ wk. Since wk+1 is consistent, it is obvious that it is also
Fm(Sub+

ë,�(A∗))-maximally consistent. The proof for a is analogous. ⊣

Using Lemma 4 we obtain:

Lemma 5. For any w ∈ W : (uC)kA ∈ wn iff A ∈ wm for any m such

that n ¬ m ¬ n + k.

Lemma 6. For any w ∈ W and any �A ∈ Fm(Sub+
ë,�(A∗)) : �A ∈ wn

iff for any k  n we have A ∈ wk.

Proof. We use the notation ©nA if there are n occurrences of © before
the formula A. We employ the following thesis: �©nA → ©n

�A. In
the proof we need to use: �(A → ©A) → (A → �A), �A → ©�A,
�A → ©A. (¬C�) is to be used in the proof of all these theorems
[sf. 12, 521-522]. We also need ©(A → B) → (©A → ©B) and the
generalization rule for ©: ⊢ A =⇒ ⊢ ©A. We need for the latter only
axioms for the operator C, (©) and (gen¬C).

“⇐” We assume ∀knA ∈ wk and ¬�A ∈ wn. We use definition
(©) together with Lemma 4 to obtain: ©nA ∈ wj iff A ∈ wj+n. If
©n−1

�A ∈ w1, then we have �A ∈ wn which is false by assumption.
Thus ¬©n−1

�A ∈ w1. Next, we apply (�/) and obtain ¬�©n−1A ∈ w1.
From the definition of sequence (Sk) we obtain ¬(uC)m©n−1A ∈ w1 for
some m, and (uC)m©n−1A 6∈ w1. From Lemma 5, we notice that for
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some j such that 0 ¬ j ¬ m: ©n−1A 6∈ wj+1. Therefore, we have k  n
such that A 6∈ wk, which contradicts our assumption.

“⇒” We need (�uC) and Lemma 5. ⊣

Lemma 7. For every w ∈ W : if ë A ∈ Sub+
ë,�(A∗), then (ë A ∈ wn iff

∃u∈W/{a}∀k∈N(A ∈ uk)).

Proof. “Rightarrow” We assume that ë A ∈ Sub+
ë,�(A∗), ë A ∈ wn,

and ∀u∈W/{a}∃k∈N(A 6∈ uk). From (ëC) we obtain ëA ∈ wn−1. Similarly
we finally obtain ëA ∈ w1. If ¬ ëA ∈ a0, then, because of (R): ¬ ëA ∈
w1 (which is false by assumption). Thus ëA ∈ a0. Next, from Lemma 1
and (R) we know that there exists an u1 with �A ∈ u1. Applying
Lemma 6 we obtain ∀n1A ∈ un, which contradicts the assumption.

“⇐” We assume that ë A ∈ Sub+
ë,�(A∗), ∃u∈W/{a}∀k∈N(A ∈ uk),

and ¬ ë A ∈ wn. From (ëC) we obtain ¬ ë A ∈ wn−1 and we finally
obtain ¬ ë A ∈ w1. If ë A ∈ a0, then because of (R) : ë A ∈ w1,
which is false by assumption. Thus ¬ ë A ∈ a0. Now from Lemma 2
and (R) we obtain: ∀u∈W/{a}(¬�A ∈ u1). Using Lemma 6 we obtain
∀u∈W/{a}∃k1(A 6∈ uk), which contradicts the assumption. ⊣

We consider the following structure L∗ = 〈W, a〉. By Lemmas 4, 5, 6
and 7, we know that for every formula A ∈ Fm(Sub+

ë,�(A∗)): structure
L∗ fulfills the following conditions:

(i) CA ∈ wn iff (A ∈ wn and A 6∈ wn+1) or (A 6∈ wn and A ∈ wn+1);
(ii) (uC)kA ∈ wn iff ∀m(n≤m ¬ n + k =⇒A ∈ wm);
(iii) �A ∈ wn iff ∀kn(A ∈ wk);
(iv) ëA ∈ Sub+

ë,�(A∗) =⇒ (ëA ∈ wn iff ∃u∈W/{a}∀k1(A ∈ uk)).

Conditions (i)–(iv) correspond to conditions for: C,�, ë, and (uC)n from
the definition of satisfaction.

We can now come back to the proof of the main theorem:

Theorem 2 (Completeness). If A 6∈ LC�ë, then A is not logically valid.

Having a formula A∗ which is not a theorem and the structure L∗ we
define I∗ in such a way that for every w ∈ W: αi

k ∈ I∗(wn) iff αi
k ∈ wn.

We prove by induction, with reference to conditions (i)–(iv), that for
every formula A ∈ Fm(Sub+

ë,�(A∗)) and every w ∈ W: L∗, I∗, w |=n A

iff A ∈ wn. We have that ¬A∗ ∈ a1. Thus L∗, I∗, a 6|=1 A∗.



138 Kordula Świętorzecka, Marcin Łyczak

4. LC�ë modalities and the ‘plenitude’ problem

Let us now indicate some properties of our three modal operators. We
consider the following schemes with ∗ ∈ {C,�, ë}:

(K∗) ∗(A → B) → (∗A → ∗B), (distribution)
(ws∗) ∗(∗A → B) → (∗A → ∗B), (weak slip)
(s∗) ∗(A → B) → (A → ∗B), (slip)

(mon∗) ⊢ A → B =⇒ ⊢ ∗A → ∗B, (monotonicity)
(gen∗

1) ⊢ A =⇒ ⊢ ∗A, (generalizations)
(gen∗

2) ⊢ A =⇒ ⊢ ¬ ∗ A, (generalizations)
(v∗

1) ∗⊤, (modal closures of logical truth)
(v∗

2) ¬ ∗ ⊤. (modal closures of logical truth)

Only � meets distribution (K∗).
The schema (ws∗) of weak slip is valid for �. The formula (ws�) is

derivable from (K�) and �A → ��A. For ë, the implication (wsë) fol-
lows directly from our principle of weak slip (ë→). However, the formula
(së) is not a thesis of LC� ë and the same applies to (s�) and (sC).
This means that our formalism is resistant to the aforementioned fallacy
of slipped necessity with regard to our � and ë.7 The addition of (s�) to
classical logic extended by (gen�1 ), results in the derivability of A → �A
(cf. footnote 4). The same happens if we add (së) to classical logic ex-
tended by (genë

1 ) which is derivable in LC�ë. Furthermore, we achieve
the same result if we add (s∗) for ∗ = ¬C and generalization (genC

2 ) to
classical logic. In this case A → ¬CA is derivable. It is noteworthy that
both ¬CA → A and ëA → A are not derivable in LC�ë.

The modalities � and ë are monotonic in the sense of (mon∗). From
this it follows that (gen�

1 ), (genë

1 ) are admissible, and (v�
1 ), (vë

1 ) are
logically valid. Modality C is not monotonic. Also, the rule ⊢ A → B =⇒
⊢ ¬CA → ¬CB is not admissible. However, because (genC

2 ) (= (gen¬C))
is admissible, so (vC

2) is valid.
Finally, let us look for adequate formulations of (PL) and (PM). We

consider the following counterparts of them:

�A → ¬ ë¬�A, (P�/ë)

ë♦A → ♦A. (Pë/♦)

7 As Mates claims, this fallacy is evident in many reasonings of Aristotle and
Leibniz seems to avoid it even though his distinction between absolute and hypothet-
ical necessities comes just from Aristotle [10, 117–121].
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In a free formulation (P�/ë) states that if A holds always (is constant),
then A is necessary (its negation cannot be a possible law). In turn,
according to (Pë/♦), if A is possible (it may be a possible law), then
A cannot remain unfulfilled through an infinite stretch of time (it will
happen at some time). In fact, (P�/ë) and (Pë/♦) express semantical
conditions (∗) and (∗∗) respectively from Section 2.

Now, however, we can see that (P�/ë) and (Pë/♦) are not theses
of our logic. To falsify (P�/ë) we consider a structure L

′

with domain
W = {a, w} and interpretation 〈a, n〉 ∈ I

′′

(αi
k) for all n, and 〈w, n〉 6∈

I
′′

(αi
k) for all n. We obtain L

′

, I
′′

a |=1 �αi
k because ∀n(L

′

, I
′′

a |=n αi
k),

and L
′

, I ′′a 6|=1 ¬ ë¬�αi
k because ∀n(L

′

, I
′′

w 6|=n αi
k).

As to (Pë/♦) we note that it is inferentially equivalent to (P�/ë).
To close our considerations, let us observe that (P�/ë) is derivable
from the formula A → ¬ ë¬A which could be considered as Leibnizian
necessarianism expressed in terms of our logic.
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