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Dynamic Probabilistic Entailment.
Improving on Adams’ Dynamic Entailment Relation

Abstract. The inferences of contraposition (A ⇒ C ∴ ¬C ⇒ ¬A), the
hypothetical syllogism (A ⇒ B,B ⇒ C ∴ A ⇒ C), and others are widely
seen as unacceptable for counterfactual conditionals. Adams convincingly
argued, however, that these inferences are unacceptable for indicative con-
ditionals as well. He argued that an indicative conditional of form A ⇒ C
has assertability conditions instead of truth conditions, and that their as-
sertability ‘goes with’ the conditional probability p(C|A). To account for
inferences, Adams developed the notion of probabilistic entailment as an
extension of classical entailment. This combined approach (correctly) pre-
dicts that contraposition and the hypothetical syllogism are invalid infer-
ences. Perhaps less well-known, however, is that the approach also predicts
that the unconditional counterparts of these inferences, e.g., modus tollens
(A ⇒ C,¬C ∴ ¬A), and iterated modus ponens (A ⇒ B,B ⇒ C,A ∴ C)
are predicted to be valid. We will argue both by example and by calling
to the results from a behavioral experiment (N = 159) that these latter
predictions are incorrect if the unconditional premises in these inferences
are seen as new information. Then we will discuss Adams’ (1998) dynamic
probabilistic entailment relation, and argue that it is problematic. Finally,
it will be shown how his dynamic entailment relation can be improved such
that the incongruence predicted by Adams’ original system concerning con-
ditionals and their unconditional counterparts are overcome. Finally, it will
be argued that the idea behind this new notion of entailment is of more
general relevance.
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1. Introduction

There are four inference patterns that are valid for the material condi-
tional but are crucially invalid for natural language conditionals:
1. Contraposition: A⇒ C ∴ ¬C ⇒ ¬A.
2. The hypothetical syllogism: A⇒ B,B ⇒ C ∴ A⇒ C.
3. Strengthening the antecedent: A⇒ C ∴ (A ∧B)⇒ C.
4. Or-to-If: A ∨ C ∴ ¬A⇒ C.

It is widely accepted that these inference patterns are, indeed, invalid
for counterfactual conditionals (cf. Stalnaker, 1968; Lewis, 1973). How-
ever, Adams (1965, 1966, 1976), Cooper (1985) and others convincingly
argued by examples that each of the above inference patterns should be
invalid as well for indicative conditionals.1 They argued on the basis
of such examples that indicative conditionals should be analysed proba-
bilistically: the assertability of A⇒ C is measured by the corresponding
conditional probability of C given A, p(C|A). Moreover, Adams (1975)
showed that we can define a probabilistic entailment relation, |=p, on the
standard propositional language extended with the conditional connec-
tive ‘⇒’ that allows for conditional sentences to have no truth conditions,
which is a conservative extension of classical (propositional) logic. Ac-
cording to this new logic, none of the inference patterns listed above are
valid, as Adams argued it should be. These same inference patterns also
have non-conditional counterparts:

1. Contraposition. The non-conditional counterpart of contraposition is
modus tollens: A⇒ C,¬C ∴ ¬A.

2. The hypothetical syllogism. The non-conditional counterpart is known
as iterated modus ponens, and is given by A⇒ B,B ⇒ C,A ∴ C.

3. Strengthening the antecedent. Its non-conditional counterpart,
A,B,A ⇒ C ∴ C, has no standard name. It will be referred to
here as propositional premise monotonicity.
1 Stalnaker (1975) agrees, and argues that the fact that these inferences seem

reasonable for indicative conditionals, or hold most of the time, can be accounted for
by pragmatic means. Adams (1983) and Pearl (1990) proposed other pragmatic anal-
yses to account for the same phenomenon. Notice that these pragmatic approaches
all would strengthen probabilistic entailment, while we will argue that probabilistic
entailment is already too strong. The issues are independent, however, and we agree
that some such pragmatic approach should be pursued, but will ignore this issue in
this paper.
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4. Or-to-If. The non-conditional counterpart will be called denying a
disjunct: A ∨ C,¬A ∴ C.

What is remarkable, however, is that whereas all of the first inference
patterns are correctly predicted to be invalid by Adams’ (1975) analysis,
the non-conditional counterparts of these four patterns are all predicted
to be valid. We discuss Adams’ predictions in the next section before
arguing, in Section 3, against the idea that a distinction should be made
between the conditional inferences listed above and their non-conditional
counterparts, if the non-conditional premise is seen as new information.
We do this both with an argument by example and by reporting the
results of an empirical study which indicates that the majority of rea-
soners reject the conclusions of those inference patterns, both in their
conditional and non-conditional forms. In the fourth section we show
that a slightly different entailment notion than |=p, which we will call
dynamic probabilistic entailment or |=dp, allows the above incongruence
to disappear: with |=dp we predict that the conditional inferences and
their non-conditional counterparts behave similarly in respect to their va-
lidity. In the concluding section we suggest that the idea behind the new
dynamic entailment relation developed here is of more general relevance.

2. Adams’ static notion of probabilistic entailment

For his definition of probabilistic entailment, Adams (1966, 1976) makes
use of the notion of uncertainty given probability function p. The uncer-
tainty of φ w.r.t. p, Up(φ), is 1− p(φ). With this notion, Adams proves
the following by now well-known facts for the language of propositional
logic, L (where |=cl denotes the classical entailment relation):

Fact 1. If Γ 6|=cl φ, then there is a p : Up(φ) = 1 and
∑
γ∈Γ Up(γ) = 0.

Fact 2. Γ |=cl φ iff for all p: Up(φ) ≤
∑
γ∈Γ Up(γ).

Adams (1966, 1976) then defines a new notion of entailment, i.e.
probabilistic entailment, |=p, or p-entailment, as follows:

Γ |=p φ iffdf for all p : Up(φ) ≤
∑
γ∈Γ Up(γ).

Given Fact 2, if follows immediately that for propositional language L,
|=cl and |=p coincide.
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Adams defines the conditional probability of C given A, p(C|A), as
follows:

p(C|A) :=
{
p(A∧C)
p(A) if p(A) > 0,

1 if p(A) = 0.

Probabilistic entailment becomes interesting once we add the new condi-
tional connective ‘⇒’ to the language, L⇒, and assume that the asserta-
bility of indicative conditionals of the form A⇒ C should be measured
by their corresponding conditional probabilities, p(C|A). Language L⇒
contains conditionals like A⇒ C only in case both A and C are formu-
lae of the classical propositional language L. Thus conditionals in this
language do not ‘embed’. Both for language L and for language L⇒, the
following fact holds:

Fact 3. Γ |=p φ iff there is no probability function p in which all
premises in Γ have probabilities arbitrary close to 1, while conclusion φ
has a probability arbitrary close to 0.

Adams (1975) shows that, with this notion of entailment, many infer-
ences involving indicative conditionals are valid that intuitively should
be valid. Such inferences include, for instance, the following:
• Identity: |=p A⇒ A.
• Modus Ponens: A,A⇒ C |=p C.
• Cautious Monotonicity: A⇒ B,A⇒ C |=p (A ∧B)⇒ C.
In contrast, and more to the point of this paper, the following inferences
are (correctly) predicted to be invalid by Adams:

1. Contraposition: A⇒ C 6|=p ¬C ⇒ ¬A.
2. The hypothetical syllogism: A⇒ B,B ⇒ C 6|=p A⇒ C.
3. Strengthening the antecedent: A⇒ C 6|=p (A ∧B)⇒ C.
4. Or-to-If: A ∨ C 6|=p ¬A⇒ C.

In order to determine whether an inference is probabilistically valid,
Adams uses the notion of order of magnitude probability orderings (ab-
breviated as OMP-orderings). OMP-orderings are linear orders between
valuations, or worlds, such that wi � wj means that the probability of
valuation function, or world, wi is an order of magnitude greater than the
probability of valuation function, or world, wj . A sentence then holds
in such an ordering (where it is assumed that A and C are ‘factual’
sentences, i.e., members of L, and therefore don’t contain the connective
‘⇒’) iff:
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1. A holds in the ordering if A is true in the world that is highest in the
ordering (denoted by w1),

2. A⇒ C holds in the ordering if the highest world where A∧C is true
is higher than the highest world where A∧¬C is true (and, if A∧¬C
is not true in any world then A⇒ C holds).

Once these definitions are established, the probabilistic validity of an
inference can be determined using the following OMP-counterexample
theorem, proven by Adams:
OMP-counterexample theorem. If there is an OMP-ordering in which
all of an inference’s premises in Γ hold but its conclusion φ does not
hold then its premises can have probabilities arbitrarily close to 1 while
its conclusion has a probability arbitrarily close to 0, and thus Γ 6|=p φ.
If there is no such ordering then it satisfies the generalized uncertainty
sum condition and Γ |=p φ.
The OMP-counterexample theorem also allows for an easy proof of a
new theorem:

Theorem 1 (Monotonicity and transitivity of probabilistic entailment).
For any A1, . . . , An, B1, . . . , Bm and C in some conditionally extended
language L⇒:

1. If A1, . . . , An−1 |=p C, then A1, . . . , An |=p C;
2. If A1, · · · , An |=p Bj for all j ≤ m, and B1, . . . , Bm |=p C, then
A1, . . . , An |=p C.

Proof. Let L⇒ be a conditionally extended language, and let A1, . . . ,
An, B1, . . . , Bm and C be formulae in L⇒.

Ad 1. Suppose that A1, . . . , An−1 probabilistically entail C. Then
any OMP-ordering in which A1, . . . , An−1 hold is one in which C also
holds. Suppose that A1, . . . , An hold in some OMP-ordering. Then C
holds too, hence A1, . . . , An |=p C.

Ad 2. Suppose that A1, . . . , An |=p Bj for all j ≤ m, and B1, . . . ,
Bm |=p C. Now assume that A1, . . . , An hold in some OMP-ordering
�. Then by the OMP-counterexample theorem B1, . . . , Bm hold in �
as well, hence by the same theorem, C holds. So, again by the same
theorem, A1, . . . , An |=p C. a

Note that in classical logic inferences can be valid in two ways, which
are equivalent. Taking modus ponens as an example: modus ponens can
be considered to be valid if for each set of premises Γ , if Γ entails A⇒ C
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and A, then it also entails C; But modus can also considered to be valid
if A,A ⇒ C ∴ C holds. The following theorem shows that validity can
also be interpreted in the same two equivalent ways in probabilistic logic:

Theorem 2 (Valid entailment as indefeasibility). Let A,B,C be formu-
lae. Then: Γ |=p A and Γ |=p B imply Γ |=p C for all sets of premises
Γ if and only if A,B |=p C.

Proof. Suppose the former. Let Γ = {A,B}. Since A,B |=p A and
A,B |=p B by monotonicity, A,B |=p C. Hence, if Γ |=p A and Γ |=p B
imply Γ |=p C for all sets of premises Γ , then A,B |=p C.
Now suppose the latter. Let Γ be a set of premises such that Γ |=p A
and Γ |=p B, and let � be an OMP-ordering in which Γ hold. Then A
and B hold in �, so by supposition C holds in �, hence Γ |=p C. a

These small theorems can now be used to prove that the following
non-conditional counterparts of the above mentioned invalid inferences
are predicted to be p-valid by Adams:

1. Modus Tollens: A⇒ C,¬C |=p ¬A.
2. Iterated modus ponens: A⇒ B,B ⇒ C,A |=p C.
3. Propositional premise monotonicity: A⇒ C,A,B |=p C.
4. Denying a disjunct: A ∨ C,¬A |=p C.

Starting with the proof of p-validity for modus tollens, let us assume
that both premises hold in an ordering �. This means, (1), that A⇒ C
holds, and thus that A ∧ C � A ∧ ¬C; and (2), that ¬C also holds,
i.e. that ¬C is true in the highest world in the ordering. However,
if A were to hold in this ordering, i.e., be true in the highest world
in the ordering, then it would follow that A ∧ C 6� A ∧ ¬C, which
would contradict (1). Thus, we conclude that ¬A is true instead in
the highest world in the ordering, and thus that A ⇒ C,¬C |=p ¬A.
The proof for iterated modus ponens follows immediately from theorem
1.2 together with the fact that modus ponens is |=p-valid. Finally, the
proof for propositional premise monotonicity follows immediately from
theorem 1.1 and the proof for denying a disjunct follows from fact 2 in
combination with Adams’ definition of probabilistic entailment (given
that ‘⇒’ does not appear in the inference).
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3. Inference patterns involving conditionals and their
non-conditional counterparts

3.1. Inference patterns and static probabilistic entailment

In this section we argue that the predictions pointed out in the pre-
vious section are problematic if the non-conditional premise(s) of the
non-conditional arguments modus tollens, iterated modus ponens, propo-
sitional premise monotonicity and denying a disjunct are seen as new
information. In that case, we think that the inference patterns with
conditionals and their non-conditional counterparts (those where the
non-conditional premise is included as new information) should be anal-
ysed in the same way, and in particular that these inferences should be
determined to be invalid.2

Contraposition and modus tollens. Consider the following example,
which was also included in the experiment reported below: Lucy re-
cently graduated from university, where she studied finance, and is now
applying for jobs. She also currently lives at home with her parents in
the suburbs. One of her parents, for example her mother, would in such
a situation have good reason to take conditional (1a) to be plausible and
acceptable. On the other hand, they would not necessarily believe that
(1b) is true, because they can imagine other reasons why Lucy might still
not be hired despite doing well in her interview (e.g., the interview could
be very competitive). The existence of such counterexamples clearly
points to the invalidity of the inference from (1a) to (1b) and suggests
therefore that contraposition as an argument form should be invalid for
indicative conditionals.

1. (a) If Lucy does well for her job interview at the bank, then she will
be hired for the position.

(b) If Lucy does not get hired for the job interview at the bank, then
she did not do well in her job interview at the bank.

Intuitively, adapting this same example into the form of a modus tol-
lens argument should not lead it to become acceptable, in particular

2 The validity of Propositional premise monotonicity is especially problematic,
because it means that one cannot even consistently express that A,B,A ⇒ C, (A ∧
B)⇒ ¬C, although this seems to be possible. This is most easily illustrated by using
generics, instead of conditionals: there is nothing wrong with saying that birds fly,
that penguins (that are birds) exist, but that penguins do not fly.
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because the same counterexamples will hold.3 Take, again, Lucy’s situa-
tion, where Lucy’s mother again believes (2a). Now suppose that Lucy’s
mother receives a new piece of information, namely that Lucy was told
(by the interviewers at the bank, for instance) that she would not get
the position. Lucy’s mother will therefore come to believe that (2b),
but that does not mean that she will now necessarily conclude that (2c),
given that possible counterexamples readily come to mind.

2. (a) If Lucy does well for her job interview at the bank, then she will
be hired for the position.

(b) Lucy will not get hired for the position.
(c) Lucy did not do well in her job interview at the bank.

The counterexample to contraposition can thus arguably also serve as a
counterexample to modus tollens, if the non-conditional premise (2b) is
seen as new information. To understand the importance of this condi-
tion, notice that for (2a)–(2c) to be an instance of invalid modus tollens,
it is crucial that the corresponding conditional probability of (2a) be
lower than 1, just as it should be lower than 1 for (1a) to let (1a)–(1b)
be an invalid instance of contraposition.4

The hypothetical syllogism and iterated modus ponens. Consider once
again the previous example, featuring Lucy and her job applications.
Assuming the conditionals (3a) and (3b) appear to be acceptable (al-
though again, and importantly, not certain) to Lucy’s mother, she may

3 For further empirical evidence that modus tollens is seen as less natural than
modus ponens, and is thus less likely to be considered ‘valid’ by reasoners (see Oaks-
ford and Chater, 2008).

4 One reviewer argues that the idea that the inference from (2a) and (2b) to (2c)
is not considered to be good does not show that the inference is invalid. The reviewer
argues that the inference is bad, because it is unsound, rather than invalid; after (2b)
is given, premise (2a) is no longer taken to be true. This might well be the case. At the
same time, however, the reviewer takes the inference from (1a) to (1b) to be invalid,
just like Adams did. But we wonder whether there is such a clear difference. Isn’t it
the case, for instance, that after the antecedent of (1b) is taken to be true (if only
temporary, or for the sake of argumentation), premise 1a is not accepted anymore (if
only temporary, or for the sake of argumentation). And why should it be the case that
people reject argument (2a)–(2c) because it is (valid but) unsound? Why wouldn’t we
conclude from this, for instance, that the argument is valid, but that the conclusion
would be inappropriate to assert? (because for an indicative conditional to assert
appropriately, it has to be the case that the antecedent is a real-life possibility, with
a proper non-zero probability)? We think that the most straightforward explanation
why people reject an inference is that these people take the inference to be invalid.
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still find the conclusion not (3c) acceptable. Here again, counterexamples
to the argument are easy to come by (e.g., Lucy might prefer to remain
at her parents’ house even with her new position). This illustrates that
there are cases where the hypothetical syllogism sometimes is prima facie
fallacious.

3. (a) If Lucy does well in her job interview at the bank, then she will
be hired for the position.

(b) If Lucy is hired for the position, then she will move to live closer
to the bank.

(c) If Lucy does well in her job interview at the bank, then she will
move to live closer to the bank.

Analogously to the case of contraposition and modus tollens, the hy-
pothetical syllogism can be transformed into an iterated modus ponens
with a non-conditional premise that is received as new information (i.e.
Lucy telling her mother that she did well in her interview). Such an
argument would be subject, again, to the same counterexamples as the
hypothetical syllogism and would therefore strike one as being fallacious
despite being valid according to static probabilistic entailment. And just
as in the previous case, a necessary condition for these inferences to be
invalid is that the conditional probability that corresponds with premise
(3a) be smaller than 1, and that is indeed the case.

Strengthening the antecedent and propositional premise monotonicity.
The following two examples constitute cases where both strengthening
the antecedent and propositional premise monotonicity can be shown to
be logically fallacious:

4. (a) If Tweety is a bird, then he can fly. Therefore, if Tweety is a
penguin (and thus a bird), he can fly.

(b) If Tweety is a bird, then he can fly. Tweety is a penguin. There-
fore, Tweety can fly.

The invalidity of these inference rests again on the fact that the condi-
tional probability of the statement ‘If Tweety is a bird, then he can fly’
is high but still inferior to 1 because, of course, penguins are birds that
cannot fly.

Or-to-If and denying a disjunct. Given that the climate in Amsterdam
is very rainy and that snow in December is a regular occurence, (5a) is
acceptable. It does not, however, seem to justify inferring the conditional
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(5b). Similarly, if one accepts proposition (6a) and then comes to accept
that it won’t rain in Amsterdam in December 2021, it still feels fallacious
to infer (6c).

5. (a) Either it will rain or it will snow in Amsterdam in December 2021.
(b) If it doesn’t rain in Amsterdam in December 2021, it will snow.

6. (a) Either it will rain or it will snow in Amsterdam in December 2021.
(b) It won’t rain in Amsterdam in December 2021.
(c) Therefore, it will snow in Amsterdam in December 2021.

Hence, denying a disjunct must be an invalid inference pattern, if read
in a ‘dynamic’ way. It is crucial, again, for the probability of (5a) to
be  though high  less then 1; the belief in the disjunction should be
given up if it is assumed that the first disjunct is false. The same holds
for the denying a disjunct inference.

3.2. Empirical support

In order to provide further support for the claim that the non-conditional
inference patterns discussed above are invalid in the same way as the cor-
responding conditional inference patterns, we conducted a pre-registered
behavioral experiment in which collected validity judgements by partici-
pants on inference patterns that were presented both in their conditional
and non-conditional version.5 More specifically, the experiment focused
on two of the inference patterns described above: contraposition and hy-
pothetical syllogism. Following Adams, we predicted that participants
would reject at a rate meaningfully above chance arguments presented
in the contraposition and hypothetical syllogism forms. Contrary to
Adams, however, we predicted that those same arguments, when pre-
sented instead in the form of their non-conditional counterparts, with
the non-conditional premise being received as new information, would
also be rejected at a rate meaningfully above chance by participants.

We collected data from 159 participants, who were assigned either to
the contraposition or to the hypothetical syllogism condition. Partici-
pants were then shown three vignettes which briefly described a concrete,
realistic situation (including the Lucy example discussed above) in which
an agent holds a number of beliefs (i.e. the premises of the contraposition
or hypothetical syllogism) and were asked to assess whether that same

5 Preregistration and supplementary online materials are available at https://
osf.io/nydw6/.

https://osf.io/nydw6/
https://osf.io/nydw6/
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agent could conclude to a new belief (i.e. the conclusion of the relevant
argument). On the following page of the survey, participants were re-
minded of the vignette they had just read and were told that a new piece
of information had been received by the agent (i.e. the non-conditional
premise of the modus tollens or of iterated modus ponens argument, de-
pending on the condition). In light of this new information, participants
were asked again to assess whether the agent could now endorse a new
belief (i.e., again, the conclusion of the relevant argument). Responses
to the validity question were collected using a forced-choice paradigm
with three options (and thus allowing for some grading): “Yes”, “No”
and “I do not know”. For all experiments, whether in conditional or non-
conditional form, the “I do not know”-answer was given in at most 10%
of the cases. Because we were interested in whether participants would
assess those arguments as invalid rather than valid, we chose to re-code
validity answers, such that both “No” and “I do not know” answers would
be counted as rejections (or at least non-adoption) of an argument.6

Our results reveal that between 70 and 87 percent of participants
rejected the validity of the arguments they were shown. We further
analysed these results using a Bayesian logistic regression model with
weakly regularizing priors, which regressed the probability of an argu-
ment being rejected on the condition, the argument’s form and their
interaction. Our model predicted all arguments as being likely to be
rejected by reasoners at a rate reliably above chance. Figure 1 reports
both the observed proportion of rejections and the estimated probability
of rejection, with its 95 percent compatibility interval, for each type
of argument. 95 percent compatibility intervals indicate the range of
estimates that are, according to the statistical model, most compatible
with the data that was used in the analysis.7

These findings support Adams’ predictions regarding the invalidity
of two inference patterns that include indicative conditionals, i.e. contra-
position and the hypothetical syllogism: not only are these arguments
predicted as invalid by his notion of probabilistic entailment but they
are also perceived as such by reasoners (and in particular non-logicians).
However, these results also provide further support for our proposal that

6 But due to the small percentage of “I do not know”-answers, the results would
not have changed enormously if we wouldn’t have done so.

7 For a more detailed discussion of the experimental procedure and of the statis-
tical analyses, please refer to the Appendix.
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Figure 1. Proportion of arguments rejected as invalid by participants (bar plot)
and mean estimated probability of rejection with 95 percent compatibility in-

tervals.

the non-conditional inferences that were predicted by Adams to be valid
should instead be analysed as invalid, and indeed, participants didn’t
think that the conclusion necessarily follows in a majority of cases.8

4. Dynamic probabilistic entailment

4.1. Adams’ dynamic probabilistic entailment

Adams (1998) explicitly discusses examples in discourse of type (6a) and
(6b) and notices that speakers generally do not accept both assertions.
Instead, if (6a) was accepted first, the new information asserted by (6b)

8 Of course, it might well be that people reject an argument by contraposition
because of invalidity and reject an argument by modus tollens because of unsoundness.
As suggested by one reviewer, to separate these possibilities, we could ask participants
in confidence judgements in both premises and conclusion after extra information is
given (as in Over and Cruz, 2018). But as mentioned in an earlier footnote, we think
that there are several other possibilities as well to ‘explain’ the data, and to separate
them all we would have to do many experiments. That was not the point of this paper,
and we prefer to interpret the data in what we take to be the most straightforward
way: people reject both types of arguments because they take both arguments to be
invalid.
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leads reasoners to reconsider the belief in (6a).9 To account for the in-
ferences that follow from (6a) and (6b), Adams suggests a new dynamic
analysis of probabilistic entailment, which we might denote by |=da, ac-
cording to which premises and conclusion should be updated with the
new information:
(7) Γ, φnew |=da ψ iffdf for all p: Up(ψ|φ) ≤

∑
γ∈Γ Up(γ|φ).

Unfortunately, Adams himself already remarks that this rule is problem-
atic in several respects. First, his new entailment relation fails if one
of the premises in Γ or the conclusion is a conditional of form B ⇒ C.
Problems arise in this case first of all because Adams (1998) doesn’t allow
us to interpret p(B ⇒ C|A). But even interpreting statements of that
form as p(C|A ∧ B), as could seem reasonable, gives rise to intuitively
wrong predictions. In particular, Adams notices that it incorrectly pre-
dicts that C,Anew |= ¬A⇒ B becomes valid (because p(B|A∧¬A) = 1),
irrespective of the nature of C. A second problem noticed by Adams for
his notion of dynamic entailment is that it doesn’t make correct predic-
tions when the new information is a conditional like A⇒ B, which is due
to the fact that Adams (1998) does not allow for conditional probabilities
of the form p(C|A ⇒ B) to be defined.10 Thus, Adams himself under-
lines that his proposal gives rise to various interpretability problems.
For this reason, Adams’ dynamic entailment relation does not make any
predictions concerning modus tollens and iterated modus ponens.

Moreover, there is yet a further problem with Adams’ dynamic entail-
ment relation that is at least as serious: his analysis makes incorrect pre-
dictions even for those cases where it doesn’t give rise to interpretability
problems. In particular, it predicts that the denying a disjunct inference
(6a)–(6c) is valid, although that should not be the case; or so we ar-
gued above.11 As a consequence, Adams’ dynamic notion of entailment
contrasts with the natural idea that an agent accepts (or should accept)

9 Adams (1998) would say that the new factual premise is ‘not in the scope of’
at least one of the conditional premises. He also suggests the new premise in this case
gives rise to non-monotonic behaviour of the inference-relation. He does not work out
the latter suggestion, though.

10 There are ways to account for that, however, going back to ideas of de Finetti,
as explained, for instance, by Milne (1997). We won’t go into this here, as it is not
our main point of criticism.

11 To be sure, Adams (1998) is well aware that his notion of dynamic entailment
makes inference (6a)–(6c) valid, and that this is counterintuitive. Instead of propos-
ing an alternative notion of dynamic entailment to account for this intuition, his
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an indicative conditional if and only if they accept the consequent after
they learn the antecedent.

One of the most remarkable features of conditionals is that the
strengthening of the antecedent inference is not valid because it shows
that conditionals behave in a non-monotonic way. In the same way,
the failure of propositional premise monotonicity is one of the defining
features of non-monotonic logic: not only does the conditional behave
non-monotonically but the inference relation does as well. In the next
section we will define a dynamic inference relation that behaves non-
monotonically exactly as conditionals do.

4.2. A new dynamic entailment relation

In this section, we propose an improvement on Adams’ entailment rela-
tion |=da that (i) is also dynamic, (ii) doesn’t give rise to the problems
that Adams’ proposal does, and (iii) that predicts, in line with the results
from section 3, a similar inferential behaviour for inference patterns with
conditionals and inference patterns with their non-conditional counter-
parts. We denote this relation, |=dp, as dynamic probabilistic entailment.
Our new notion of entailment is strongly based on p-entailment but, to
account for Adams’ interpretability problems, we make a distinction be-
tween factual and conditional conclusions. To account for the similarity
between the conditional and non-conditional inference patters, we define
an inference relation that is non-monotonic: A1, . . . , An |=dp C does not
imply A1, . . . , An, B |=dp C.

Our new entailment relation is a type of mixture of Adams’ proba-
bilistic entailment relation and the probabilistic analysis of partial en-
tailment studied by Keynes (1921), Carnap (1950) and others. Partial
entailment has been defined only for the language of classical logic, thus
without sentences of the form ‘A⇒ C’, such that φ follows to (at least)
degree x (0 ≤ x ≤ 1) from a set of premises Γ , Γ |=x φ, iff the conditional
probability of φ given the conjunction of the sentences in Γ is higher or
equal than x, i.e., p(φ|

∧
γ∈Γ ) ≥ x. Students of partial entailment typi-

cally assumed that there is one ‘objective’ probability function, thus they
did not have to quantify over all probability functions. But we might do

discussion focusses on the circumstances under which his dynamic entailment relation
involving new information gives rise to counterintuitive predictions, i.e., when the new
information is not ‘in the scope of’ the old premise(s). For a similar discussion from
a more psychological point of view (see Oaksford and Chater, 2013).
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so, as before. If so, it is not difficult to show that in case the premises in
Γ are mutually consistent, Γ |=1 φ iff Γ |=cl φ. Thus, partial entailment
is a natural generalisation of classical entailment, but it is a very different
generalisation of classical logic than Adams’ generalisation. In particu-
lar, in contrast to Adams’ static notion of entailment, partial entailment
requires checking what happens if the (factual) premises are all assumed
to be true (due to the use of conditionalization). That is, instead of
considering the prior probability function, as Adams does, the posterior
probability function needs to be considered instead. In this sense, partial
entailment evaluates inferences from a dynamic point of view.

Our definition of a dynamic probabilistic entailment relation, |=dp,
handles ‘old’ premises as Adams does, but treats ‘new’ premises in the
same way as is done in partial entailment, i.e. as certainties. To give a
compact definition of this notion of entailment, let us first define another
useful notion:

Γ |=p
φ ψ iff for all p such that p(φ) = 1: Up(ψ) ≤

∑
γ∈Γ Up(γ).

Notice that if φ and ψ are factual, our Γ |=p
φ ψ is very similar to Adams’

Γ, φnew |=da
φ ψ . But Adams’ entailment relation predicts wrongly for

(6a)–(6c), or so we argued. To improve on |=da, we define our analysis of
dynamic probabilistic entailment as follows. Let Γ ∪ {φ, ψ} be a (finite)
set of formulae of some conditionally extended language L⇒. Then:

Γ, φnew |=dp ψ iffdf
{
Γ |=p φ⇒ ψ if φ and ψ are factual
Γ |=p

φ ψ otherwise.

We assume that if ∆ is a set of factual sentences and ψ is factual, that
Γ,∆new |=dp ψ iff Γ |=p (

∧
∆)⇒ ψ, because ∆ could equivalently have

been given as one conjunction. Our new inference relation has some
familiar and some unfamiliar properties. First, |=dp is reflexive in that
each premise A always entails itself: Γ,Anew |=dp A. This is familiar.
An unfamilar property is that in contrast to |=p, dynamic probabilistic
entailment, |=dp, is non-monotonic.
Example 1. Let A,C be factual formulae. Then A ⇒ C,Anew |=dp C,
since A⇒ C |=p A⇒ C. Thus, if Γ = {A⇒ C}, then Γ,Anew |=dp C
Now take Γ = {A ⇒ C} and ∆new = {A,¬C}. Then Γ,∆new |=dp A,
but Γ,∆new 6|=dp C, since p(C|A ∧ ¬C) = 0.

Entailment relation |=dp is non-monotonic, in particular if the new
information contradicts the earlier accepted premises. Example 1 more-
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over shows not only that dynamic probabilistic entailment is defeasible
but also that it makes even modus ponens defeasible. The example below
shows this as well.
Example 2. Let Γ to be the following set of conditionals: Γ = {A ⇒
B,A ⇒ ¬C,B ⇒ C}, with A,B and C factual. Then it follows that
Γ, {B}new |=dp C, but Γ, {A,B}new |=dp ¬C. (The latter follows by
cautious monotonicity which is valid in |=p and thus also in |=dp.)
Although |=dp is non-monotonic, its non-monotonic behavior is rather
limited. In particular, in virtue of the monotonicity of |=p, |=dp is mono-
tone if the conclusion is conditional:

Theorem 3. If Γ |=dp φ and φ is conditional, then Γ,∆new |=dp φ.

5. Inference patterns in dynamic |=dp

Because |=dp is defined in terms of |=p, and because we can use OMP-
orderings to determine whether a p-entailment holds, it is relatively easy
to determine |=dp inference patterns as well if the new information and
the conclusion are factual. Let us look at some examples.

One premise cases. Suppose A |=p C, for factual A and C. Then
also (>, ) Anew |=dp C. This immediately follows from the fact that
for factuals, A |=p C iff A |=cl C, and that thus p(C|A) = 1 for each
function p. Although (A ⇒ C)new |=dp A → C (with ‘→’ material
implication) just like for Adams’ static probabilistic entailment relation
|=p, it interestingly enough also follows that (A → C)new |=dp A ⇒ C,
which is in contrast to the behaviour w.r.t. |=p. For the latter inference
to be valid, it is crucial that we only look at probability functions that
give A→ C probability 1. Another interesting case is that although the
paradox of material implication C 6|=p A ⇒ C is correctly predicted to
be invalid probabilistically, it is predicted to be dynamically valid if C
is seen as new information, Cnew |=p A ⇒ C, due to the fact that now
C received probability 1.

From instant to conditional. First, note that A,C |=p A ⇒ C. This is
easily proven by the OMP-counterexample theorem. If � is some OMP-
ordering that satisfies A and C, then A and C hold in the highest-ordered
world w1. Then w1 is also the highest-ordered world in which A holds,
and as C holds in w1, this means that A ⇒ C holds in �. From this
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it follows immediately that A,Cnew |=dp A ⇒ C and (A ∧ C)new |=dp

A⇒ C. Moreover, it holds that A∧C,Anew |=dp C. More in general, it
follows that in case χ follows classically from φ or ψ, and either φ |=cl ψ
or ψ |=cl φ, then φ, ψnew |=dp χ.

Basic modus ponens. Second, basic modus ponens is valid, i.e. A,A ⇒
C |=p C. Again, by the OMP-counterexample theorem: if � is some
OMP-ordering in which A holds, then w1 |=cl A. If A⇒ C also holds in
�, then it must be that C is true in w1, hence C holds in �.

Moreover, A ⇒ C,A |=dp C if and only if A ⇒ C |=p A ⇒ C,
which is obviously valid. However, we have seen in the previous section
that modus ponens is only a defeasible inference in dynamic probabilistic
logic: it can be made defeated by adding a new premise.

The same argument can be given for the argument from (A ∧ B)⇒
C,B |=p A⇒ C and (A∧B)⇒ C,Bnew |=dp A⇒ C. Both are predicted
to be valid.

Counterexample to modus ponens. (due to Cooper (1978)). Suppose
that you believe A = ‘These scales are accurate’ because somebody told
that the statement was true. As new information, you see John, who
looks like somebody of normal weight (B), get on the scale and you read
the weight, which allows you to say A⇒ C = ‘If the scales are accurate,
then John weighs four hundred points’. In such a situation, you would
hardly conclude that C = ‘John weighs four hundred pounds’. The reason
is that p(C|B) is taken to be very low. Indeed, A, {B,A⇒ C}new 6|=dp C.
In our case, {B,A⇒ C}new gives us reason to give up on A.

From counterexample to no conditional. A and ¬C together contradict
A⇒ C: A,¬C,A⇒ C |=p C, by the monotonicity of entailment, while
also A,¬C,A⇒ C |=p ¬C by monotonicity. Hence A,¬C,A⇒ C |=p ⊥.

However, one cannot validly reason ad absurdum from an indicative
conditional and its counterexample in dynamic probabilistic logic: A⇒
C, {A,¬C}new |=dp ⊥ if and only if A ⇒ C |=p (A ∧ ¬C) ⇒ ⊥. Again,
any choice of A and C where C is not classically entailed by A suffices
as a counterexample.

We can also consider inference patterns that are classically valid but
probabilistically invalid, and where this invalidity is justified by coun-
terexamples. Notable among them, as discussed in earlier sections, are
contraposition, the hypothetical syllogism, and strengthening of the an-
tecedent. Notice that for none of those inferences are factual sentences
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involved, which means that these patterns hold in dynamic probabilistic
logic if and only if they hold in (static) probabilistic logic. Thus none of
these inferences are valid according to |=dp.

Earlier we noted that the non-conditional variants of those inferences
were still valid with respect to |=p, and we argued that this was problem-
atic. Fortunately, our new dynamic inference relation |=dp does much
better, and predicts all three inferences to be invalid:
Modus tollens. We showed above that A ⇒ C,¬C |=p ¬A. How-
ever, modus tollens is invalid in dynamic probabilistic logic. A ⇒
C,¬Cnew |=dp ¬A if and only if A ⇒ C |=p ¬C ⇒ ¬A, i.e. if and
only if contraposition is probabilistically valid for A and C. But the
latter is not the case. Thus, A⇒ C,¬Cnew 6|=dp ¬A.12

Iterated modus ponens. In general, the hypothetical syllogism is invalid
in probabilistic logic. That is: A ⇒ B,B ⇒ C 6|=p A ⇒ C. This is
illustrated by an OMP-counterexample in which w1 |= ¬A,B,C and
w2 |= A,B,¬C. However, the hypothetical syllogism pattern can be
used to infer C from A, since A,A ⇒ B,B ⇒ C |=p C. Let � be an
OMP-ordering in which the premises A,A ⇒ B and B ⇒ C all hold.
Then w1 |= A, so w1 |= B. Hence w1 |= C, so C holds in �.

Because, A⇒ B and B ⇒ C entail A⇒ C in dynamic probabilistic
logic only if they do so in probabilistic logic, it follows, however, that
A⇒ B,B ⇒ C,Anew 6|=dp C.
Propositional premise monotonicity. Consider an OMP-ordering �, now
such that w1 |= A,¬B,C, and w2 |= A,B,¬C. Then � is an OMP-
counterexample to the pattern of strenghtening the antecedent, or in
other words, it shows that A ⇒ C 6|=p (A ∧ B) ⇒ C. However,
A ∧B,A⇒ C |=p A, so that by transitivity, A ∧B,A⇒ C |=p C.

Propositional premise monotonicity holds in dynamic probabilistic
logic if and only if strengthening of the antecedents holds for its condi-
tional counterpart. Thus, A⇒ C, (A ∧B)new 6|=dp C.

Finally, let us consider our last example where Adams’ static proba-
bilistic and dynamic entailment relations seem to seem to make incorrect
predictions, i.e., the non-conditional variant of from Or-to-If.
Denying a disjunct. The Or-to-If pattern consists in inferring A ⇒
C from ¬A ∨ C, and is probabilistically invalid, as is shown by the

12 Note that although A ⇒ C,¬Cnew 6|=dp ¬A, it is the case that {A ⇒
C,¬C}new |=dp ¬A.
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OMP-counterexample � in which w1 |= ¬A,C and w2 |= A,¬C. Thus
¬A ∨ C 6|=p A⇒ C.

But for exactly the same reason ¬A∨C,Anew 6|=dp C. Thus, denying
a disjunct is invalid in dynamic probability logic.

6. Conclusion

In this paper, we have proposed that Adams’ (1975) observation that the
inference patterns contraposition, the hypothetical syllogism, strengthen-
ing the antecedent and from or to if are invalid for indicative condi-
tionals (if analysed as conditional probabilities) needs to be extended to
the case of the non-conditional counterparts of the inference patterns.
Adams’ probabilistic entailment correctly accounts for the intuitive in-
validity of the first four inferences but it also predicts that the latter
four inferences are valid. We argued that Adams’ predictions regarding
the non-conditional inferences listed above are incorrect on the basis of
an argument by cases and we also report empirical results that indicate
that these predictions contradict the intuitions of laypeople. Finally, we
have shown that this false prediction can be avoided by using a dynamic
probabilistic entailment relation which treats factual premises differently
from conditional premises.

The idea behind our dynamic probabilistic entailment relation has
a more general relevance. In section 3, we reminded the reader that
Adams’ notion of probabilistic entailment can also be captured in terms
of order of magnitude probability orderings. It is well-known that such
orderings closely correspond with Lewis’s (1973) (and Stalnaker’s (1968))
qualitative possibility orderings used for the analysis of counterfactuals,
and more directly with the orderings that characterise valid inferences
in the minimal non-monotonic logic: system P (see, e.g., Burgess, 1981).

To see this, we start with a preorder � on possible worlds (a binary
relation that is reflexive and transitive).13 As above, we can define in
terms of this (plausibility) ordering an ordering between sets of possible
worlds. If X and Y are sets of possible worlds, we say that X � Y
if and only if there is an x ∈ X such that for any y ∈ Y we have
x � y, where x � y iffdf x � y and y 6� x (note that � is thus a
strict partial order, an order where � is irreflexive and transitive). In

13 The order � on X is reflexive iff for any x ∈ X we have x � x. The order is
transitive iff for all x, y, z ∈ X if x � y and y � z, then x � z.
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terms of these orderings, we can say that X ⇒ Y holds in �, or is
accepted in �, iff (X ∧ Y ) � (X ∧ ¬Y ). Similarly, X is accepted in
� iff (> ⇒ X) � (> ⇒ ¬X). Logical consequence can now be de-
fined in an almost standard way, but now as maintenance of acceptance
(Burgess, 1981). Just like the probabilistic entailment relation |=p, this
system invalidates the inferences contraposition, hypothetical syllogism,
strengthening the antecedent and from or to if, but it validates the non-
conditional counterparts of these inferences. Thus, the problem that we
identified for the probabilistic analysis in section 2 of this paper is a more
general problem, and holds for qualitative variants of Adams’ analysis
of conditional reasoning as well.

Fortunately, the solution we proposed to solve the problem does not
make essential use of probabilities either. In fact, our definition of en-
tailment can be used for qualitative versions of conditional reasoning as
well, and with the same desirable effects: it would invalidate the non-
conditional versions of the inferences contraposition, hypothetical syllo-
gism, strengthening the antecedent and from or to if, just as it should.
More generally, our approach is in line with the view that an agent
accepts (or should accept) an indicative conditional if and only if they
accept the consequent after they learn the antecedent.

A. Appendix: Additional experimental methods and results

A.1. Participants

We sought to detect a probability of argument rejection in any condi-
tion that would be above 65 percent, i.e. that would be meaningfully
above chance. A simulation-based power analysis indicated that with
a sample of 80 participants per condition, effects equal or larger than
65 percent would be successfully detected in 96 percent of cases. After
accounting for an expected drop-out rate of approximately 15 percent,
we recruited 182 participants, of which 180 gave complete response sets,
and assigned them randomly to the contraposition (CP) or hypothetical
syllogism (HS) conditions. The experiment was distributed via the Pro-
lific.co platform. Participants were required to have English as a first
language and to not have received a dyslexia diagnosis. After excluding,
as was planned in our preregistration, participants who reported having
received advanced training in logic, as well as participants who failed an
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attention check or any of the two manipulation checks, we were left with
data from 159 participants (136 women, 23 men; Mage = 37.7, SDage =
12.6), with 82 participants in the contraposition condition and 77 par-
ticipants in the hypothetical syllogism condition. Participants received
should be 1.04 £ as compensation.

A.2. Materials and procedure

In addition to the validity task described in the main body of the paper,
participants also completed a counterexample generation task immedi-
ately after the first validity task for each vignette. In the counterexample
generation task, participants were prompted to attempt to generate a
counterexample for the argument they had just considered. More specif-
ically, they were asked whether they could “think of a reason why [the
agent] could still NOT want to conclude” to the conclusion of the infer-
ence pattern. Participants were instructed to only generate one coun-
terexample and were asked to indicate ‘No reason’ if they could not find
a counterexample. The experiment also included, at fixed intervals, two
comprehension checks in which participants were asked to perform the
validity and the counterexample generation tasks for two modus ponens
arguments. For these two modus ponens arguments, we expected partic-
ipants to respond ‘Yes’ to the validity task. Participants who responded
otherwise were scored as having failed the comprehension checks.

A.3. Analytic approach and results

To examine our predictions regarding the probability of the different
argument forms being rejected, we fit a Bayesian regression model with
the R package brms (Bürkner, 2018) and the probabilistic language Stan
(Carpenter et al., 2017), which uses Markov Chain Monte Carlo algo-
rithms. A Bayesian analysis estimates model parameters (in this case,
the probability of rejection for the different arguments) as probability
distributions, with the joint probability distribution of the data, y, and
a given parameter, θ, being computed via the prior probability of θ and
the probability p(y | θ):

p(y, θ) = p(y | θ)× p(θ).

This result is derived from Bayes’ Rule, which serves to calculate the
posterior probability, p(θ | y):

p(θ | y) ∝ p(y | θ)× p(θ) = p(y, θ).
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This posterior probability distribution can be interpreted as indicating
the relative plausibility of possible values of the parameter θ, conditional
on the prior probability of that parameter, the probability distribution
of the responses (or likelihood function), and the data itself.

Because the response variable we sought to model was binary, we
chose to model it as arising from a Bernoulli distribution. This model es-
timated the logit-transformed probability of an argument being rejected
given the condition and form it was shown in. The logit-transformation
converts a probability p (which is, by definition, restricted to the 0 to 1
range) into a log odds ratio by taking the logarithm of the ratio between
p and 1−p. A log odds ratio of 0 means that p and 1−p are independent,
a positive log odds ratio means that p is higher than 1−p, and a negative
log odds ratio means that p is lower than 1− p.

We also specified prior distributions over the possible probability
estimates for each condition.14 Specifying these priors is recommended
because it allows regularization of parameter estimates (see, for instance,
Bürkner, 2018; McElreath, 2020). The priors we specified indicated
that the probability that arguments shown in their non-conditional form
would be rejected was likely to range between 11 and 88 percent with
a mean of 50 percent, which corresponds to a wide prior that indicates
extreme probabilities of rejection as unlikely while remaining agnostic to
the direction of the effect. However, because of the already existing the-
oretical and empirical consensus over the invalidity of these arguments in
their conditional form, we indicated that the probability that arguments
shown in their conditional form would be rejected ranged between 37 and
92 percent with a mean of 73 percent, which corresponds to a narrower
prior compatible with higher probability estimates. Finally, because we
used a repeated measures design, where participants evaluated multiple
vignettes and where vignettes were rated by multiple participants, we
also included a (hierarchical) mixed-effects structure in our model, which
estimates how group-level (or random) effects deviate from population-
level (or main) effects and accounts for possible correlations in responses
provided by the same participant or to the same vignette. Figure 2
represents the prior distributions along with the posterior distributions
of estimated probabilities for Model 1. Our model was defined as follows:

14 Here, we deviated from our pre-registrated priors in order to correct a misun-
derstanding about the structure of our model. These updated priors did not qualita-
tively modify the results of this analysis.
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Figure 2. Prior distribution of model parameters (black dashed line) and cor-
responding posterior distributions.

Model 1: Rejection ∼ 0 + Form * Condition +
(0 + Form + Condition | Participant) +
(0 + Form + Condition | Vignette)15

We fitted the model with 4 chains and 4000 samples (2000 post warm-
up) per chain. MCMC diagnostics indicated sufficient mixing of the
chains, sufficiently high bulk and tail effective sample size values and
an R̂ convergence diagnostic of 1.00 for all parameters, which is within
the recommended value range (Vehtari, Gelman, Simpson, Carpenter,
& Bürkner, 2020). This model estimated a positive log odds (i.e., a
probability above chance) for all argument types: b = 1.80, [1.13 : 2.43]
95% CI for the contraposition, b = 2.25, [1.61 : 2.86] 95% CI for the
modus tollens, b = 1.61, [0.88 : 2.34] 95% CI for the hypothetical syllo-
gism and b = 2.31, [1.24 : 3.34] 95% CI for the iterated modus ponens.

Finally, we cross-validated our model using the loo package (Vehtari,
Gabry et al., 2020) which performs leave-one-out cross-validation (Ve-
htari, Gelman & Gabry, 2017). This method provides estimates of the
point-wise out-of-sample prediction accuracy (or ELPD) of a model, as
well as approximations of the standard error for the estimated prediction
error of a model, thereby enabling comparisons in predictive accuracy
between models. We cross-validated Model 1 by comparing it with three
restricted models: a model that only included Condition as a predictor
(Model C), a model that only included Form as a predictor (Model F)

15 The 0 + syntax indicates that no separate intercept was estimated for this
model.
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Model ∆ELPD (SE)
0 0.0 0.0
1 -0.6 7.2
F -8.0 6.6
C -118.5 14.2

Note: For each cross-validation comparison, the ∆ELPD is the difference in ELPD
between each model and the model with the largest ELPD (indicated in bold face).
The ∆ELPD for the best model is always 0 given that it is the difference between
that model and itself. SE corresponds to the standard error of the difference in
ELPD between two models and indicates the amount of uncertainty present in the
comparison. The ∆ELPD must be several times larger than the SE for the comparison
to indicate meaningful differences in predictive performance between two models.

Table 1. Cross-validation comparisons of the models.

and a null-model (Model 0). The difference in ELPD between Model C
and Model 0 (the best model) is multiple times larger (namely 8 times
larger) than the standard error of that difference, which indicates that
a null model has better predictive performance than a model that only
considers the condition an argument was in. However, the difference in
ELPD between Model 0 and Models 1 and F was either smaller or less
than twice larger than the standard error of that difference (see Table 1
for results). This indicates that including Form, either by itself or with
Condition and their interaction, as a predictor did not meaningfully im-
prove the accuracy of predictions. These results can be interpreted as
meaning that the accuracy in predicting the probability of an argument
being rejected did not improve when the type of argument was taken
into account. This suggests that participants in this experiment rejected
the validity of the arguments they were shown in a way that was not
meaningfully sensitive to the type of argument they were shown.

A.4. Counterexample generation task

The results from the counterexample generation task revealed that only
in 6 percent of cases where participants indicated an argument as not
valid did they also indicate being unable to generate a counterexample.
This further suggests that counterexamples were readily available to par-
ticipants who did not believe that the conclusion should follow from the
available premises.
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