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Abstract. We consider first-order infinite-valued Łukasiewicz logic and its
expansion, first-order rational Pavelka logic RPL∀. From the viewpoint of
provability, we compare several Gentzen-type hypersequent calculi for these
logics with each other and with Hájek’s Hilbert-type calculi for the same
logics. To facilitate comparing previously known calculi for the logics, we
define two new analytic calculi for RPL∀ and include them in our compar-
ison. The key part of the comparison is a density elimination proof that
introduces no cuts for one of the hypersequent calculi considered.
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1. Introduction

Mathematical fuzzy logics provide formal foundations for approximate
reasoning. Among the most important such logics are first-order in-
finite-valued Łukasiewicz logic Ł∀ and its expansion by rational truth
constants, first-order rational Pavelka logic RPL∀; see [18] as well as
[13, 14]. As for most fuzzy logics, the intended, or standard, semantics
for Ł∀ and RPL∀ has the interval [0, 1] of real numbers as the set of
truth values; valid Ł∀- and RPL∀-formulas are those taking only the
truth value 1.

The set of all valid Ł∀-formulas (over a sufficiently rich signature) is
not recursively enumerable [26], more precisely, is Π2-complete [25]; the
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same holds for RPL∀ [18, Section 6.3]. Therefore, for these two logics,
finitary calculi (i.e., calculi with a recursive set of axioms and a finite
number of recursive inference rules) have to be incomplete, but of course,
must be sound. We consider only sound finitary calculi for Ł∀ and RPL∀
in the present article; as to infinitary calculi for the logics, one can find
a brief overview and a recent result in [17].

There are equivalent Hilbert-type calculi for Ł∀ (resp. RPL∀), Há-
jek’s calculus for Ł∀ (resp. RPL∀) from [18] being the standard one.
Hájek’s calculus for Ł∀ (resp. RPL∀) is complete with respect to a
certain algebraic semantics over so-called MV-chains (resp. MV-chains
contaning the rational unit interval); see [18]. It is proved in [19] that
Hájek’s calculus for RPL∀ is a conservative extension of the one for Ł∀.

Besides Hilbert-type calculi, the Gentzen-type calculi mentioned be-
low are known for these logics.

For Ł∀, an analytic hypersequent calculus GŁ∀ with structural infer-
ence rules is presented in [2, 23], and it is shown in [2] that GŁ∀ extended
with the cut rule proves exactly the same Ł∀-sentences as Hájek’s cal-
culus for Ł∀.

With the aim of developing proof search methods for Ł∀ and RPL∀,
in [16, 17] we introduced the following calculi.

The structural rules of GŁ∀ create too high a degree of nondetermin-
ism for bottom-up proof search. So in [16] we excluded them from GŁ∀ to
obtain an analytic cumulative1 hypersequent calculus2 G1RP∀ for RPL∀,
and showed that all GŁ∀-provable sentences are G1RP∀-provable. Also,
in [16] we introduced a noncumulative variant G2RP∀ of G1RP∀; G2RP∀
is suitable for bottom-up proof search for prenex RPL∀-sentences; and
all G2RP∀-provable sentences are G1RP∀-provable.

However, from the viewpoint of bottom-up proof search (for arbi-
trary, not necessarily prenex RPL∀-sentences), a defect in the calculi
G1RP∀ and G2RP∀ is that designations of multisets of formulas are
repeated in the premises of some of the inference rules. The defect is at
least an obvious reason for the inefficiency of bottom-up proof search,
because each copy of a nonatomic formula from repeated multisets is
generally to be decomposed.

1 We say that a hypersequent calculus is cumulative if all its rules are cumula-
tive; and a hypersequent rule is cumulative if, for its every application, each premise
includes the conclusion (cf. [27, item 3.5.11]).

2 The calculi GiRP∀ (i = 1, 2, 3) were denoted by GiŁ∀ in [16, 17]; but now we
change these designations for the sake of a more memorable notation.
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We got rid of such repetitions in [17] by presenting an analytic non-
cumulative hypersequent calculus G3RP∀ for RPL∀ without structural
inference rules; this calculus is repetition-free, in the sense that desig-
nations of multisets of formulas are not repeated in any premise of its
rules. As shown in [17], all the inference rules of G3RP∀ are height-
preserving invertible; G3RP∀ is well suited to bottom-up proof search
for arbitrary RPL∀-sentences; and all G1RP∀-provable sentences (and
so all GŁ∀-provable sentences) are G3RP∀-provable.

The main goals of the present article are: (1) to find out whether
G3RP∀ is a conservative extension of GŁ∀, and (2) to compare G3RP∀
with Hájek’s calculus for RPL∀.

It turns out that, in order to to reach our goals, it is very helpful to
introduce two auxiliary analytic hypersequent calculi for RPL∀: (1) a
calculus G0RP∀ whose rules are simpler than the ones of G3RP∀ (and
of G1RP∀), and whose axioms are the same as those of G3RP∀ (which
are rather complicated and defined in nonsyntactic terms); and (2) a
calculus GRP∀ whose axioms are quite simple and defined in nearly
syntactic terms, and whose rules are essentially the ones of GŁ∀. Thus,
we include these new calculi in our comparison. The key part of the
comparison is a proof of the admissibility for G0RP∀ of some variants of
the density rule, which underlie some rules of G3RP∀. The features of
the proof are discussed in the concluding section, in the context of works
related to the elimination of applications of the density rule from formal
proofs.

This article is organized as follows. In Section 2 we describe the
syntax and the standard semantics of the logics Ł∀ and RPL∀, then for-
mulate the calculi GŁ∀, G0RP∀, and G3RP∀. In Section 3 we introduce
the (so-called nearly syntactic) calculus GRP∀ for RPL∀, which turns
out to be a conservative extension of GŁ∀ and complete (with respect
to the standard semantics) for the quantifier-free fragment of RPL∀. In
Section 4 we show that G0RP∀ is a conservative extension of GRP∀,
and that any G0RP∀-provable sentence is G3RP∀-provable. In Section 5
we establish the admissibility for G0RP∀ of two variants of the density
rule, and using this, show that G3RP∀ and G0RP∀ are equivalent; hence
we conclude that G3RP∀ is a conservative extension of GŁ∀. In Section
6 we formulate Hájek’s Hilbert-type calculus HRP∀ for RPL∀; describe
the algebraic semantics for RPL∀ over MV-chains contaning the rational
unit interval; and using the semantics and our two auxiliary calculi, es-
tablish that G3RP∀ extended with the cut rule proves exactly the same
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RPL∀-sentences as HRP∀. Finally, in Section 7 we discuss our results
and related works.

2. Preliminaries

First we describe the syntax and the standard semantics of the logics Ł∀
and RPL∀ (see [18]).

Given a signature, which may contain predicate and function symbols
of any nonnegative arities, Ł∀- and RPL∀-formulas are defined as follows.
The notion of a term is standard. Atomic Ł∀-formulas are the truth
constant 0̄ and predicate symbols with terms as their arguments. Atomic

RPL∀-formulas are atomic Ł∀-formulas and truth constants r̄ for all
positive rational numbers r ¬ 1. Ł∀- and RPL∀-formulas are built up
as usual from atomic Ł∀- and RPL∀-formulas, respectively, using the
following logical symbols: the binary connective → and the quantifiers ∀
and ∃.

An interpretation 〈D, µ〉 of a given signature is defined as in classical
logic, except that the map µ takes each n-ary predicate symbol P to
a predicate µ(P ) : Dn → [0, 1]. Let M = 〈D, µ〉 be an interpretation.
Then an M -valuation is a map of the set of all individual variables to D.
For an M -valuation ν, an individual variable x, and an element d ∈ D,
by ν[x 7→ d] we denote the M -valuation that may differ from ν only on
x and obeys the condition ν[x 7→ d](x) = d.

The value |t|M,ν of a term t under an interpretation M and an M -
valuation ν is defined in the standard manner. The truth value |A|M,ν

of an RPL∀-formula A under an interpretation M = 〈D, µ〉 and an M -
valuation ν is defined as follows:

• |r̄|M,ν = r;
• |P (t1, . . . , tn)|M,ν = µ(P )(|t1|M,ν , . . . , |tn|M,ν) for an n-ary predicate

symbol P and terms t1, . . . , tn;
• |B → C|M,ν = min(1, 1 − |B|M,ν + |C|M,ν);
• |∀xB|M,ν = infd∈D |B|M,ν[x7→d];
• |∃xB|M,ν = supd∈D |B|M,ν[x7→d].

An RPL∀-formula (in particular, an Ł∀-formula) A is called valid,
also written � A, if |A|M,ν = 1 for every interpretation M and every
M -valuation ν.

In what follows, unless otherwise indicated, we work with a fixed sig-
nature that includes a countably infinite set of nullary function symbols
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called parameters. Nullary predicate symbols are also called proposi-

tional variables. The result of substituting a term t for all free occur-
rences of an individual variable x in an RPL∀-formula A is denoted by
(A)x

t . The letters k, l, m, n (possibly with subscripts) stand for non-
negative integers. An expression k..n denotes the set {k, k + 1, . . . , n} if
k ¬ n, and the empty set otherwise.

Let us formulate the auxiliary hypersequent calculus G0RP∀ and
define accompanying notions and notation common to several calculi
considered.

We introduce two countably infinite, disjoint sets of new words and
call such words semipropositional variables of type 0 and of type 1, re-
spectively. An RPL∀-formula as well as a semipropositional variable (of
any type) is said to be a formula.

An RPL∀1
0-sequent (or simply a sequent) is written Γ ⇒ ∆ and is

an ordered pair of finite multisets Γ and ∆ consisting of formulas. An
RPL∀1

0-hypersequent (a hypersequent for short) is a finite multiset of
sequents and is written Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n or

[
Γi ⇒ ∆i

]
i∈1..n

.
A sequent and a hypersequent that do not contain logical symbols are

called atomic. Suppose that H is a hypersequent; then by Hat we denote
the (atomic) hypersequent obtained from H by removing all nonatomic
sequents.

We define an hs-interpretation as an interpretation 〈D, µ〉 in which
the map µ additionally takes each semipropositional variable of type 0 to
a real number in [0, +∞) and each semipropositional variable of type 1
to a real number in (−∞, 1]. For a semipropositional variable p, an hs-
interpretation M = 〈D, µ〉, and an M -valuation ν, the value µ(p) will
also be written as |p|M or as |p|M,ν .

For a finite multiset Γ of formulas, an hs-interpretation M , and an
M -valuation ν, we put

‖Γ‖M,ν =
∑

A∈Γ

(|A|M,ν − 1),

where the summation is performed taking multiplicities of multiset el-
ements into account, and

∑
A∈∅

(. . .) = 0. A sequent Γ ⇒ ∆ is called
true under an hs-interpretation M and an M -valuation ν if

‖Γ‖M,ν ¬ ‖∆‖M,ν .

Following [2, Definition 1], we say that a hypersequent H is valid (and
write � H) if, for every hs-interpretation M and every M -valuation ν,
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some sequent in H is true under M and ν. Note that, for an RPL∀-
formula A, � A iff � (⇒ A). To denote that a hypersequent G is not
valid, we write 2 G.

Unless otherwise specified, below the letters A, B, and C denote any
RPL∀-formulas, Γ, ∆, Π, and Σ any finite multisets of formulas, S any
sequent, G and H any hypersequents, x any individual variable, t any
closed term, a any parameter, and r and s any rational numbers such
that 0 ¬ r ¬ 1 and 0 ¬ s ¬ 1; all these letters may have subscripts and
superscripts. Also pi (i = 0, 1) denotes any semipropositional variable of
type i.

The language of the calculus G0RP∀ consists of all possible hyperse-
quents. A hypersequent H is called an axiom of G0RP∀ if � Hat.

Remark 2.1. To determine whether or not a hypersequent is an axiom of
G0RP∀, from the atomic sequents of the hypersequent one can construct
a system of strict and nonstrict linear inequalities over real numbers with
rational coefficients and check whether or not the system is inconsistent.
The construction and the check can be performed by a polynomial time
algorithm much as described in [16, Section 4.2] and, in more detail, in
[15, Section 5].

The inference rules of G0RP∀ are:

G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
(→ ⇒)0,

G | Γ ⇒ A → B, ∆ | Γ ⇒ ∆; G | Γ ⇒ A → B, ∆ | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆
(⇒ →)

0
,

G | Γ, ∀xA ⇒ ∆ | Γ, (A)x
t ⇒ ∆

G | Γ, ∀xA ⇒ ∆
(∀ ⇒)

0
,

G | Γ ⇒ ∀xA, ∆ | Γ ⇒ (A)x
a, ∆

G | Γ ⇒ ∀xA, ∆
(⇒ ∀)

0
,

G | Γ ⇒ ∃xA, ∆ | Γ ⇒ (A)x
t , ∆

G | Γ ⇒ ∃xA, ∆
(⇒ ∃)

0
,

G | Γ, ∃xA ⇒ ∆ | Γ, (A)x
a ⇒ ∆

G | Γ, ∃xA ⇒ ∆
(∃ ⇒)0,

where a does not occur in the conclusion of (⇒ ∀)
0

or (∃ ⇒)
0
.

Remark 2.2. The soundness of the calculus G0RP∀ can be easily proved
now; but it will also follow from the facts that every G0RP∀-provable
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hypersequent is G3RP∀-provable (see Theorems 4.5 and 4.6 below), and
that the calculus G3RP∀ is sound (see [17, Theorem 1]).

For convenience in comparing calculi, we also introduce a calculus

G1̂RP∀ that is very close to the calculus G1RP∀, defined in [16] and

in the next paragraph. We get G1̂RP∀ from G0RP∀ by replacing the
inference rule (→ ⇒)

0
with

G | Γ, A → B ⇒ ∆ | Γ, p1 ⇒ ∆ | B ⇒ p1, A

G | Γ, A → B ⇒ ∆
(→ ⇒)

1̂
,

where p1 does not occur in the conclusion.

The calculus G1RP∀ [16] is obtained from G1̂RP∀ by restricting the

language of G1̂RP∀ to hypersequents not containing semipropositional
variables of type 0; such hypersequents are called RPL∀1-hypersequents.

The rule of GiRP∀ (i = 1, 1̂) that corresponds to a rule of G0RP∀ is
denoted just as the latter but with the superscript i instead of 0.

Remark 2.3. It is clear that, for an RPL∀1-hypersequent H, a G1̂RP∀-
proof of H is a G1RP∀-proof of H, and conversely.

The calculus G3RP∀ [17] is obtained from G0RP∀ by replacing all
the inference rules with the following ones:

G | Γ, p1 ⇒ ∆ | B ⇒ p1, A

G | Γ, A → B ⇒ ∆
(→ ⇒)

3
,

G | Γ ⇒ ∆; G | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆
(⇒ →)

3
,

G | Γ, p1 ⇒ ∆ | ∀xA ⇒ p1 | (A)x
t ⇒ p1

G | Γ, ∀xA ⇒ ∆
(∀ ⇒)

3
,

G | Γ ⇒ (A)x
a, ∆

G | Γ ⇒ ∀xA, ∆
(⇒ ∀)

3
,

G | Γ ⇒ p0, ∆ | p0 ⇒ ∃xA | p0 ⇒ (A)x
t

G | Γ ⇒ ∃xA, ∆
(⇒ ∃)

3
,

G | Γ, (A)x
a ⇒ ∆

G | Γ, ∃xA ⇒ ∆
(∃ ⇒)

3
,

where p1 does not occur in the conclusion of (→ ⇒)
3

or (∀ ⇒)
3
, p0

does not occur in the conclusion of (⇒ ∃)
3
, and a does not occur in the

conclusion of (⇒ ∀)3 or (∃ ⇒)3.

For an application of an inference rule of GiRP∀ (i = 0, 1, 1̂, 3), the
principal formula occurrence and the principal sequent occurrence are
defined in essentially the same manner as in [20, § 49] and [27, items
3.1.1 and 3.5.1]. The notion of an ancestor of a sequent occurrence in a
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GiRP∀-proof (i = 0, 1, 1̂, 3) is defined much as the notion of an ancestor
of a formula occurrence is defined in [20, § 49]; see also [17, Section 3].

Now we formulate the calculus GŁ∀ [2, 23], using parameters in-
stead of free individual variables, which are syntactically distinct from
bound individual variables in [2, 23]. The language of GŁ∀ consists of
all possible Ł∀-hypersequents, i.e., hypersequents that contain neither
semipropositional variables nor truth constants r̄ with r > 0.

The axiom schemes of GŁ∀ are:

A ⇒ A (id)Ł, ⇒ (Λ)Ł, 0̄ ⇒ A (0̄ ⇒)
Ł
,

where A is an Ł∀-formula.
The inference rules of GŁ∀ are:

G

G | S
(ew)

Ł
,

G | S | S

G | S
(ec)

Ł
,

G | Γ ⇒ ∆

G | Γ, C ⇒ ∆
(wl)

Ł
,

G | Γ1, Γ2 ⇒ ∆1, ∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(split)Ł,

G | Γ1 ⇒ ∆1; G | Γ2 ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1, ∆2
(mix)Ł,

G | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
(→ ⇒)

Ł
,

G | Γ ⇒ ∆; G | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆
(⇒ →)

Ł
,

G | Γ, (A)x
t ⇒ ∆

G | Γ, ∀xA ⇒ ∆
(∀ ⇒)

Ł
,

G | Γ ⇒ (A)x
a, ∆

G | Γ ⇒ ∀xA, ∆
(⇒ ∀)

Ł
,

G | Γ ⇒ (A)x
t , ∆

G | Γ ⇒ ∃xA, ∆
(⇒ ∃)

Ł
,

G | Γ, (A)x
a ⇒ ∆

G | Γ, ∃xA ⇒ ∆
(∃ ⇒)

Ł
,

where all the premises and conclusions are Ł∀-hypersequents, and a does
not occur in the conclusion of (⇒ ∀)

Ł
or (∃ ⇒)

Ł
. The first five of these

rules are called structural; the others, logical.
For each calculus formulated above, its every one-premise rule in

whose premise a, t, or pi (i = 0, 1) is distinguished (i.e., shown explic-
itly in the premise scheme, such as a in G | Γ ⇒ (A)x

a, ∆), and for any
application of the rule, the a, t, or pi is called, respectively, the proper

parameter, proper term, or proper semipropositional variable of the ap-
plication.

The provability (resp. unprovability) of an object α in a calculus C

is written ⊢C α (resp. 0C α). By a proof in a calculus, we mean a proof
tree. In depicting a proof tree D, if we place a designation over a node
N of D and do not separate the designation from N by a horizontal line,
then we regard this designation as the one for the proof tree whose root
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is N and that is a subtree of D. A proof search tree is defined as a proof
tree, but its leaves are not required to be axioms of the calculus under
consideration.

A proof of (for) an RPL∀-formula A in a hypersequent calculus given
in this article is a proof of the hypersequent ⇒ A in this calculus.

3. The nearly syntactic hypersequent calculus GRP∀ for RPL∀

In this section we extend the calculus GŁ∀ to obtain the analytic hy-
persequent calculus GRP∀ for RPL∀ with rather simple axioms defined
in nearly syntactic terms. Because of the simplicity of its axioms, the
calculus GRP∀ will be very helpful in comparing our calculus G3RP∀
with Hájek’s Hilbert-type one for RPL∀.

The language of GRP∀ consists of all hypersequents not containing
semipropositional variables; such hypersequents are called RPL∀-hyper-

sequents.
The axiom schemes of GRP∀ are:

A ⇒ A (id)
P

and r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An (le)
P

,

where

l∑

i=1

(ri −1) ¬
m∑

j=1

(sj −1)−n, or equivalently m+n+
l∑

i=1

ri ¬ l +
m∑

j=1

sj.

(Recall that l, m, n are any nonnegative integers, by our convention in
Section 2.)

Remark 3.1. It is readily seen that any axiom of GŁ∀ is an axiom of
GRP∀.

The inference rules of GRP∀ are those of GŁ∀ but with RPL∀-hyper-
sequents in place of Ł∀-hypersequents. We denote the rules of GRP∀ as
the ones of GŁ∀ but with the superscript P: (ew)

P
, (ec)

P
, etc.

Proposition 3.1. GRP∀ is a conservative extension of GŁ∀; i.e., for

any Ł∀-hypersequent H, ⊢GRP∀ H iff ⊢GŁ∀ H.

Proof. Let H be an Ł∀-hypersequent.
In view of Remark 3.1, ⊢GŁ∀ H implies ⊢GRP∀ H.
Conversely, suppose that ⊢GRP∀ H. To obtain ⊢GŁ∀ H, it suffices

to show that any Ł∀-hypersequent G that is an instance of the axiom
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scheme (le)
P

of GRP∀ is GŁ∀-provable. Such an Ł∀-hypersequent G is
of the form

r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An,

where ri = 0 for all i, sj = 0 for all j, Ak is an Ł∀-formula for all k, and
m + n ¬ l. We can construct a GŁ∀-proof of G by applying (zero or more

times) the rules (mix)
Ł

and (wl)
Ł

backwards and getting GŁ∀-axioms
0̄ ⇒ 0̄, 0̄ ⇒ Ak, or ⇒. ⊣

Proposition 3.2 (soundness of GRP∀). Let H be an RPL∀-hypersequ-

ent. If ⊢GRP∀ H, then � H.

Proof. All the axioms of GRP∀ are clearly valid. The soundness of the
inference rules of GŁ∀ is verified in [2, 23]; and this verification carries
over to GRP∀. ⊣

Proposition 3.3 (completeness of GRP∀ for quantifier-free RPL∀-hy-
persequents). Let H be a quantifier-free RPL∀-hypersequent. If � H,

then ⊢GRP∀ H.

Our proof of Proposition 3.3 extends the proof of the analogous claim
for Ł∀ and GŁ∀, namely the proof of Theorem 6.24 in [23], and employs
the following Lemmas 3.4 and 3.5.

Lemma 3.4 (Lemmas 6.22 and 6.23 in [23]).
(a) Consider the rules

G | Γ ⇒ ∆ | Γ, B ⇒ A, ∆

G | Γ, A → B ⇒ ∆
and

G | Γ ⇒ ∆; G | Γ, A ⇒ B, ∆

G | Γ ⇒ A → B, ∆

whose premises and conclusions are quantifier-free Ł∀-hypersequents.

Each of these rules is derivable in GŁ∀ and is such that, for its every

application, the conclusion is valid iff so are all the premises.

(b) Every quantifier-free Ł∀-hypersequent can be obtained by these two

rules from finitely many atomic Ł∀-hypersequents.

By ℓ(G) we denote the number of distinct nonconstant atomic RPL∀-
formulas occurring in the antecedents of the sequents in an atomic RPL∀-
hypersequent G.

The next lemma is in fact established in the proof of Theorem 6.24
in [23].
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Lemma 3.5. Let G be a valid atomic Ł∀-hypersequent with ℓ(G) > 0.

Then G is GŁ∀-provable from a valid atomic Ł∀-hypersequent H with

ℓ(H) < ℓ(G).

Remark 3.2. Lemmas 3.4 and 3.5 readily carry over to RPL∀ and GRP∀
(instead of Ł∀ and GŁ∀, respectively).

Proof of Proposition 3.3. By Lemma 3.4 together with Remark 3.2,
it is sufficient to show that ⊢GRP∀ G, where G is a valid atomic RPL∀-
hypersequent. We proceed by induction on ℓ(G).

1. Suppose that ℓ(G) = 0. Then each sequent in G is of the form

r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An,

where A1, . . . , An are nonconstant atomic RPL∀-formulas. In G there
exists a sequent S for which

l∑

i=1

(ri − 1) ¬
m∑

j=1

(sj − 1) − n;

as otherwise, in G there is no true sequent under some hs-interpretation
M and some M -valuation ν such that |Ak|M,ν = 0 for all k. Thus, S is

an instance of the axiom scheme (le)
P

of GRP∀; and G can be obtained

from S by (zero or more) applications of the rule (ew)
P

.

2. In the case when ℓ(G) > 0, we apply Lemma 3.5 together with
Remark 3.2 and then use the induction hypothesis. ⊣

In the sequel we need the following lemma, which is a direct conse-
quence of Proposition 3.3.

Lemma 3.6. Suppose that G is an RPL∀-hypersequent (over the signa-

ture we work with); A1, . . . , An are RPL∀-formulas (over the same sig-

nature); p1, . . . , pn are distinct propositional variables; H is a valid quan-

tifier-free RPL∀-hypersequent over a signature containing p1, . . . , pn; G
comes from H by simultaneously replacing all occurrences of p1, . . . , pn

with A1, . . . , An, respectively. Then ⊢GRP∀ G.

Proof. By Proposition 3.3, there is a GRP∀-proof D of H. Simul-
taneously replacing all occurrences of p1, . . . , pn in D with A1, . . . , An,
respectively, yields the desired GRP∀-proof of G. ⊣
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4. Initial relationships between hypersequent calculi for RPL∀

In this section we show that the calculus G0RP∀ is a conservative exten-
sion of the calculus GRP∀; and that, for any hypersequent H, we have:
⊢G0RP∀ H implies ⊢G1̂RP∀

H, which in turn implies ⊢G3RP∀ H.

Lemma 4.1. Let H be an RPL∀-hypersequent. Then ⊢G0RP∀ H implies

⊢GRP∀ H. Moreover, all the rules of G0RP∀ are derivable in GRP∀ if

their premises and conclusions are restricted to RPL∀-hypersequents.

Proof. If H is an axiom of G0RP∀, then � Hat; so by Proposition 3.3,
we get ⊢GRP∀ Hat, whence ⊢GRP∀ H by the rule (ew)

P
.

To finish the proof, it is sufficient to show that all the rules of G0RP∀
are derivable in GRP∀ if their premises and conclusions are restricted to
RPL∀-hypersequents. For the rule (→ ⇒)

0
, we have:

G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, B ⇒ A, ∆
(→ ⇒)P

G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, A → B ⇒ ∆
(wl)

P

G | Γ, A → B ⇒ ∆ | Γ, A → B ⇒ ∆ | Γ, A → B ⇒ ∆
(ec)

P
×2.

G | Γ, A → B ⇒ ∆

For the rule (∀ ⇒)0, we have:

G | Γ, ∀xA ⇒ ∆ | Γ, (A)x
t ⇒ ∆

(∀ ⇒)
P

G | Γ, ∀xA ⇒ ∆ | Γ, ∀xA ⇒ ∆
(ec)

P
.

G | Γ, ∀xA ⇒ ∆

The other rules of G0RP∀ are treated similarly to (∀ ⇒)0. ⊣

To show that ⊢GRP∀ H implies ⊢G0RP∀ H, and for later use, we in-
troduce the following rules. For each rule RŁ of GŁ∀, let R∗ be the rule
like R but with (RPL∀1

0-)hypersequents in place of Ł∀-hypersequents;
thus we have the rules (ew)∗, (ec)∗, etc.

Lemma 4.2. The rules (ew)∗
, (ec)∗

, (wl)∗
, (split)∗

, (mix)∗
, (→ ⇒)∗

,

(⇒ →)
∗
, (∀ ⇒)

∗
, (⇒ ∀)

∗
, (⇒ ∃)

∗
, and (∃ ⇒)

∗
are admissible for G0RP∀.

Moreover, the rules (ew)
∗
, (ec)

∗
, and (split)

∗
are height-preserving ad-

missible, or briefly hp-admissible, for G0RP∀.

Proof. 1. It is clear that (ew)
∗

is hp-admissible for G0RP∀.
2. Since all the rules of G0RP∀ are cumulative, it follows easily

that (ec)∗ is hp-admissible for G0RP∀ (cf., e.g, [27, item 3.5.11] and [16,
Lemma 5]).
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3. To prove that
G | Γ ⇒ ∆

G | Γ, C ⇒ ∆
(wl)

∗

is admissible for G0RP∀, we use induction on the number of logical
symbol occurrences in the RPL∀-formula C. Let

H1 = (G | Γ ⇒ ∆) and H2 = (G | Γ, C ⇒ ∆).

We can assume that there is a (G0RP∀-)proof D1 for H1 such that no
proper parameter from D1 occurs in C.

3.1. Suppose that C is atomic or is of the form (A → B). From D1 we
construct a proof search tree D0

2 for H2 as follows. For each occurrence S
of a sequent of the form Π ⇒ Σ, if S is an ancestor of the distinguished
occurrence of the sequent Γ ⇒ ∆ in the root of D1, then we replace S
by an occurrence S ′ of the sequent Π, C ⇒ Σ. We also mark S ′ if S is
an atomic sequent occurrence in a leaf of D1.

If C is atomic, then D0
2 is a proof for H2. Indeed, when the atomic

RPL∀-formula C is added to the antecedents of some sequents in a hyper-
sequent that is an axiom (of G0RP∀), the hypersequent remains an ax-
iom, since for every atomic sequent Π ⇒ Σ, hs-interpretation M , and M -
valuation ν, the sequent Π, C ⇒ Σ is atomic too, and ‖Π‖M,ν ¬ ‖Σ‖M,ν

implies ‖Π, C‖M,ν ¬ ‖Σ‖M,ν .
Now suppose that C is of the form (A → B), and S0, . . . , Sl−1 are all

distinct marked sequent occurrences in D0
2.

We expand D0
2 by performing the following for each i = 0, . . . , l − 1:

on the only branch Bi of Di
2 containing Si, apply the rule (→ ⇒)0 back-

wards to the ancestor of Si in the leaf on Bi, and denote by Di+1
2 the

tree obtained as a result of this backward application.
Note that, if Si is an occurrence of a sequent of the form Πi, C ⇒ Σi,

then the atomic sequent Πi ⇒ Σi is on the continuation of the branch
Bi in Di+1

2 . Therefore, it is easy to see that Dl
2 is a proof for H2.

3.2. Suppose that C is of the form QxA, where Q is a quantifier. By
the induction hypothesis, there is a proof for H = (H2 | Γ, (A)x

a ⇒ ∆),
where a is a parameter not occurring in H2. By applying the rule (Q ⇒)

0

to the distinguished occurrence of (A)x
a in H, we get a proof for H2.

4. Given the hp-admissibility of (ec)∗ for G0RP∀ (see item 2), the
proof of the hp-admissibility of (split)

∗
for G0RP∀ is very similar to the

proof of Lemma 7 in [16], where the admissibility (in fact, hp-admissibi-
lity) of the same rule for G1RP∀ is demonstrated.
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5. The proof of the admissibility of (mix)
∗

for G0RP∀ can be obtained
from the proof of Lemma 8 in [16] (where the admissibility of the same
rule for G1RP∀ is shown) by identifying the notion of a completable
ancestor of a sequent occurrence with the notion of an ancestor of a
sequent occurrence (the former notion is used in [16]).

6. Since the rule (ew)∗ is admissible for G0RP∀, it follows easily
that the rules (→ ⇒)

∗
, (⇒ →)

∗
, (∀ ⇒)

∗
, (⇒ ∀)

∗
, (⇒ ∃)

∗
, and (∃ ⇒)

∗

are admissible for G0RP∀. ⊣

Lemma 4.3. Every axiom of GRP∀ is G0RP∀-provable.

Proof. Case (id)
P

. We show that a GRP∀-axiom A ⇒A is G0RP∀-
provable by induction on the number of logical symbol occurrences in A.

If A is atomic, then A ⇒A is an axiom of G0RP∀.

Otherwise, we obtain A ⇒A as follows, according as A has the form
B → C, or ∀xB, or ∃xB:

⇒(wl)∗

B → C ⇒;

B ⇒ B; C ⇒ C
(mix)

∗

B, C ⇒ B, C
(→ ⇒)∗

B → C, B ⇒ C
(⇒ →)

∗
,

B → C ⇒ B → C

(B)x
a ⇒ (B)x

a (∀ ⇒)
∗

∀xB ⇒ (B)x
a (⇒ ∀)∗,

∀xB ⇒ ∀xB

and similarly for ∃xB ⇒ ∃xB, with a not occurring in B. The rules used
here are admissible for G0RP∀ by Lemma 4.2; the hypersequent ⇒ is
an axiom of G0RP∀. By the induction hypothesis applied to B ⇒ B,
C ⇒ C, and (B)x

a ⇒ (B)x
a, we are done with case (id)

P
.

Case (le)
P

. Now consider a GRP∀-axiom S of the form

r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An, where
l∑

i=1

(ri − 1) ¬
m∑

j=1

(sj − 1) − n.

To show that S is G0RP∀-provable, we employ induction on the number
of logical symbol occurrences in S.

If S is atomic, then S is an axiom of G0RP∀.

Otherwise, let us assume for definiteness that An contains a logi-
cal symbol, and write S as Γ ⇒ ∆, An. Then we obtain S as follows,
according as An has the form B → C or QxB, where Q is a quantifier:

Γ ⇒ ∆;

Γ ⇒ ∆, C
(wl)

∗

Γ, B ⇒ ∆, C
(⇒ →)∗,

Γ ⇒ ∆, B → C

Γ ⇒ ∆, (B)x
a (⇒ Q)

∗
,

Γ ⇒ ∆, QxB
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with a not occurring in S. The three upper sequents are instances of the
axiom scheme (le)P of GRP∀, because the sequent Γ ⇒ ∆ has the form
(which is to be compared with the above form of S)

r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An−1, where

l∑

i=1

(ri − 1) ¬
m∑

j=1

(sj − 1) − n ¬
m∑

j=1

(sj − 1) − (n − 1),

and the other two sequents have the same form as the above form of S.
Finally, we apply the induction hypothesis to each of the three sequents.

⊣

Theorem 4.4. G0RP∀ is a conservative extension of GRP∀; i.e., for any

RPL∀-hypersequent H, ⊢G0RP∀ H iff ⊢GRP∀ H.

Proof. Lemma 4.1 gives us the left-to-right direction. For the right-
to-left direction, observe that, by Lemma 4.2, all the rules of GRP∀ are
admissible for G0RP∀; and by Lemma 4.3, all the axioms of GRP∀ are
G0RP∀-provable. ⊣

Theorem 4.5. If ⊢G0RP∀ H, then ⊢G1̂RP∀
H.

Proof. Every axiom of G0RP∀ is an axiom of G1̂RP∀. Every rule of

G0RP∀, except for the rule (→ ⇒)
0
, is a rule of G1̂RP∀. Hence, it suffices

to prove that (→ ⇒)
0

is admissible for G1̂RP∀.
To do this, we use the rules

G | Γ ⇒ ∆

G | Γ, p1 ⇒ p1, ∆
(sp1⇒sp1)∗ and

G | Γ ⇒ ∆

G | Γ, p1 ⇒ ∆
(wl)∗

sp
1

,

whose hp-admissibility for G1̂RP∀ is obvious. We also use the rules
(ec)∗ and (split)∗, noticing that the proofs of their hp-admissibility for

G1̂RP∀ are entirely analogous to the proofs of Lemmas 5 and 7 in [16],
respectively, where these rules are shown to be hp-admissible for G1RP∀.

The conclusion of the rule (→ ⇒)0 can be obtained from its premise

by rules that are admissible for G1̂RP∀ as displayed in Figure 1, where
p1 does not occur in G | Γ, A → B ⇒ ∆. Thus, (→ ⇒)

0
is admissible for

G1̂RP∀. ⊣

Theorem 4.6. If ⊢G1̂RP∀
H, then ⊢G3RP∀ H.
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G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, B ⇒ A, ∆
(sp1⇒sp1)∗

G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, B, p1 ⇒ p1, A, ∆
(split)

∗

G | Γ, A → B ⇒ ∆ | Γ ⇒ ∆ | Γ, p1 ⇒ ∆ | B ⇒ p1, A
(wl)∗

sp
1G | Γ, A → B ⇒ ∆ | Γ, p1 ⇒ ∆ | Γ, p1 ⇒ ∆ | B ⇒ p1, A

(ec)
∗

G | Γ, A → B ⇒ ∆ | Γ, p1 ⇒ ∆ | B ⇒ p1, A
(→ ⇒)

1̂
,

G | Γ, A → B ⇒ ∆

Figure 1. Obtaining the conclusion of the rule (→ ⇒)
0

from its premise

by rules that are admissible for G1̂RP∀.

Proof. This proof comes from the proofs of Lemma 6 and Theorem 2
in [17] (where it is shown that ⊢G1RP∀ H implies ⊢G3RP∀ H) by substi-
tuting the superscript 1̂ for the superscript 1 (in “G1RP∀” and in the
designations of the rules of G1RP∀). ⊣

5. The admissibility for G0RP∀ of variants of the density rule
and further relationships between hypersequent calculi for RPL∀

The primary goal of this section is to show that the calculi G0RP∀ and
G3RP∀ are equivalent, i.e., they prove exactly the same hypersequents.
In view of Theorems 4.5 and 4.6, it is enough to demonstrate that all
G3RP∀-provable hypersequents are G0RP∀-provable. For this, we estab-
lish that all the rules of G3RP∀ are admissible for G0RP∀.

As we show in the proof of the following Lemma 5.1 (cf. also [17,
Section 3]), the rules (→ ⇒)3, (∀ ⇒)3, and (⇒ ∃)3 of G3RP∀ are based
on the rules

G | Γ, p1 ⇒ ∆ | C ⇒ p1

G | Γ, C ⇒ ∆
(den1) and

G | Γ ⇒ p0, ∆ | p0 ⇒ C

G | Γ ⇒ C, ∆
(den0),

where pi does not occur in the conclusion of (deni), i = 0, 1. The last
two rules can be characterized as nonstandard variants of the density
rule, cf. [23, Section 4.5].

Remark 5.1. The (standard) density rule in the hypersequent formula-
tion is:

G | Γ, p ⇒ ∆ | Π ⇒ p, Σ

G | Γ, Π ⇒ ∆, Σ
(den),

where p is a propositional variable not occurring in the conclusion; see
[23, Section 4.5]. Given our definition of the validity of a hypersequent,
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it is not hard to check that (den) is unsound, but becomes sound if we
expand the notion of a hypersequent by adding new-type semiproposi-
tional variables interpreted by any real numbers, and require p to be
such a variable not occurring in the conclusion. We will refer to this
modified rule (den) as the nonstandard density rule.

Lemma 5.1. If the rules (den1) and (den0) are admissible for G0RP∀,

then ⊢G3RP∀ H implies ⊢G0RP∀ H.

Proof. Any axiom of G3RP∀ is an axiom of G0RP∀. Assuming that
(den1) and (den0) are admissible for G0RP∀, we then show that all the
rules of G3RP∀ are admissible for G0RP∀. The conclusion of the rule
(→ ⇒)

3
is obtained from its premise as follows:

G | Γ, p1 ⇒ ∆ | B ⇒ p1, A
(ew)∗×2

G | Γ, p1 ⇒ ∆ | B ⇒ p1, A | ⇒ p1 | A → B ⇒ p1
(→ ⇒)0

G | Γ, p1 ⇒ ∆ | A → B ⇒ p1
(den1),

G | Γ, A → B ⇒ ∆

(ew)
∗

being admissible for G0RP∀ by Lemma 4.2. The conclusion of the
rule (⇒ ∃)3 is obtained from its premise thus:

G | Γ ⇒ p0, ∆ | p0 ⇒ ∃xA | p0 ⇒ (A)x
t

(⇒ ∃)
0

G | Γ ⇒ p0, ∆ | p0 ⇒ ∃xA
(den0).

G | Γ ⇒ ∃xA, ∆

The rule (∀ ⇒)
3

is treated similarly to (⇒ ∃)
3
, but with an application

of (den1). Finally, the admissibility for G0RP∀ of the rules (⇒ →)3,
(⇒ ∀)

3
, and (∃ ⇒)

3
follows easily from the admissibility of (ew)

∗
for

G0RP∀. ⊣

Lemmas 5.3 and 5.8 below ensure that the rules (den1) and (den0)
are admissible for G0RP∀. The idea of how we proceed is as follows.

Suppose that we have a G0RP∀-proof D supplemented with an ap-
plication of (den1) to the bottom hypersequent of D, e.g., as displayed
in Figure 2; and we want to show that the conclusion of this application
is G0RP∀-provable. We try to lift the application of (den1) up in D,
preserving at the bottom the original conclusion of this application. But



286 Alexander S. Gerasimov

D1

G | Γ, A → B, p1 ⇒ ∆ | Γ, p1 ⇒ ∆ | Γ, B, p1 ⇒ A, ∆
| ∀xC ′ ⇒ p1 | (C ′)x

t ⇒ p1
(∀ ⇒)

0

G | Γ, A → B, p1 ⇒ ∆ | Γ, p1 ⇒ ∆ | Γ, B, p1 ⇒ A, ∆ |

C︷ ︸︸ ︷
∀xC ′ ⇒ p1

(→ ⇒)
0

G | Γ, A → B, p1 ⇒ ∆ | C ⇒ p1
(den1) or (gden1)

G | Γ, A → B, C ⇒ ∆

Figure 2. An example G0RP∀-proof D supplemented with
an application of the rule (den1).

D1

G | Γ, A → B, p1 ⇒ ∆ | Γ, p1 ⇒ ∆ | Γ, B, p1 ⇒ A, ∆
| ∀xC ′ ⇒ p1 | (C ′)x

t ⇒ p1
(∀ ⇒)

0

G | Γ, A → B, p1 ⇒ ∆ | Γ, p1 ⇒ ∆ | Γ, B, p1 ⇒ A, ∆ |

C︷ ︸︸ ︷
∀xC ′ ⇒ p1

(gden1)
G | Γ, A → B, C ⇒ ∆ | Γ, C ⇒ ∆ | Γ, B, C ⇒ A, ∆

(→ ⇒)
0

G | Γ, A → B, C ⇒ ∆

Figure 3. Lifting the application of (gden1) in the example G0RP∀-proof D.

we see that we actually need to lift up applications of a more general
version of (den1), such as

G
∣∣ [Γi, p1 ⇒ ∆i

]
i∈1..m

∣∣ [Πj ⇒ p1, Σj

]
j∈1..n

G
∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..m

j∈1..n

(gden1),

where m  1, n  1, the premise contains a sequent of the form C ⇒ p1,
and p1 does not occur in the conclusion.

The condition that the premise of the generalized version (gden1) of
(den1) contains C ⇒ p1 is in accordance with that the premise of (den1)
contains C ⇒ p1 and that G0RP∀ is cumulative (so each hypersequent
of a G0RP∀-proof for a hypersequent containing the sequent C ⇒ p1

contains this sequent too). We make use of the condition in treating the
base case where the premise of (gden1) is a G0RP∀-axiom in order to
show that the conclusion is G0RP∀-provable.

Now suppose that the application of (gden1) in Figure 2 is lifted one
level up in D so that all arising applications of (gden1) are recursively
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lifted up to the axioms of D; and thus the conclusion of the application
of (gden1) in Figure 3 is shown to be G0RP∀-provable. Then from this
conclusion of (gden1), we obtain the desired hypersequent by the rule
(→ ⇒)0 (in more complicated cases, by some rules that are admissible
for G0RP∀).

In proving Lemma 5.3 (on the admissibility of (gden1) for G0RP∀),
we are going to preprocess a G0RP∀-proof of a hypersequent containing
a sequent of the form C ⇒ p1, using the following lemma.

Lemma 5.2. Suppose that H = (G | C ⇒ p1) is an axiom of G0RP∀.

Then a G0RP∀-proof of H can be constructed in which each leaf hyper-

sequent L contains a sequent of the form CL ⇒ p1 or ⇒ p1, where CL

is an atomic RPL∀-formula.

Proof. The RPL∀-formula C has the form

Q1x1 . . . QnxnC′ or Q1x1 . . . Qnxn(A → B),

where Q1, . . . , Qn are quantifiers and C′ is an atomic RPL∀-formula.
The desired G0RP∀-proof can be obtained from H by n backward appli-
cations of the rules (Q1 ⇒)

0
, . . . , (Qn ⇒)

0
, respectively, with any n new

parameters as the proper terms or the proper parameters of these rule
applications; and by one more backward application of the rule (→ ⇒)

0

if C = Q1x1 . . . Qnxn(A → B). ⊣

Lemma 5.3 (admissibility of the generalization (gden1) of (den1) for
G0RP∀). Suppose that m  1, n  1,

H =
(

G
∣∣ [Γi, p1 ⇒ ∆i

]
i∈1..m

∣∣ [Πj ⇒ p1, Σj

]
j∈1..n

)
,

H′ =
(

G
∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..m

j∈1..n

)
,

p1 does not occur in H′, H contains a sequent of the form C ⇒ p1, and

⊢G0RP∀ H. Then ⊢G0RP∀ H′.

Proof. By Lemma 5.2, there exists a (G0RP∀-)proof D of H in which
each leaf hypersequent L contains a sequent of the form CL ⇒ p1 or
⇒ p1, where CL is an atomic RPL∀-formula. We transform D into a
proof of H′ using induction on the height of D.

1. Suppose that H is an axiom (of G0RP∀); i.e., � Hat. Without loss
of generality we assume that

Hat =
(

Gat

∣∣ [Γi, p1 ⇒ ∆i

]
i∈1..k

∣∣ [Πj ⇒ p1, Σj

]
j∈1..l

)
,
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where 0 ¬ k ¬ m, 0 < l ¬ n, and the sequent Π1 ⇒ p1, Σ1 has the form
C1 ⇒ p1 or ⇒ p1. Let H′

at = (H′)at.
1.1. Consider the case where k 6= 0. We have

H′
at =

(
Gat

∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..k

j∈1..l

)

and want to show that � H′
at.

Suppose otherwise; i.e., for some hs-interpretation M and some M -
valuation ν, there is no true sequent in Gat, and for all i ∈ 1..k and all
j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ‖Πj‖M,ν − ‖Σj‖M,ν .

By the density of the set R of all real numbers, there exists ξ ∈ R such
that, for all i ∈ 1..k and all j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ξ − 1 < ‖Πj‖M,ν − ‖Σj‖M,ν .

In particular, ξ < ‖Π1‖M,ν − ‖Σ1‖M,ν + 1 = ‖Π1‖M,ν + 1 ¬ 1.
Define an hs-interpretation M1 to be like M but set |p1|M1

= ξ. Since
p1 does not occur in Gat, Γi, ∆i (i ∈ 1..k), Πj , Σj (j ∈ 1..l), we see that no
sequent in Hat is true under the hs-interpretation M1 and M1-valuation
ν. Hence 2 Hat, a contradiction.

Therefore � H′
at, and so H′ is an axiom.

1.2. Now consider the case where k = 0. Then

Hat =
(
Gat

∣∣ [Πj ⇒ p1, Σj

]
j∈1..l

)

and H′
at = Gat. Since p1 does not occur in Gat, Πj , Σj (j ∈ 1..l), and

hs-interpretations can take p1 to negative real numbers whose absolute
values are arbitrarily large, we conclude that � Hat implies � Gat. Thus
� H′

at, and H′ is an axiom.
2. Suppose that the root hypersequent H in D is the conclusion of

an application R of a rule R, and S is the principal sequent occurrence
in R.

2.1. If S is in the distinguished occurrence of G in H, then we apply
the induction hypothesis to the proof of each premise of R, and next we
get a proof of H′ by R.

2.2. Now suppose that S is not in the distinguished occurrence of G
in H, and for definiteness assume that S is the distinguished occurrence
of Γ1, p1 ⇒ ∆1 in H.

2.2.1. If R is the rule (→ ⇒)0, then Γ1 = (Γ′
1, A → B) for some Γ′

1,
and the proof D has the form:
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D1

H | Γ′
1, p1 ⇒ ∆1 | Γ′

1, B, p1 ⇒ A, ∆1
(→ ⇒)0,

H

where H is

G
∣∣Γ′

1, A → B, p1 ⇒ ∆1

∣∣ [Γi, p1 ⇒ ∆i

]
i∈2..m

∣∣ [Πj ⇒ p1, Σj

]
j∈1..n

.

By the induction hypothesis, we transform D1 into a proof of

H′
∣∣ [Γ′

1, Πj ⇒ ∆1, Σj

]
j∈1..n

∣∣ [Γ′
1, B, Πj ⇒ A, ∆1, Σj

]
j∈1..n

,

whence we obtain a proof for H′ by n applications of (→ ⇒)
0
.

2.2.2. The rules (∀ ⇒)
0

and (⇒ ∃)
0

are treated similarly to the rule
(→ ⇒)0 in item 2.2.1.

2.2.3. If R is (⇒ →)
0
, then ∆1 = (A → B, ∆′

1) for some ∆′
1, and the

proof D looks like this:

D1

H | Γ1, p1 ⇒ ∆′
1;

D2

H | Γ1, A, p1 ⇒ B, ∆′
1

(⇒ →)
0
.

H

By the induction hypothesis applied to the proofs D1 and D2, we con-
struct proofs of

H′
∣∣ [Γ1, Πj ⇒ ∆′

1, Σj

]
j∈1..n

and H′
∣∣ [Γ1, A, Πj ⇒ B, ∆′

1, Σj

]
j∈1..n

,

respectively; whence we get a proof of H′ by Lemma 5.4 below.

2.2.4. If R is (⇒ ∀)
0
, then ∆1 = (∀xA, ∆′

1) for some ∆′
1, and the

proof D has the form:

D1

H | Γ1, p1 ⇒ (A)x
a, ∆′

1
(⇒ ∀)

0
,

H

where a does not occur in H (and hence, a does not occur in H′). Using
the induction hypothesis, we transform D1 into a proof of

H′
∣∣ [Γ1, Πj ⇒ (A)x

a, ∆′
1, Σj

]
j∈1..n

,

whence we obtain a proof of H′ by Lemma 5.6.
2.2.5. The rule (∃ ⇒)0 is treated similarly to the rule (⇒ ∀)0 in item

2.2.4, using Lemma 5.7. ⊣
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Lemma 5.4. Suppose that n  1,

H′
n =

(
G
∣∣ [Γi ⇒ ∆i

]
i∈1..n

)
, H′′

n =
(

G
∣∣ [Γi, A ⇒ B, ∆i

]
i∈1..n

)
,

⊢G0RP∀ H′
n, ⊢G0RP∀ H′′

n, and
[
Γi ⇒ A → B, ∆i

]
i∈1..n

⊆ G.

Then ⊢G0RP∀ G.

Proof. We proceed by induction on n. If n = 1, then G is the conclusion
of the rule (⇒ →)

0
applied to H′

1 and H′′
1 .

Now suppose that n  2. By Lemma 5.5 below, from ⊢G0RP∀ H′
n

and ⊢G0RP∀ H′′
n it follows that the hypersequent

Hn =
(

G
∣∣ [Γi ⇒ ∆i

]
i∈1..(n−1)

∣∣Γn, A ⇒ B, ∆n

)

is G0RP∀-provable. Applying the rule (⇒ →)
0

to H′
n and Hn gives

H′
n−1 =

(
G
∣∣ [Γi ⇒ ∆i

]
i∈1..(n−1)

)
.

Likewise we arrive at the G0RP∀-provable hypersequent

H′′
n−1 =

(
G
∣∣ [Γi, A ⇒ B, ∆i

]
i∈1..(n−1)

)
.

Finally, by applying the induction hypothesis to H′
n−1 and H′′

n−1, we get
⊢G0RP∀ G. ⊣

Lemma 5.5. Suppose that n  2,

H′ =
(

G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..n

)
, H′′ =

(
G
∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈1..n

)
,

⊢G0RP∀ H′, and ⊢G0RP∀ H′′. Then

⊢G0RP∀

(
G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..(n−1)

∣∣Γn, Π′′ ⇒ Σ′′, ∆n

)
.

Proof. For each k ∈ 1..n, we put

Hk =
(

G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..(n−1)

∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈k..n

)
.

We can get H1 from H′′ by the rule (ew)∗. For each k ∈ 1..(n − 1),
Figure 4 shows how to obtain Hk+1 from H′ and Hk using the rules
(ew)∗, (ec)∗, (split)∗, and (mix)∗. These four rules are admissible for
G0RP∀ by Lemma 4.2. So ⊢G0RP∀ Hn as required. ⊣
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H′(ew)
∗
×

(n − k) G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..n

∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈(k+1)..n

; Hk

(mix)
∗

G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..(n−1)

∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈(k+1)..n∣∣Γn, Π′, Γk, Π′′ ⇒ Σ′, ∆n, Σ′′, ∆k

(split)
∗

G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..(n−1)

∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈(k+1)..n∣∣Γk, Π′ ⇒ Σ′, ∆k

∣∣Γn, Π′′ ⇒ Σ′′, ∆n
(ec)

∗
×2

G
∣∣ [Γi, Π′ ⇒ Σ′, ∆i

]
i∈1..(n−1)

∣∣ [Γi, Π′′ ⇒ Σ′′, ∆i

]
i∈(k+1)..n

Figure 4. Obtaining the bottom hypersequent Hk+1 from H′ and Hk.

Lemma 5.6. Suppose that n  1,

⊢G0RP∀

(
G
∣∣ [Γi ⇒ (A)x

a, ∆i

]
i∈1..n

)
,

[
Γi ⇒ ∀xA, ∆i

]
i∈1..n

⊆ G, and the parameter a does not occur in G.

Then ⊢G0RP∀ G.

Proof. We can obtain G from G
∣∣ [Γi ⇒ (A)x

ai
, ∆i

]
i∈1..n

by n applica-

tions of the rule (⇒ ∀)
0
, provided that the parameters a1, . . . , an are

distinct and none of them occurs in G.

Therefore, it suffices to prove the following claim for every n  1:
suppose that

H(a) =
(

G0

∣∣ [Γi ⇒ (A)x
a, ∆i

]
i∈1..n

)
,

⊢G0RP∀ H(a), and the parameters a, a1, . . . , an are distinct and none of

them occurs in G0, A, Γi, ∆i (i ∈ 1..n); then

⊢G0RP∀

(
G0

∣∣ [Γi ⇒ (A)x
ai

, ∆i

]
i∈1..n

)
.

We use induction on n. In the case n = 1, the claim is obvious.

Suppose that n  2. Clearly, ⊢G0RP∀ H(a) implies ⊢G0RP∀ H(an).
By Lemma 5.5, from ⊢G0RP∀ H(a) and ⊢G0RP∀ H(an) it follows that

⊢G0RP∀

(
G0

∣∣ [Γi ⇒ (A)x
a, ∆i

]
i∈1..(n−1)

∣∣Γn ⇒ (A)x
an

, ∆n

)
,

whence by the induction hypothesis, we get what is required. ⊣
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Lemma 5.7. Suppose that n  1,

⊢G0RP∀

(
G
∣∣ [Γi, (A)x

a ⇒ ∆i

]
i∈1..n

)
,

[
Γi, ∃xA ⇒ ∆i

]
i∈1..n

⊆ G, and the parameter a does not occur in G.

Then ⊢G0RP∀ G.

Proof. This proof is similar to that of Lemma 5.6. ⊣

For a finite multiset ∆, by #(∆) we denote the number of its ele-
ments, taking their multiplicities into account.

Lemma 5.8 (admissibility of a generalization of (den0) for G0RP∀). Sup-

pose that m  1, n  1,

H =
(

G
∣∣ [Γi, p0 ⇒ ∆i

]
i∈1..m

∣∣ [Πj ⇒ p0, Σj

]
j∈1..n

)
,

H′ =
(

G
∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..m

j∈1..n

)
,

p0 does not occur in H′, H contains a sequent of the form p0 ⇒ C, and

⊢G0RP∀ H. Then ⊢G0RP∀ H′.

Proof. Using Lemma 5.9 below, we find a (G0RP∀-)proof D of H in
which each leaf hypersequent L contains an atomic sequent of the form
ΓL, p0 ⇒ ∆L, where #(∆L) ¬ 1 and no semipropositional variable oc-
curs in ΓL or ∆L. We show that ⊢G0RP∀ H′ by induction on the height
of D.

1. Suppose that H is an axiom (of G0RP∀); i.e., � Hat. We can
harmlessly assume that

Hat =
(

Gat

∣∣ [Γi, p0 ⇒ ∆i

]
i∈1..k

∣∣ [Πj ⇒ p0, Σj

]
j∈1..l

)
,

where 0 < k ¬ m, 0 ¬ l ¬ n and #(∆1) ¬ 1. Let H′
at = (H′)at.

1.1. Consider the case where l 6= 0. We have

H′
at =

(
Gat

∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..k

j∈1..l

)
.

Suppose for a contradiction that 2 H′
at; i.e., for some hs-interpreta-

tion M and some M -valuation ν, there is no true sequent in Gat, and for
all i ∈ 1..k and all j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ‖Πj‖M,ν − ‖Σj‖M,ν .
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Hence, for some real number ξ and for all i ∈ 1..k and all j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ξ − 1 < ‖Πj‖M,ν − ‖Σj‖M,ν .

In particular, ξ > ‖∆1‖M,ν − ‖Γ1‖M,ν + 1  ‖∆1‖M,ν + 1  0.
Define an hs-interpretation M0 to be the same as M except that

|p0|M0
= ξ. Since p0 does not occur in Gat, Γi, ∆i (i ∈ 1..k), Πj, Σj

(j ∈ 1..l), it follows that Hat has no true sequent under the hs-interpre-
tation M0 and M0-valuation ν. So 2 Hat, a contradiction.

Thus � H′
at, and H′ is an axiom.

1.2. Now consider the case where l = 0. Then

Hat =
(

Gat

∣∣ [Γi, p0 ⇒ ∆i

]
i∈1..k

)

and H′
at = Gat. Since p0 does not occur in Gat, Γi, ∆i (i ∈ 1..k), and p0

can assume arbitrarily large values under hs-interpretations, we see that
� Hat implies � Gat. So � H′

at, and H′ is an axiom.
2. It remains to consider the case where the root hypersequent H in

D is the conclusion of a rule application. But the argument for this case
can be obtained from item 2 of the proof of Lemma 5.3 by replacing p1

with p0. ⊣

Lemma 5.9. Suppose that H = (G | Γ, p0 ⇒ ∆) is an axiom of G0RP∀,

#(∆) ¬ 1, and no semipropositional variable occurs in Γ or ∆. Then a

G0RP∀-proof of H can be constructed in which each leaf hypersequent L
contains an atomic sequent of the form ΓL, p0 ⇒ ∆L, where #(∆L) ¬ 1
and no semipropositional variable occurs in ΓL or ∆L.

Proof. We proceed by induction on the number of logical symbol oc-
currences in the sequent S = (Γ, p0 ⇒ ∆). If S is atomic, then H is the
desired (G0RP∀-)proof. Otherwise, S has one of the forms given in items
1–4 below.

1. Suppose that S = (Γ′, A → B, p0 ⇒ ∆). By applying the rule
(→ ⇒)

0
backwards to the distinguished occurrence of A → B in H, we

get the (G0RP∀-)axiom H1 = (G | S | Γ′, p0 ⇒ ∆ | Γ′, B, p0 ⇒ A, ∆). By
the induction hypothesis applied to H1 with (Γ′, p0 ⇒ ∆) as S, we obtain
the desired proof of H.

2. Suppose that S = (Γ, p0 ⇒ A → B). Applying the rule (⇒ →)0

backwards to the distinguished occurrence of A → B in H yields the
axioms (G | S | Γ, p0 ⇒) and (G | S | Γ, A, p0 ⇒ B), to each of which the
induction hypothesis applies.
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3. Suppose that S = (Γ, p0 ⇒ QxA), where Q is a quantifier. We ap-
ply the rule (⇒ ∀)0 or (⇒ ∃)0 backwards to the distinguished occurrence
of QxA in H, with a new parameter a as the proper parameter or the
proper term, respectively. Thus we get the axiom

(
G | S | Γ, p0 ⇒ (A)x

a

)

and then use the induction hypothesis.
4. The case where S = (Γ′, QxA, p0 ⇒ ∆), with Q being a quantifier,

is treated similarly to case 3. ⊣

Remark 5.2. The proofs of Lemmas 5.3 and 5.8 can be easily combined
to establish the admissibility of the nonstandard density rule (given in
Remark 5.1 on p. 284) for G0RP∀ (with the notion of a hypersequent
expanded as mentioned in Remark 5.1).

Theorem 5.10 (equivalence of G0RP∀, G1̂RP∀, and G3RP∀). The fol-

lowing are equivalent: (a) ⊢G0RP∀ H; (b) ⊢G1̂RP∀
H; (c) ⊢G3RP∀ H.

Proof. (a) implies (b) by Theorem 4.5. If (b), then (c) by Theorem 4.6.
Finally, (c) implies (a) by Lemmas 5.1, 5.3, and 5.8. ⊣

Corollary 5.11. For each i = 0, 1̂, 3, the calculus GiRP∀ is a conserva-

tive extension of G1RP∀; i.e., for any RPL∀1-hypersequent H, ⊢GiRP∀ H
iff ⊢G1RP∀ H.

Proof. Immediate from Theorem 5.10 and Remark 2.3. ⊣

Corollary 5.12.

(a) For each i = 0, 1, 1̂, 3, the calculus GiRP∀ is a conservative extension

of the calculus GRP∀; i.e., for any RPL∀-hypersequent H, ⊢GiRP∀ H iff

⊢GRP∀ H.

(b) The calculus GRP∀ is a conservative extension of the calculus GŁ∀;

i.e., for any Ł∀-hypersequent H, ⊢GRP∀ H iff ⊢GŁ∀ H.

Proof. (a) follows from Corollary 5.11 and Theorem 4.4; (b) is just (a
reminder of) Proposition 3.1. ⊣

6. Comparing hypersequent calculi for RPL∀ with
Hájek’s calculus for RPL∀

In addition to Gentzen-type calculi for the logics RPL∀ and Ł∀, now we
consider the calculi HRP∀ and HŁ∀, which are some of Hájek’s variants
of Hilbert-type calculi for RPL∀ and Ł∀, respectively (cf. [18]). In this
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section we give previously known relationships between HRP∀, HŁ∀,
and GŁ∀; then we establish that G3RP∀ (as well as G0RP∀ and GRP∀)
extended with the cut rule proves exactly the same RPL∀-sentences as
HRP∀.

First let us formulate the calculi HRP∀ and HŁ∀.
The axiom schemes of HRP∀ are:

(Ł1) A → (B → A);
(Ł2) (A → B) → ((B → C) → (A → C));
(Ł3) (¬A → ¬B) → (B → A), where ¬C is short for (C → 0̄);
(Ł4) ((A → B) → B) → ((B → A) → A);
(tc1) (r̄1 → r̄2) → r̄, where r = min(1 − r1 + r2, 1);
(tc2) r̄ → (r̄1 → r̄2), where r = min(1 − r1 + r2, 1);
(∀1) ∀xA → (A)x

t , where t is a term that is not necessarily closed and
is free for x in A;

(∀2) ∀x(A → B) → (A → ∀xB), where x does not occur free in A;
(∃1) (A)x

t → ∃xA, where t is a term that is not necessarily closed and
is free for x in A;

(∃2) ∀x(A → B) → (∃xA → B), where x does not occur free in B.
The inference rules of HRP∀ are:

A; A → B

B
(mp),

A

∀xA
(gen).

HŁ∀ is obtained from this formulation of HRP∀ by requiring A, B,
and C to be Ł∀-formulas and removing the axiom schemes (tc1) and
(tc2).

Theorem 6.1 ([19]). HRP∀ is a conservative extension of HŁ∀; i.e., for

any Ł∀-formula A, ⊢HRP∀ A iff ⊢HŁ∀ A.

As a hypersequent counterpart of the rule (mp) of HRP∀, we consider
the following cut rule (cf., e.g., [23, Section 4.2]):

G | Γ1 ⇒ C, ∆1; G | Γ2, C ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1, ∆2
(cut).

Let (cut)
Ł

be the version of the rule (cut) whose premises and conclusion
are restricted to Ł∀-hypersequents.

Theorem 6.2 ([2]).

(a) The rule (cut)Ł
is not admissible for GŁ∀.

(b) For any Ł∀-sentence A, ⊢GŁ∀+(cut)Ł A iff ⊢HŁ∀ A.



296 Alexander S. Gerasimov

Proposition 6.3. Let C be any of the calculi GRP∀ and GiRP∀, where

i ∈ {0, 1, 1̂, 3}. Then the rule (cut)Ł (and hence (cut)) is not admissible

for C.

Proof. In [21, p. 268], for the Ł∀-sentence A = ∃x∀y(P (x) → P (y))
with P being a unary predicate symbol, it is shown that 0GŁ∀ A, and
a proof in GŁ∀+(cut)

Ł
is constructed of the form

D1

H1;

D2

H2
(cut)

Ł
,

⇒ A

where D1 and D2 are GŁ∀-proofs for H1 and H2, respectively. By Corol-
lary 5.12, we have ⊢C H1 and ⊢C H2, whence ⊢

C+(cut)Ł A. But by the
same corollary, 0GŁ∀ A implies 0C A. ⊣

The rest of this section is devoted to a proof of the next theorem.

Theorem 6.4. For any RPL∀-sentence A, the following are equivalent:
⊢HRP∀ A; ⊢G3RP∀+(cut) A; ⊢G0RP∀+(cut) A; ⊢GRP∀+(cut) A.

In proving this theorem, we will employ the calculus ĤRP∀ obtained
from HRP∀ thus: t in the axiom schemes (∀1) and (∃1) is taken to be a
closed term, and the inference rule (gen) is replaced by the rule

(A)x
a

∀xA
(ĝen),

where a is a parameter not occurring in A.
We will also use the cumulative cancellation rule

G | Γ ⇒ ∆ | Γ, C ⇒ C, ∆

G | Γ ⇒ ∆
(ccan);

cf. [10, Section 4.1] and [23, Section 4.3.5]. We remark that the (noncu-
mulative) cancellation rule was introduced in [10] as a variant of the cut
rule to establish cut elimination for the propositional fragment of the
calculus GŁ∀ via elimination of the cancellation rule.

Proof of Theorem 6.4. Given an RPL∀-sentence A, we demonstrate
the following chain of implications:

⊢HRP∀ A
(6.5)
=⇒ ⊢

ĤRP∀
A

(6.6)
=⇒ ⊢G3RP∀+(cut) A

(6.8)
=⇒ ⊢G0RP∀+(ccan) A

(6.9)
=⇒ ⊢G0RP∀+(cut) A

(6.10)
=⇒ ⊢GRP∀+(cut) A

(6.11)
=⇒ ⊢HRP∀ A.
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Implications (6.5), (6.6), (6.8)–(6.10) are established, respectively, in
Lemmas 6.5, 6.6, 6.8–6.10 of Subsection 6.1; and implication (6.11), in
Lemma 6.11 of Subsection 6.2. ⊣

Before going into the details of this proof, it should be observed that,
in general, adding the same inference rule to equivalent calculi (i.e., those
that prove exactly the same objects) may produce nonequivalent calculi.

For example, let C1 be the calculus with the only axiom a and the
only inference rule a/b, and let C2 be C1+c/d (where c/d is another rule).
Then the calculi C1 and C2 are equivalent as each of them proves exactly
a and b. However, the calculi C1+b/c and C2+b/c are nonequivalent as
the latter proves d, which is unprovable in the former.

So in proving, e.g., that ⊢G3RP∀+(cut) A implies ⊢G0RP∀+(cut) A, we
have to rely on the particular features of the calculi involved.

6.1. Comparing G3RP∀ with HRP∀: the syntactic part

In this subsection we establish implications (6.5), (6.6), (6.8)–(6.10),
given in the above plan of the proof of Theorem 6.4, by demonstrating
the respective lemmas. Here one or another lemma may assert not only
that the respective implication holds but also that its converse holds if
the latter is not hard to prove syntactically.

Lemma 6.5. For any RPL∀-sentence A, ⊢HRP∀ A iff ⊢
ĤRP∀

A.

We omit the proof of Lemma 6.5 because the proof is not complicated
and does not differ from that of the similar assertion for appropriate
variants of classical first-order Hilbert-type calculi.

Lemma 6.6. For any RPL∀-formula A, if ⊢
ĤRP∀

A, then ⊢G3RP∀+(cut)A.

Proof. The rule (ĝen) of ĤRP∀ is derivable in G3RP∀ since G3RP∀
contains the rule (⇒ ∀)3.

On the left in Figure 5, we obtain the conclusion of the rule (mp)
from its premises and the hypersequent H = (A, A → B ⇒ B) using the
rule (cut); and on the right, we give a GRP∀-proof of H. But ⊢G3RP∀ H
by Corollary 5.12. So (mp) is derivable in G3RP∀+(cut).

To finish the proof, it is enough to show that all the axioms of ĤRP∀
are G3RP∀-provable.

Take an instance L of any of the axiom schemes (Ł1)–(Ł4), (tc1),
(tc2). Since L is valid even if in L the RPL∀-formulas A, B, C from the
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⇒ A;

⇒ A → B; A, A → B ⇒ B
(cut)

A ⇒ B
(cut)

⇒ B

A ⇒ A; B ⇒ B
(mix)

P

A, B ⇒ A, B
(→ ⇒)

P

A, A → B ⇒ B

Figure 5. Proofs for showing the derivability of (mp) in G3RP∀+(cut).

⇒ ;

⇒
(wl)

P

∀x(A → B) ⇒ ;

(A)x
a ⇒ (A)x

a; B ⇒ B
(mix)

P

(A)x
a, B ⇒ (A)x

a, B
(→ ⇒)

P

(A)x
a → B, (A)x

a ⇒ B
(∀ ⇒)

P

∀x(A → B), (A)x
a ⇒ B

(∃ ⇒)
P

∀x(A → B), ∃xA ⇒ B
(⇒ →)

P

∀x(A → B) ⇒ (∃xA → B)
(⇒ →)

P

⇒ ∀x(A → B) → (∃xA → B)

Figure 6. A GRP∀-proof of an instance of the axiom scheme (∃2).

formulation of the schemes are treated as distinct propositional variables,
it follows by Lemma 3.6 that ⊢GRP∀ L. Now by Corollary 5.12, we get
⊢G3RP∀ L.

Finally, let Q be an instance of the axiom scheme (∀1), (∀2), (∃1), or
(∃2). Then we can construct a GRP∀-proof of Q. Indeed, in the cases
of (∀1) and (∃1), this is trivial; in the case of (∃2), such a GRP∀-proof
is shown in Figure 6 (where a does not occur in A, B); and in the case
of (∀2), a GRP∀-proof of Q is constructed similarly. By Corollary 5.12,
⊢GRP∀ Q implies ⊢G3RP∀ Q as required. ⊣

Lemma 6.7. Lemma 4.2 holds for G0RP∀+(ccan) in place of G0RP∀.

Proof. For each rule mentioned in Lemma 4.2, except for the rule
(split)∗, its admissibility or hp-admissibility for G0RP∀+(ccan) is es-
tablished just as in the proof of Lemma 4.2. So, in particular, the rule
(ec)

∗
is hp-admissible for G0RP∀+(ccan).

Given the hp-admissibility of (ec)
∗

for G0RP∀+(ccan), the proof of
the hp-admissibility of (split)∗ for G0RP∀+(ccan) is similar to item 4
of the proof of Lemma 4.2 (and thus to the proof of Lemma 7 in [16]);
we only need to consider one more case. As in the proof of Lemma 7 in
[16], by induction on the height of a proof D1 of G | Γ1, Γ2 ⇒ ∆1, ∆2 (in
G0RP∀+(ccan) now), we show that D1 can be transformed into a proof
of G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 whose height is no greater than the height
of D1. We add the case where the proof D1 has the form:



Comparing calculi for Ł∀ and RPL∀ 299

D0

G | Γ1, Γ2 ⇒ ∆1, ∆2 | Γ1, Γ2, A ⇒ A, ∆1, ∆2
(ccan).

G | Γ1, Γ2 ⇒ ∆1, ∆2

In this case, using the induction hypothesis twice, we split the two se-
quent occurrences distinguished in the bottom hypersequent of the proof
D0 to obtain a proof of

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | Γ1 ⇒ ∆1 | Γ2, A ⇒ A, ∆2;

whence by the hp-admissible rule (ec)∗, we construct a proof of

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | Γ2, A ⇒ A, ∆2;

and by (ccan), we get the desired proof of G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2. ⊣

Lemma 6.8. If ⊢G3RP∀+(cut) H0, then ⊢G0RP∀+(ccan) H0.

Proof. It suffices to demonstrate that all the rules of G3RP∀+(cut)
are admissible for G0RP∀+(ccan).

1. Let us first establish the admissibility for G0RP∀+(ccan) of the
rules (den1) and (den0), which are formulated at the beginning of Sec-
tion 5.

By Lemma 6.7, the rules (ew)∗, (ec)∗, (split)∗, and (mix)∗ are admis-
sible for G0RP∀+(ccan). Then we proceed as in Lemmas 5.3 and 5.8,
adding to item 2.2 of the proof of Lemma 5.3 one more case 2.2.6 where
R is (ccan) and the proof D (in G0RP∀+(ccan) now) looks like:

D1

H | Γ1, A, p1 ⇒ A, ∆1
(ccan).

H

In this case, using the induction hypothesis, we transform D1 into a
proof of

H′
∣∣ [Γ1, A, Πj ⇒ A, ∆1, Σj

]
j∈1..n

,

whence we get the desired proof of H′ by n applications of (ccan).

2. Now the admissibility for G0RP∀+(ccan) of each rule of G3RP∀
can be shown just as in the proof of Lemma 5.1. Finally, (cut) is ad-
missible for G0RP∀+(ccan). Indeed, the conclusion of (cut) is obtained
from its premises thus:
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G | Γ1 ⇒ C, ∆1; G | Γ2, C ⇒ ∆2
(mix)

∗

G | Γ1, Γ2, C ⇒ C, ∆1, ∆2
(ew)∗

G | Γ1, Γ2 ⇒ ∆1, ∆2 | Γ1, Γ2, C ⇒ C, ∆1, ∆2
(ccan),

G | Γ1, Γ2 ⇒ ∆1, ∆2

(mix)
∗

and (ew)
∗

being admissible for G0RP∀+(ccan) by Lemma 6.7. ⊣

Lemma 6.9. ⊢G0RP∀+(ccan) H if and only if ⊢G0RP∀+(cut) H.

Proof. Only if. It is enough to demonstrate that (ccan) is admissible
for G0RP∀+(cut). The conclusion of (ccan) is obtained from its premise
and the hypersequents ⇒ and C ⇒ C by rules that are admissible for
G0RP∀+(cut) as follows (cf. [10, Section 4.1]):

⇒ ; C ⇒ C
(ew)

∗
, (⇒ →)

0

⇒ C → C;

G | Γ ⇒ ∆ | Γ, C ⇒ C, ∆
(ew)

∗
, (→ ⇒)

0

G | Γ, C → C ⇒ ∆
(ew)

∗
, (cut).

G | Γ ⇒ ∆

The hypersequents ⇒ and C ⇒ C are GRP∀-axioms, hence are G0RP∀-
provable by Lemma 4.3; and we are finished with the left-to-right direc-
tion.

If. It suffices to show that (cut) is admissible for G0RP∀+(ccan).
But this is done in item 2 of the proof of Lemma 6.8. ⊣

Lemma 6.10. For any RPL∀-hypersequent H, ⊢G0RP∀+(cut) H if and

only if ⊢GRP∀+(cut) H.

Proof. Only if. By Lemma 4.1, every RPL∀-hypersequent that is
an axiom of G0RP∀ is provable in GRP∀, and each rule of G0RP∀ is
derivable in GRP∀ if its premises and conclusion are restricted to RPL∀-
hypersequents. Hence the required result follows.

If. By Lemma 4.3, all the axioms of GRP∀ are G0RP∀-provable. By
Lemma 6.7, all the rules of GRP∀ are admissible for G0RP∀+(ccan),
and hence by Lemma 6.9, for G0RP∀+(cut). ⊣

6.2. Comparing G3RP∀ (and GRP∀) with HRP∀: the semantic part

To finish the proof of Theorem 6.4, in this subsection we establish

Lemma 6.11. For any RPL∀-formula A, if ⊢GRP∀+(cut)A, then ⊢HRP∀ A.
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We are going to employ the completeness of HRP∀ with respect to
the algebraic semantics over so-called MV-chains containing the rational
unit interval. Let us describe the semantics, following [12], [18], and [2].

An MV-algebra is an algebra L = 〈L, ⊕, ¬, 0〉 such that the reduct
〈L, ⊕, 0〉 is an Abelian (or commutative) monoid, and the three identities
hold:

• ¬¬y = y,
• y ⊕ ¬0 = ¬0,
• ¬(¬y ⊕ z) ⊕ z = ¬(¬z ⊕ y) ⊕ y.

An MV-algebra is nontrivial if its universe contains more than one ele-
ment.

Given an MV-algebra L = 〈L, ⊕, ¬, 0〉, by definition, put:

• 1 = ¬0,
• (y → z) = (¬y ⊕ z),
• (y ¬ z) iff (y → z) = 1.

As shown, e.g., in [12, Section 1.1], the relation ¬ is a partial order on
L, called the natural order of L.

An MV-chain is an MV-algebra whose natural order is linear. Con-
sider the following two examples of MV-chains.

First, [0, 1]Ł = 〈[0, 1], ⊕, ¬, 0〉, where [0, 1] is the real unit interval,
and the operations are defined thus: y ⊕ z = min(1, y + z), ¬y = 1 − y;
and so y → z = min(1, 1 − y + z). Note that the standard semantics of
the logic RPL∀ (see Section 2) is defined over this MV-chain.

Second, Q ∩ [0, 1]Ł = 〈Q ∩ [0, 1], ⊕, ¬, 0〉, where Q is the set of all
rational numbers, and the operations are defined analogously.

An MV-chain L is said to contain the rational unit interval if the
MV-chain Q ∩ [0, 1]Ł is a subalgebra of L.

Remark 6.1. For any MV-chain 〈L, ⊕, ¬, 0〉 containing the rational unit
interval, the elements 0 and ¬0 = 1 of L are the integers 0 and 1, respec-
tively.

Let L = 〈L, ⊕, ¬, 0〉 be an MV-chain containing the rational unit in-
terval. We take L as the set of truth values.

An L-interpretation M is defined just as an interpretation (see Sec-
tion 2), except that now predicates assume values from L.

The truth value |A|LM,ν of an RPL∀-formula A under an L-interpreta-
tion M = 〈D, µ〉 and an M -valuation ν is defined thus:

• |r̄|LM,ν = r;
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• |P (t1, . . . , tn)|LM,ν = µ(P )(|t1|M,ν , . . . , |tn|M,ν) for an n-ary predicate
symbol P and terms t1, . . . , tn not necessarily closed;

• |B → C|LM,ν = |B|LM,ν → |C|LM,ν if |B|LM,ν and |C|LM,ν are defined,

otherwise |B → C|LM,ν is undefined;

• |∀xB|LM,ν = infd∈D |B|LM,ν[x7→d] if |B|LM,ν[x7→d] is defined for all d ∈ D

and the infimum exists, otherwise |∀xB|LM,ν is undefined;

• |∃xB|LM,ν = supd∈D |B|LM,ν[x7→d] if |B|LM,ν[x7→d] is defined for all d ∈ D

and the supremum exists, otherwise |∃xB|LM,ν is undefined.

The truth value of an RPL∀-formula (under an L-interpretation M
and an M -valuation) may be undefined because some infima or suprema
involved in the above definition may not exist. To avoid this, we re-
strict ourselves to so-called safe L-interpretations. An L-interpretation
M is called safe if |A|LM,ν is defined for all RPL∀-formulas A (over the
signature being used) and all M -valuations ν.

An RPL∀-formula A is L-valid, or in symbols �L A, if |A|LM,ν = 1 for
all safe L-interpretations M and all M -valuations ν.

The following Theorem 6.12 is a special case of Theorem 5.2.9 in [18]
and is given below in the formulation used in [19].

Theorem 6.12 (completeness of HRP∀ [18, Theorem 5.2.9]). For any

RPL∀-formula A, ⊢HRP∀ A iff �L A for all MV-chains L containing the

rational unit interval.

With Theorem 6.12, in order to establish Lemma 6.11, it remains to
prove

Lemma 6.13 (soundness of GRP∀+(cut)). For any RPL∀-formula A, if

⊢GRP∀+(cut) A, then �L A for all MV-chains L containing the rational

unit interval.

To prove Lemma 6.13, we need the notion of an o-group and the next
Theorem 6.14, which connects MV-chains with o-groups.

A linearly ordered Abelian group (an o-group for short) is a structure
G = 〈G, +, −, 0, ¬〉 such that

• 〈G, +, −, 0〉 is an Abelian group,
• 〈G, ¬〉 is a chain, and
• for all v, y, z ∈ G, if y ¬ z, then y + v ¬ z + v;

see, e.g., [18, Section 1.6]. For elements y and z of such a group, we write
y − z for y + (−z), and call the element y positive if 0 ¬ y and y 6= 0.
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For an o-group G = 〈G, +, −, 0, ¬〉 and a positive element e ∈ G, let
• [0, e]G denote the set {g ∈ G | 0 ¬ g ¬ e}, and
• MV (G, e) denote the algebra 〈[0, e]G, ⊕, ¬, 0〉, where

y ⊕ z = min(e, y + z) and ¬y = e − y.

Theorem 6.14 ([9], cf. [18, Section 3.2]). For any nontrivial MV-chain L
there exist an o-group G = 〈G, +, −, 0, ¬〉 and a positive element e ∈ G
such that

• MV (G, e) is an MV-chain,

• the natural order of MV (G, e) coincides with the restriction of the

order ¬ of G to [0, e]G, and

• the MV-chain L is isomorphic to the MV-chain MV (G, e).

The above Theorem 6.14 is due to Chang [9], but is given in the formu-
lation close to that in [18, Section 3.2].

Proof of Lemma 6.13. Suppose that A is an RPL∀-formula provable
in GRP∀+(cut), and L = 〈L, ⊕, ¬, 0〉 is an MV-chain containing the ra-
tional unit interval. We are to show that �L A.

Applying Theorem 6.14 yields an o-group G = 〈G, +′, −′, 0′, ¬′〉 and
a positive element e ∈ G such that the MV-chain L is isomorphic to the
MV-chain MV (G, e) = 〈[0′, e]G, ⊕′, ¬′, 0′〉. Without loss of generality we
can assume that L is exactly MV (G, e). Then we can use the order ¬′

of G as the natural order of L. We also have 0′ = 0, e = ¬0 = 1, and for
all y, z ∈ [0, 1]G,

y ⊕ z = min(1, y +′ z), ¬y = 1 −′ y, y → z = min(1, 1 −′ y +′ z).

Now we extend the notion of the validity of an RPL∀-hypersequent
to L. For a finite multiset Γ of RPL∀-formulas, a safe L-interpretation
M , and an M -valuation ν, we put

‖Γ‖L
M,ν =

∑′

B∈Γ

(|B|LM,ν −′ 1),

where the summation
∑′ is carried out in the o-group G, taking multi-

plicities of multiset elements into account, and
∑′

B∈∅
(. . .) = 0. We say

that an RPL∀-hypersequent H is L-valid if, for every safe L-interpreta-
tion M and every M -valuation ν, there is a sequent Γ ⇒ ∆ in H such
that

‖Γ‖L
M,ν ¬′ ‖∆‖L

M,ν .

Observe that �L A iff the hypersequent ⇒ A is L-valid.
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To prove that �L A, it is sufficient to demonstrate that the calculus
GRP∀+(cut) is sound with respect to this semantics, i.e., proves only
L-valid RPL∀-hypersequents. Verifying the soundness of all the rules of
GRP∀ with respect to L-validity is performed essentially as for the stan-
dard semantics (see Proposition 3.2). The rule (cut) with its premises
and conclusion restricted to RPL∀-hypersequents is easily seen to be
sound with respect to L-validity. Further, a GRP∀-axiom of the form
B ⇒ B is clearly L-valid.

It remains to establish the L-validity of a GRP∀-axiom of the form
r̄1, . . . , r̄l ⇒ s̄1, . . . , s̄m, A1, . . . , An, where

l∑

i=1

(ri − 1) ¬
m∑

j=1

(sj − 1) − n. (I0)

Here and below
∑

, +, −, ¬, and < (used also in the form >) are, respec-

tively, the usual summation, addition, subtraction, (nonstrict) order, and
strict order on the set of all rational numbers. By k∗1 we denote the sum
(1 +′ 1 +′ . . . +′ 1) of k items, the sum being equal to 0 if k = 0. To finish
the proof, it is enough to show that inequality (I0) implies the inequality

l∑′

i=1

(ri −′ 1) ¬′

m∑′

j=1

(sj −′ 1) −′ n∗1.

For this, in turn, it suffices to prove that, for any nonnegative integers
l, m, n1, n2 and any rational numbers r1, . . . , rl, s1, . . . , sm ∈ [0, 1],

(I) n1 +
l∑

i=1

ri ¬ n2 +
m∑

j=1

sj

implies

(I′) n1∗1 +′

l∑′

i=1

ri ¬′ n2∗1 +′

m∑′

j=1

sj.

Let us note that this implication is not obvious, as we do not know how
+′ and ¬′ behave outside of the rational unit interval. However, for any
rational numbers r, s ∈ [0, 1], we have:

• r ¬′ s iff r ¬ s; and
• if r + s ∈ [0, 1], then r +′ s = r + s.

We proceed by induction on (l + m), considering the following cases.
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Case 1: l ¬ 1 and m ¬ 1. For convenience, we can harmlessly assume
that l = m = 1, because otherwise we can add r1 = 0 (resp. s1 = 0) to
the left-hand (resp. right-hand) sides of both inequalities (I) and (I′).

Subcase 1.1: n1 = n2. Then inequality (I) implies r1 ¬ s1, whence
r1 ¬′ s1, and so n1∗1 +′ r1 ¬′ n2∗1 +′ s1 as required.

Subcase 1.2: n1 < n2. Then n1 + 1 ¬ n2, and hence n1 ∗1 +′ r1 ¬′

(n1 + 1)∗1 ¬′ n2∗1 ¬′ n2∗1 +′ s1.

Subcase 1.3: n1 > n2. Then from (I) it follows that n1 = n2 + 1,
r1 = 0, and s1 = 1. Hence n1∗1 +′ r1 = n1∗1 = (n2 + 1)∗1 = n2∗1 +′ s1.

Case 2: l > 1 or m > 1. We assume for definiteness that l > 1, and
put R = r1 + r2.

Subcase 2.1: R ¬ 1. Then r1 +′ r2 = R. So inequalities (I) and (I′)
are equivalent, respectively, to

n1 +

(
R +

l∑

i=3

ri

)
¬ n2 +

m∑

j=1

sj and

n1∗1 +′

(
R +′

l∑′

i=3

ri

)
¬′ n2∗1 +′

m∑′

j=1

sj.

The required result follows by the induction hypothesis applied to the
last two inequalities.

Subcase 2.2: R > 1. Put R̂ = R − 1, i.e., R̂ = r1 + r2 − 1. Then r2 =
(1 − r1) + R̂, where r2, (1 − r1), R̂ ∈ [0, 1]. Hence r2 = (1 − r1) +′ R̂,
and so r1 +′ r2 = r1 +′ (1 − r1) +′ R̂; but r1 +′ (1 − r1) = r1 + (1 − r1)
= 1, and therefore r1 +′ r2 = 1 +′ R̂. Thus (I) and (I′) are equivalent,
respectively, to the inequalities

(n1 + 1) +

(
R̂ +

l∑

i=3

ri

)
¬ n2 +

m∑

j=1

sj and

(n1 + 1)∗1 +′

(
R̂ +′

l∑′

i=3

ri

)
¬′ n2∗1 +′

m∑′

j=1

sj,

to which the induction hypothesis applies. ⊣

Proof of Lemma 6.11. Follows from Theorem 6.12 and Lemma 6.13.
⊣
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7. Conclusion

In the present article, we have compared the proof-search-oriented ana-
lytic hypersequent calculus G3RP∀ (for the logic RPL∀) with the ana-
lytic hypersequent calculus GŁ∀ (for the logic Ł∀) and with the Hilbert-
type calculus HRP∀ (for RPL∀).

To facilitate our comparison, we have introduced (and included in
this comparison) two analytic hypersequent calculi for RPL∀, namely
G0RP∀ and GRP∀, which are unsuitable for proof search, but are useful
in theoretical investigations, such as those given above. G0RP∀ is a
simplified version of G3RP∀ and, in fact, is a predecessor of G3RP∀ that
was our initial result of excluding all the structural rules from GŁ∀ but
was not published previously. GRP∀ is a natural extension of GŁ∀ with
axioms that handle truth constants of RPL∀ and are defined in nearly
syntactic terms. Table 1 summarizes the analytic calculi just mentioned.

Calculus Structural
rules

For proof
search

Short description

GŁ∀ [2] yes no first analytic calculus for Ł∀

GRP∀ [this
article]

yes no extension of GŁ∀ with “nearly syn-
tactic” axioms for truth constants

G0RP∀ [this
article]

no no initial result of excluding all the
structural rules from GŁ∀

G3RP∀ [17] no yes repetition-free, proof-search-orien-
ted calculus, obtained from G0RP∀

Table 1. The main analytic calculi considered for the logics Ł∀ and RPL∀.

We have established that GRP∀ is a conservative extension of GŁ∀,
and that G0RP∀ and G3RP∀ are equivalent and are conservative ex-
tensions of GRP∀ (see Theorem 5.10 and Corollary 5.12). We have also
demonstrated that the calculi GRP∀, G0RP∀, and G3RP∀ each extended
with the cut rule prove exactly the same RPL∀-sentences as the calculus
HRP∀ (see Theorem 6.4).

The key part of our argument is the syntactic proofs of the admis-
sibility for G0RP∀ of the nonstandard variants (den1) and (den0) of
the density rule (see Lemmas 5.3 and 5.8). These proofs can be easily
adapted to show the admissibility for G0RP∀ of the nonstandard density
rule (see Remark 5.2 on p. 294). The given proof of the admissibility of
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(den1) for G0RP∀ provides an algorithm for transforming a proof of a
hypersequent in G0RP∀+(den1) into a proof of the same hypersequent
in G0RP∀.

Let us adopt the following definition (cf., e.g., [10, 22, 23, 24]). Sup-
pose that C is a calculus, and a rule R is not an inference rule of C;
then elimination of R is said to hold for C+R (as well as for C) if
an algorithm is constructed that, given a proof of an object in C+R,
transforms it into a proof of the same object in C.

Thus, our proof of the admissibility of (den1) for G0RP∀ establishes
the elimination of (den1) for G0RP∀+(den1); similarly with (den0) and
the nonstandard density rule. One feature of these density elimination
proofs is that they do not use the cut rule, which is not admissible for
G0RP∀ (see Proposition 6.3).

Before the present work, density elimination proofs were known for
some (classes of) hypersequent calculi, though for logics different from
Ł∀ and RPL∀; see [3], [1], [22], [11], [23], [8], [4], [5], [6], [24], [7], [28],
and [29] (in chronological order). In all these works except [1], such
proofs use the cut rule even if no application of it is in an initial formal
proof. The density elimination proof for a single-conclusion hypersequent
calculus for first-order Gödel logic in [1] is provided as an improvement
of the earlier density elimination proof (introducing cuts) for the same
calculus in [3], and does not introduce cuts if an initial formal proof is
cut-free. Our technique for proving density elimination resembles that
in [1], but has been rediscovered, made more explicit, and elaborated
for the multiple-conclusion calculus G0RP∀ for the logic RPL∀. Given
these two applications of the technique, it would be nice to generalize
the technique to as wide a class of hypersequent calculi as possible.

Further, the book [23] on p. 134 says that it is unclear whether density
elimination can be obtained for calculi for the propositional fragment of
the logic Ł∀. We have given a density elimination proof for the calculus
G0RP∀, which is a conservative extension of the calculus GŁ∀ (which
in turn is complete for the propositional fragment of Ł∀). Moreover, to
the best of our knowledge, the given proof is the first density elimination
proof for a first-order multiple-conclusion hypersequent calculus in which
neither the weakening rule nor the contraction rule is admissible.3

3 The weakening and contraction rules are, respectively:

G | Γ ⇒ ∆

G | Γ, Π ⇒ Σ, ∆
and

G | Γ, Π, Π ⇒ Σ, Σ, ∆

G | Γ, Π ⇒ Σ, ∆
,
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Finally, let us note that, in contrast to numerous works on the com-
plexity of cut elimination, how complexity of formal proofs varies has
not yet been investigated for any density elimination proof, which offers
another problem for future research.
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carries over to RPL∀ and GRP∀ (instead of Ł∀ and GŁ∀, respectively).
Let us show this.
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G. Also there we say that Lemma 3.5 is in fact established in the proof
of Theorem 6.24 in [23].

Here is the required analog of Lemma 3.5 for RPL∀ and GRP∀, with
the proof adapted from that of Theorem 6.24 in [23] and supplemented
with a few clarifications.

Lemma A.1. Let G be a valid atomic RPL∀-hypersequent with ℓ(G) > 0.

Then G is GRP∀-provable from a valid atomic RPL∀-hypersequent H
with ℓ(H) < ℓ(G).

Proof. We can harmlessly regard each nonconstant atomic RPL∀-for-
mula A in G as a new propositional variable pA, and specify only an
interpretation M (omitting an M -valuation) when speaking about the
truth values of propositional RPL∀-formulas.

We pick a propositional variable q occurring on the left of one of the
sequents of G. If q occurs on both sides in the same sequent, then we
apply (mix)P and (id)P backwards to remove it, noting that the new

hypersequent is also valid. Next, we use (ec)P and (split)P backwards to
multiply sequents, giving (for some integers k > 0, m  0, and n  0) a
hypersequent

G′ =
(

G0

∣∣ [Γi, [q]k ⇒ ∆i

]
i∈1..n

∣∣ [Πj ⇒ [q]k, Σj

]
j∈1..m

)

where q does not occur in G0, Γi, ∆i, Πj , or Σj for i ∈ 1..n and j ∈ 1..m,
and [q]k stands for the multiset consisting of k copies of q.

Observe that ⊢GRP∀ G if ⊢GRP∀ G′. Also � G′. Now let H be
(

G0

∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..n

j∈1..m

∣∣ [Γi ⇒ ∆i

]
i∈1..n

∣∣ [Πj ⇒ [q]k, Σj

]
j∈1..m

)
.

Clearly, ℓ(H) < ℓ(G). Also G′ is GRP∀-provable from H. Indeed, we ap-

ply (ec)
P

and (split)
P

backwards to G′ to combine sequents of the form
(Γi, [q]k ⇒ ∆i) and (Πj ⇒ [q]k, Σj) into one: (Γi, Πj, [q]k ⇒ [q]k, ∆i, Σj).

Then we apply (mix)
P

and (id)
P

backwards to remove the balanced oc-

currences of q, and (wl)
P

backwards to (Γi, [q]k ⇒ ∆i) to get (Γi ⇒ ∆i).
It remains to show that � H. Suppose, for a contradiction, otherwise;

i.e., that there exists an interpretation M such that ‖Γ‖M > ‖∆‖M for
all (Γ ⇒ ∆) ∈ H. Let

α = max
(
{‖∆i‖M − ‖Γi‖M : 1 ¬ i ¬ n} ∪ {−k}

)
(and so −k ¬ α);

β = min
(
{‖Πj‖M − ‖Σj‖M : 1 ¬ j ¬ m} ∪ {0}

)
(and so β ¬ 0).

If α  β, then we have at least one of the following cases:
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(1) for some i and j, ‖∆i‖M − ‖Γi‖M  ‖Πj‖M − ‖Σj‖M ;
(2) for some i, ‖∆i‖M − ‖Γi‖M  0;
(3) for some j, −k  ‖Πj‖M − ‖Σj‖M .

Since ‖Γ‖M > ‖∆‖M for all (Γ ⇒ ∆) ∈ H, neither of cases (1)–(3) is
possible; and hence α < β.

Define an interpretation M ′ to be like M , but (noting that 0¬α/k +1
and β/k + 1 ¬ 1) choose |q|M ′ so that α/k + 1 < |q|M ′ < β/k + 1, i.e.,
α < k(|q|M ′ − 1) < β. Then for all i ∈ 1..n and all j ∈ 1..m :

‖∆i‖M ′ − ‖Γi‖M ′ ¬ α < k(|q|M ′ − 1) < β ¬ ‖Πj‖M ′ − ‖Σj‖M ′ ;

therefore ‖Γi, [q]k‖M ′ > ‖∆i‖M ′ and ‖Πj‖M ′ > ‖[q]k, Σj‖
M ′ . So 2 G′,

a contradiction. ⊣

B. The admissibility of the rules (split)∗ and (mix)∗ for G0RP∀

Item 4 of the proof of Lemma 4.2 says that the proof of the hp-admis-
sibility of (split)

∗
for G0RP∀ is very similar to the proof of Lemma 7 in

[16]. Besides, in the proof of Lemma 6.7, we extend the proof of the hp-
admissibility of (split)

∗
for G0RP∀ with a new case to obtain the proof

of the hp-admissibility of (split)∗ for G0RP∀+(ccan).

Next, item 5 of the proof of Lemma 4.2 says that the proof of the
admissibility of (mix)

∗
for G0RP∀ can be obtained from the proof of

Lemma 8 in [16] by identifying the notion of a completable ancestor of a
sequent occurrence with the notion of an ancestor of a sequent occurrence
(the former notion is used in [16]).

Below we give the proof of the hp-admissibility of (split)∗ for G0RP∀
and the proof of the admissibility of (mix)

∗
for G0RP∀, adapting the

mentioned proofs from [16] (and correcting inaccuracies introduced in
[16] by a translator of the original Russian article).

Lemma B.1. The following rule is hp-admissible for G0RP∀:

G | Γ1, Γ2 ⇒ ∆1, ∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(split)

∗
.

Proof. Let

H1 = (G | Γ1, Γ2 ⇒ ∆1, ∆2), H2 = (G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2).
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Using induction on the height of a (G0RP∀-)proof D1 of H1, we show
that D1 can be transformed into a proof of H2 whose height is no greater
than the height of D1.

1. If H1 is an axiom, then it is easy to see that H2 is an axiom too.

2. Let the bottom hypersequent H1 in D1 be the conclusion of an
application R of a rule R. We consider the case where R is (→ ⇒)

0
; the

remaining cases are similar.

2.1. Suppose that the principal sequent occurrence in the application
R is in the distinguished occurrence of G in H1. Then the premise H0 of
the application R has the form G0 | Γ1, Γ2 ⇒ ∆1, ∆2. By the induction
hypothesis for the proof of H0 (which is a subtree of the proof tree D1),
we can construct a proof of G0 | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2. By applying the
rule R, we obtain the required proof of H2.

2.2. Suppose that the principal sequent occurrence in the application
R is the distinguished occurrence of Γ1, Γ2 ⇒ ∆1, ∆2 in H1. For defi-
niteness we assume that the principal occurrence of a formula A1 → B1

in the application R is in Γ1. Then Γ1 = (Γ′
1, A1 → B1) for some Γ′

1,
and the proof D1 has the form

D0

G | Γ′
1, A1 → B1, Γ2 ⇒ ∆1, ∆2 | Γ′

1, Γ2 ⇒ ∆1, ∆2

| Γ′
1, B1, Γ2 ⇒ A1, ∆1, ∆2

(→ ⇒)0.
G | Γ′

1, A1 → B1, Γ2 ⇒ ∆1, ∆2

Using the induction hypothesis three times, we split all the three
sequent occurrences that are distinguished in the bottom hypersequent
of the proof D0, thus obtaining a proof of the hypersequent

G | Γ′
1, A1 → B1 ⇒ ∆1 | Γ2 ⇒ ∆2 | Γ′

1 ⇒ ∆1 | Γ2 ⇒ ∆2

| Γ′
1, B1 ⇒ A1, ∆1 | Γ2 ⇒ ∆2.

From this hypersequent we eliminate two occurrences of Γ2 ⇒ ∆2

with the help of the hp-admissible rule (ec)
∗

(see Lemma 4.2 and item
2 of its proof), getting a proof of the hypersequent

G | Γ′
1, A1 → B1 ⇒ ∆1 | Γ′

1 ⇒ ∆1 | Γ′
1, B1 ⇒ A1, ∆1 | Γ2 ⇒ ∆2.

Finally, we apply the rule (→ ⇒)0 to the last hypersequent and ob-
tain the required proof of G | Γ′

1, A1 → B1 ⇒ ∆1 | Γ2 ⇒ ∆2. ⊣



314 Alexander S. Gerasimov

Lemma B.2. The following rule is admissible for G0RP∀:

G | Γ1 ⇒ ∆1; G | Γ2 ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1, ∆2
(mix)

∗
.

Proof. Let

H1 = (G | Γ1 ⇒ ∆1), H2 = (G | Γ2 ⇒ ∆2),

H3 = (G | Γ1, Γ2 ⇒ ∆1, ∆2).

We suppose that ⊢G0RP∀ H1 and ⊢G0RP∀ H2, and show that ⊢G0RP∀ H3.
Let D1 be a (G0RP∀-)proof of H1 such that no proper parameter from
D1 occurs in Γ2 ⇒ ∆2.

We obtain a proof search tree D0
3 for H3 as follows. In D1, for each

occurrence S of a sequent of the form Π1 ⇒ Σ1, if S is an ancestor of the
distinguished occurrence of the sequent Γ1 ⇒ ∆1 in the root of D1, then
we replace S by an occurrence S ′ of the sequent Π1, Γ2 ⇒ Σ1, ∆2. We
also mark S ′ if S is an atomic sequent occurrence in a leaf of D1. Let
Si, i = 0, . . . , l − 1, be all distinct marked sequent occurrences in D0

3.
We expand D0

3, proceeding for each i = 0, . . . , l − 1 as follows.
(0) Let Si be an occurrence of a sequent of the form Π1, Γ2 ⇒Σ1, ∆2.
(1) We construct a proof D2 of H2 such that no proper parameter

from D2 occurs in Di
3.

(2) We obtain a proof search tree D̂2 for G | Π1, Γ2 ⇒ Σ1, ∆2 thus:
in D2, for each occurrence of a sequent of the form Π2 ⇒ Σ2, if this
occurrence is an ancestor of the distinguished occurrence of the se-
quent Γ2 ⇒ ∆2 in the root of D2, then we replace this occurrence by
Π1, Π2 ⇒ Σ1, Σ2.

(3) We expand each branch of Di
3 containing the occurrence Si as

follows: we identify the top node of this branch, which represents an
occurrence of a hypersequent of the form G | Π1, Γ2 ⇒ Σ1, ∆2 | H for some
H, with the root of the tree obtained from D̂2 by appending “| H” to
each node hypersequent. By Di+1

3 we denote the tree resulting from this
expansion of Di

3.
It is not difficult to see that the tree Dl

3 is a proof search tree for H3.
It remains to show that Dl

3 is a proof.
We consider an arbitrary leaf L3 of Dl

3 and show that L3 is an axiom.
Given L3, we find a unique leaf L1 of D1 that transforms into a leaf of D0

3

that, in turn, transforms (in expanding D0
3) into a node of Dl

3 belonging
to the same branch as L3.
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Let Π1,i ⇒ Σ1,i, i ∈ I, be all atomic sequents whose occurrences in
L1 are ancestors of the distinguished occurrence of Γ1 ⇒ ∆1 in the root
of D1. By the construction of Dl

3, for each i ∈ I, there exist a proof
Di

2 of H2 and its leaf Li
2 such that, for each j ∈ Ji, an atomic sequent

Π1,i, Πi
2,j ⇒ Σ1,i, Σi

2,j occurs in L3, where Πi
2,j ⇒ Σi

2,j , j ∈ Ji, are all
atomic sequents whose occurrences in Li

2 are ancestors of the distin-
guished occurrence of Γ2 ⇒ ∆2 in the root of Di

2.

In addition, L3 contains all atomic sequents S1,k, k ∈ K, whose oc-
currences in L1 are ancestors of sequent occurrences in the distinguished
occurrence of G in the root of D1.

Finally, for each i ∈ I, the leaf L3 contains all atomic sequents Si
2,m,

m ∈ Mi, whose occurrences in Li
2 are ancestors of sequent occurrences

in the distinguished occurrence of G in the root of Di
2.

The leaf L1 of the proof D1 is an axiom and contains exactly the
following atomic sequents: Π1,i ⇒ Σ1,i for each i ∈ I and S1,k for each
k ∈ K. For each i ∈ I, the leaf Li

2 of the proof Di
2 is an axiom and

contains exactly the following atomic sequents: Πi
2,j ⇒ Σi

2,j for each

j ∈ Ji and Si
2,m for each m ∈ Mi. Therefore, the leaf L3 of Dl

3, which
contains the above-mentioned atomic sequents, is an axiom too. ⊣

C. The soundness of the nonstandard density rule

Remark 5.1 on p. 284 says that the rule

G | Γ, p ⇒ ∆ | Π ⇒ p, Σ

G | Γ, Π ⇒ ∆, Σ
(den)

(1) is unsound if p is a propositional variable not occurring in the conclu-
sion, but (2) becomes sound if we expand the notion of a hypersequent
by adding new-type semipropositional variables interpreted by any real
numbers, and require p to be such a variable not occurring in the con-
clusion.

Let us prove (1). Recall that the propositional variable p is inter-
preted by any real number in [0, 1]. Consider the following application
of (den):

p ⇒ 0̄, 0̄ | 0̄ ⇒ p

0̄ ⇒ 0̄, 0̄
.
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The premise of this application is valid (because 0̄ ⇒ p is), but its con-
clusion is not. ⊣

Now let us prove (2), i.e., that � (G | Γ, p ⇒ ∆ | Π ⇒ p, Σ) implies
� (G | Γ, Π ⇒ ∆, Σ) under the specified condition on p. To make this
proof shorter, we assume harmlessly that the hypersequent G is empty.

(a) 2 (Γ, Π ⇒ ∆, Σ) ⇐⇒ for some hs-interpretation M and M -valu-
ation ν, ‖∆‖M,ν − ‖Γ‖M,ν < ‖Π‖M,ν − ‖Σ‖M,ν ⇐⇒ (by the density of
the set of all real numbers) for some hs-interpretation M , M -valuation ν,
and real number ξ, ‖∆‖M,ν − ‖Γ‖M,ν < ξ − 1 < ‖Π‖M,ν − ‖Σ‖M,ν .

(b) 2 (Γ, p ⇒ ∆ | Π ⇒ p, Σ) ⇐⇒ for some hs-interpretation M ′ and
M ′-valuation ν′, ‖∆‖M ′,ν′ −‖Γ‖M ′,ν′ < |p|M ′ −1 < ‖Π‖M ′,ν′ −‖Σ‖M ′,ν′ .

It is easy to see that (a) implies (b): define M ′ to be the same as M
but set |p|M ′ = ξ, and take ν′ = ν. ⊣

D. The admissibility of the nonstandard density rule for G0RP∀

Remark 5.2 on p. 294 says that the proofs of Lemmas 5.3 and 5.8 can
be easily combined to establish the admissibility for G0RP∀ of the rule

G | Γ, p ⇒ ∆ | Π ⇒ p, Σ

G | Γ, Π ⇒ ∆, Σ
(den),

provided that the notion of a hypersequent is expanded by adding new-
type semipropositional variables interpreted by any real numbers, and p

is such a variable not occurring in the conclusion.
Let us prove the following lemma on the admissibility of a general-

ization of (den) for G0RP∀, denoting by p a special variable that can
assume any real values under hs-interpretations.

Lemma D.1 (admissibility of a generalization of (den) for G0RP∀). Sup-

pose that m  1, n  1,

H =
(

G
∣∣ [Γi, p ⇒ ∆i

]
i∈1..m

∣∣ [Πj ⇒ p, Σj

]
j∈1..n

)
,

H′ =
(

G
∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..m

j∈1..n

)
,

p does not occur in H′, and ⊢G0RP∀ H. Then ⊢G0RP∀ H′.

Proof. Take a (G0RP∀-)proof D of H and proceed by induction on the
height of D.
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1. Suppose that H is an axiom (of G0RP∀); i.e., � Hat. Without loss
of generality we assume that

Hat =
(

Gat

∣∣ [Γi, p ⇒ ∆i

]
i∈1..k

∣∣ [Πj ⇒ p, Σj

]
j∈1..l

)
,

where 0 ¬ k ¬ m and 0 ¬ l ¬ n. Let H′
at = (H′)at. Consider the fol-

lowing cases 1.1–1.4.
Case 1.1: k 6= 0 and l 6= 0. We have

H′
at =

(
Gat

∣∣ [Γi, Πj ⇒ ∆i, Σj

]i∈1..k

j∈1..l

)

and want to show that � H′
at.

Suppose otherwise; i.e., for some hs-interpretation M and some M -
valuation ν, there is no true sequent in Gat, and for all i ∈ 1..k and all
j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ‖Πj‖M,ν − ‖Σj‖M,ν .

By the density of the set R of all real numbers, there exists ξ ∈ R such
that, for all i ∈ 1..k and all j ∈ 1..l,

‖∆i‖M,ν − ‖Γi‖M,ν < ξ − 1 < ‖Πj‖M,ν − ‖Σj‖M,ν .

Define an hs-interpretation M1 to be like M but set |p|M1
= ξ. Since

p does not occur in Gat, Γi, ∆i (i ∈ 1..k), Πj , Σj (j ∈ 1..l), we see that no
sequent in Hat is true under the hs-interpretation M1 and M1-valuation
ν. Hence 2 Hat, a contradiction.

Therefore � H′
at, and so H′ is an axiom.

Case 1.2: k = 0 and l 6= 0. Then

Hat =
(

Gat

∣∣ [Πj ⇒ p, Σj

]
j∈1..l

)

and H′
at = Gat. Since p does not occur in Gat, Πj , Σj (j ∈ 1..l), and

hs-interpretations can take p to negative real numbers whose absolute
values are arbitrarily large, we conclude that � Hat implies � Gat. Thus
� H′

at, and H′ is an axiom.
Case 1.3: k 6= 0 and l = 0. Then

Hat =
(

Gat

∣∣ [Γi, p ⇒ ∆i

]
i∈1..k

)

and H′
at = Gat. Since p does not occur in Gat, Γi, ∆i (i ∈ 1..k), and p

can assume arbitrarily large values under hs-interpretations, we see that
� Hat implies � Gat. So � H′

at, and H′ is an axiom.
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Case 1.4: k = 0 and l = 0. Then Hat = Gat = H′
at. Thus � Hat

means that � H′
at, and H′ is an axiom.

2. It remains to consider the case where the root hypersequent H in
D is the conclusion of a rule application. But the argument for this case
can be obtained from item 2 of the proof of Lemma 5.3 by replacing p1

with p. ⊣
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