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Logics for Knowability

Abstract. In this paper, we propose three knowability logics LK, LK−, and
LK=. In the single-agent case, LK is equally expressive as arbitrary public
announcement logic APAL and public announcement logic PAL, whereas in
the multi-agent case, LK is more expressive than PAL. In contrast, both
LK− and LK= are equally expressive as classical propositional logic PL. We
present the axiomatizations of the three knowability logics and show their
soundness and completeness. We show that all three knowability logics
possess the properties of Church-Rosser and McKinsey. Although LK is
undecidable when at least three agents are involved, LK− and LK= are
both decidable.
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1. Introduction

Intuitively, a proposition is known to you, if you know it; in contrast, a
proposition is knowable for you, if you can get to know it. The knowa-
bility paradox is that if all truths are knowable, then all truths are
actually known. The standard references for the knowability paradox
are [8, 13]. However, following Salerno’s archival efforts the obligatory
precursor to that Church’s ‘anonymous’ referee report of what (much)
later became [13]:

[. . . ] there is always a true proposition which it is empirically impossible
for a to know at time t. For let k be a true proposition which is unknown
to a at time t, and let k′ be the proposition that k is true but unknown
to a at time t. Then k′ is true. But it would seem that if a knows k′
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at time t, then a must know k at time t, and must also know that he
does not know k at time t. [9], reprinted in [20]

Fitch finally writes:

If there is some true proposition which nobody knows (or has known, or
will know) to be true, then there is some true proposition that nobody
can know to be true. [13, p. 139]

Formally, ‘proposition ϕ is knowable’ later became ♦Kϕ [8], where ♦ is
some modal diamond, representing a process, or time, or some alethic
modality of truth. This modal diamond does not yet occur in [13]. Let us
sketch the paradox. The existence of unknown truths is semi-formalized
as “there is a proposition ϕ such that ϕ∧¬Kϕ”. That all truths are know-
able is semi-formalized as “for all propositions ψ, ψ → ♦Kψ”. Fitch’s
paradox is that the existence of unknown truths is inconsistent with the
requirement that all truths are knowable. This can now be easily shown:
let ψ be ϕ ∧ ¬Kϕ, then we get (ϕ ∧ ¬Kϕ) → ♦K(ϕ ∧ ¬Kϕ). On the
assumption of ϕ ∧ ¬Kϕ, we therefore obtain ♦K(ϕ ∧ ¬Kϕ). Whatever
the interpretation of ♦, this will result in having to evaluate K(ϕ∧¬Kϕ).
But this is inconsistent for knowledge, as can be shown by very simple
means: since knowing a conjunction entails knowing each of the con-
juncts, we obtain Kϕ and K¬Kϕ from this, and from the latter and that
knowledge entails truth, ¬Kϕ, and Kϕ∧¬Kϕ is inconsistent.1 This is of
course Church’s argument cited above. It is also inconsistent for belief,
as was already observed by Hintikka [16].

Knowability is a subjective concept; it is possible that a proposition
is knowable for an agent but not for another. Take the proposition “it
is raining but Alice does not know it” as an example. This proposition
is not knowable for Alice, as above. But the proposition is knowable
for another agent Bob, who may be aware of Alice’s ignorance. We are
moving from ♦Kϕ to ♦Kaϕ and ♦Kbϕ.

Since Fitch’s 1963 publication, the topic of knowability has done the
rounds of philosophical communities [see, e.g., 11, 20, 21]. The knowa-
bility paradox is relevant in verificationism and in anti-realism. The
verification principle requires a non-analytic, meaningful true sentence
to be empirically verifiable [4]. Replace ‘empirically verifiable’ for ‘know-
able’ (or recall ‘empirically impossible for a to know’, cited above) and

1 Instead of using the two properties of knowledge in question, one can show in
the monotone logic of unknown truths [12] that the unknown truths ϕ ∧ ¬Kϕ is not
known.
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we are there. Anti-realism or non-realism is the philosophy that denies
the existence of an objective reality of entities. In other words, there are
no true unknowable propositions: a true proposition about the objective
reality that has no counterpart in a knowing subject would be such an
unknowable proposition [10].

A dynamic view for knowability was subsequently proposed by van
Benthem [22]. According to this dynamic view, knowable means ‘known
after some announcement’, where ‘announcement’ is the truthfully public
announcement of what is indeed known as public announcement logic [19]
(PAL). A logic extending public announcement logic with this notion
of knowability was proposed in the logic APAL (for ‘Arbitrary Public
Announcement Logic’) [5].

Unlike PAL, APAL is undecidable, has an infinitary axiomatization,
and even model checking is already highly complex (PSPACE complete
[1]). In [27] it was subsequently shown that after all everything is know-
able in the sense that in this logic, ♦Kϕ∨♦K¬ϕ is valid; in other words,
everything is knowable to be true or false. But some kind of cheating
is involved: for example, p ∧ ¬Kap is ‘knowable’ in this sense, because
after Bob announcing this to Alice it has become false: Alice now knows
p, Kap, which entails ¬(p ∧ ¬Kap).

In this investigation we will consider the combination ♦K as a prim-
itive modality in the logical language, and investigate the properties
of various logics with this modality. Instead of ♦K, or rather ♦Ki for
an agent i, we will then write ♦K

i , but this is mere syntactic sugar: the
point is that we are not allowed to use the ♦ modality independently, but
only followed by Ki. This technique of packing or bundling a knowledge
modality with another modality (or a quantifier) was pioneered in works
by Wang and collaborators [17, 18, 29]. As one may see, this packing
can help us see the logical properties of knowability, such as McKinsey
and Church-Rosser, more clearly. As can be expected, this may affect
the properties of the logic, for example its expressivity, or complexity,
or even the existence of an axiomatization. Such logics with a primitive
‘knowability’ modality ♦K

i will be called logics for knowability.2 We will
focus on matters involving expressivity, axiomatization and decidability
of such knowability logics. In particular, we show that the logic that is

2 Although the method to pack two modalities into one is different from the
usual modelling of the knowability paradox, the formalization of the paradox still re-
quires two modalities, namely the novel knowability modality as well as the knowledge
modality (see Corollary 3.6 below).
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like APAL but instead of the ♦ modality has the packed ♦K

i modality
also has a complete axiomatization, and we demonstrate various logical
properties of ♦K

i . Moreover, as we will show, although the full knowa-
bility logic is undecidable for at least three agents, two of its fragments
are decidable, since both of them are equally expressive as the classical
propositional logic.

The remainder is organized as follows. After introducing the syntax
and semantics of knowability logics and other related logics (Section 2),
we investigate the logical properties of knowability and also a fragment
of positive formulas in Section 3. Section 4 introduces the bisimulation
for a knowability logic LK and compares the relative expressivity of LK

and some related logics. Section 5 proposes an axiomatization of LK and
shows its soundness. Section 6 shows its completeness of LK, and explore
the decidability of LK, which turns out to be undecidable when there
are at least three agents. We then propose two decidable knowability
logics, which are both equally expressive as the classical propositional
logic PL, and axiomatize them in Section 7. Finally we conclude with
some future work in Section 8.

2. Syntax and Semantics

In what follows, we let P denote a denumerable set of propositional
variables, and Ag a finite set of agents.

Definition 2.1 (Languages). We consider various fragments of the fol-
lowing recursively defined language L:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | 〈ϕ〉ϕ | ♦K

i ϕ | ♦ϕ

where p ∈ P and i ∈ Ag.
Without the construct ♦ϕ, we obtain the language LK of knowability

logic; without the construct Kiϕ as well, we obtain the language LK−;
without the construct 〈ϕ〉ϕ further, we obtain the language LK=. With-
out the construct ♦K

i ϕ, we obtain the language APAL of arbitrary public
announcement logic; without additionally the construct ♦ϕ, we obtain
the language PAL of public announcement logic; without additionally the
construct 〈ϕ〉ϕ, we obtain the language EL; without even the construct
Kiϕ additionally, we obtain the language PL of classical propositional
logic.
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Although we have different primitives ♦K

i and ♦, we could alterna-
tively have defined ♦K

i by abbreviation as the ‘packing’ or ‘bundling’ of
Ki and ♦, namely as ♦K

i ϕ := ♦Kiϕ, such that the inductive definition of
LK could have been given as ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | 〈ϕ〉ϕ | ♦Kiϕ.
Instead, we will now after the presentation of the semantics have this as
a property of the complete language L. The main focus of our investi-
gations is the logic LK.

Intuitively, Kiϕ, 〈ψ〉ϕ, ♦K

i ϕ, and ♦ϕ are read, respectively, “agent i
knows that ϕ”, “after some truthful announcement of ψ, it holds that
ϕ”, “ϕ is knowable for agent i”, “after some truthful announcement, it
holds that ϕ”. Other connectives are defined as usual. In particular, we
abbreviate K̂iϕ, [ψ]ϕ, �K

i ϕ, and �ϕ as, respectively, ¬Ki¬ϕ, ¬〈ψ〉¬ϕ,
¬♦K

i ¬ϕ, and ¬♦¬ϕ. Moreover, var(ϕ) is the set of propositional vari-
ables occurring in ϕ.

Definition 2.2 (Models and Frames). A model is a tuple M = 〈S, {Ri |
i ∈ Ag}, V 〉, where S is a nonempty set of states, for each i ∈ Ag, Ri
is an equivalence relation over S, that is, Ri is reflexive, transitive, and
symmetric, and V is a valuation function. Given any s ∈ S, Ri(s) is the
set of all successors of s with respect to Ri; in symbol, Ri(s) = {t ∈ S |
sRit}. A frame is a model without a valuation.

Definition 2.3 (Semantics). Given a model M = 〈S, {Ri | i ∈ Ag}, V 〉
and a state s ∈ S, the formulas of L are interpreted recursively as follows:

M, s � p ⇐⇒ s ∈ V (p)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Kiϕ ⇐⇒ M, t � ϕ for all t ∈ Ri(s)
M, s � 〈ψ〉ϕ ⇐⇒ M, s � ψ and M|ψ, s � ϕ
M, s � ♦K

i ϕ ⇐⇒ for some formula ψ ∈ EL : M, s � 〈ψ〉Kiϕ
M, s � ♦ϕ ⇐⇒ for some formula ψ ∈ EL : M, s � 〈ψ〉ϕ

where M|ψ = 〈S′, {R′
i | i ∈ Ag}, V ′〉 is such that S′ = JϕKM = {s ∈ S |

M, s � ϕ}, R′
i = Ri ∩ (JϕKM × JϕKM), and V ′(p) = V (p) ∩ JϕKM.

A formula ϕ is valid, notation: � ϕ, if for all models M and all
states s in M, we have M, s � ϕ. Given any two states s, t in M and
any formula ϕ, we say that s and t agree on ϕ, if M, s � ϕ iff M, t � ϕ.

Note that in the semantic definition of ♦K

i ϕ, the quantification is
restricted to EL-formulas. This is to avoid circularity of the definition.
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As EL is expressively equivalent to PAL, we can also define the semantics
of ♦K

i as follows:

M, s � ♦K

i ϕ ⇐⇒ for some formula ψ ∈ PAL : M, s � 〈ψ〉Kiϕ.

For convenience, we also give the semantics of �K

i as follows.

M, s � �K

i ϕ ⇐⇒ for all formulas ψ ∈ EL : M, s � [ψ]K̂iϕ.

From Definition 2.3 it follows that � 〈ψ〉Kiϕ → ♦K

i ϕ, where ψ ∈ EL.
We can also use its equivalent version �iϕ → [ψ]K̂iϕ (where ψ ∈ EL),
which means intuitively that if ¬ϕ is unknowable (¬♦K

i ¬ϕ), then after
any announcement ¬ϕ is unknown ([ψ]¬Ki¬ϕ).

By definition of the semantics we obtain:

Proposition 2.4. For all ϕ ∈ L, � ♦K

i ϕ ↔ ♦Kiϕ.

Due to the presence of the knowability operators, in the completeness
proof, we need to use a method of induction with, on one hand, the size
of formulas (as usual), and on the other hand, the depth of knowability
operators. These two notions are combined into the notion of complexity.
This notion and the next proposition will be also used in proving the
proof theoretical results in Proposition 3.19 and Sec. 5.2.

Definition 2.5 (Complexity). The complexity of a formula consists of
two aspects: size and ♦K-depth, which are defined as follows.

The size of a formula ϕ, notation: Size(ϕ), is a positive natural
number, defined recursively as follows:

Size(p) = 1
Size(¬ϕ) = 1 + Size(ϕ)
Size(ϕ ∧ ψ) = 1 + max{Size(ϕ), Size(ψ)}
Size(Kiϕ) = 3 + Size(ϕ)
Size(〈ψ〉ϕ) = Size(ψ) + 3 · Size(ϕ)
Size(♦K

i ϕ) = 1 + Size(ϕ)

The ♦K-depth of a formula ϕ, notation dK

♦ (ϕ), is a natural number,
defined recursively as follows:

dK

♦ (p) = 0
dK

♦ (¬ϕ) = dK

♦ (ϕ)
dK

♦ (ϕ ∧ ψ) = max{dK

♦ (ϕ), dK

♦ (ψ)}
dK

♦ (Kiϕ) = dK

♦ (ϕ)
dK

♦ (〈ψ〉ϕ) = dK

♦ (ψ) + dK

♦ (ϕ)
dK

♦ (♦K

i ϕ) = 1 + dK

♦ (ϕ)
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With the definitions of size and ♦K-depth in hand, we define <S♦ as a
binary relation between formulas such that

ϕ <S♦ ψ ⇐⇒ either dK

♦ (ϕ) < dK

♦ (ψ), or

dK

♦ (ϕ) = dK

♦ (ψ) and Size(ϕ) < Size(ψ).

If ϕ <S♦ ψ, then we say that ϕ is less complex than ψ.

One may easily show by induction that dK

♦ (ϕ) = 0 for all ϕ ∈ EL.
And also, it is easily computed that Size([ψ]ϕ) = 4+Size(ψ)+3·Size(ϕ).

Proposition 2.6. In 5 and 17, ψ ∈ EL.

1. ϕ <S♦ ¬ϕ

2. ϕ <S♦ ϕ ∧ ψ

3. ψ <S♦ ϕ ∧ ψ

4. ϕ <S♦ Kiϕ

5. 〈ψ〉Kiϕ <
S
♦ ♦K

i ϕ

6. ψ <S♦ 〈ψ〉ϕ

7. ψ <S♦ 〈ψ〉p

8. p <S♦ 〈ψ〉p

9. ψ <S♦ 〈ψ〉¬ϕ

10. 〈ψ〉ϕ <S♦ 〈ψ〉¬ϕ

11. 〈ψ〉ϕ <S♦ 〈ψ〉(ϕ ∧ χ)

12. ϕ <S♦ 〈ψ〉ϕ

13. 〈ψ〉χ <S♦ 〈ψ〉(ϕ ∧ χ)

14. ψ <S♦ 〈ψ〉Kiϕ

15. Ki[ψ]ϕ <S♦ 〈ψ〉Kiϕ

16. 〈〈ψ〉χ〉ϕ <S♦ 〈ψ〉〈χ〉ϕ

17. 〈χ〉〈ψ〉Kiϕ <
S
♦ 〈χ〉♦K

i ϕ

Proof. We take some of them as examples.
5: It is because dK

♦ (〈ψ〉Kiϕ) = dK

♦ (ϕ) < 1 + dK

♦ (ϕ) = dK

♦ (♦K

i ϕ).
8: This is because dK

♦ (p) ≤ dK

♦ (ψ) + dK

♦ (p) = dK

♦ (〈ψ〉p) and Size(p) =
1 < Size(ψ) + 3 · Size(p) = Size(〈ψ〉p).

15: This is because dK

♦ (Ki[ψ]ϕ) = dK

♦ (ψ)+dK

♦ (ϕ) = dK

♦ (〈ψ〉Kiϕ), and
Size(Ki[ψ]ϕ) = 3 + 4 + Size(ψ) + 3 · Size(ϕ) = 7 + Size(ψ) + 3 · Size(ϕ) <
9 + Size(ψ) + 3 · Size(ϕ) = Size(〈ψ〉Kiϕ).
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16: It is since dK

♦ (〈〈ψ〉χ〉ϕ) = dK

♦ (ψ)+dK

♦ (χ)+dK

♦ (ϕ) = dK

♦ (〈ψ〉〈χ〉ϕ),
and Size(〈〈ψ〉χ〉ϕ) = Size(ψ) + 3 · Size(χ) + 3 · Size(ϕ) < Size(ψ) + 3 ·
Size(χ) + 9 · Size(ϕ) = Size(〈ψ〉〈χ〉ϕ). ⊣

Note that in the definition of Size(Kiϕ), the number 3 is the least nat-
ural number to provide Ki[ψ]ϕ <S♦ 〈ψ〉Kiϕ. In contrast, in [6], Size(Kiϕ)
is defined to be 1 + Size(ϕ), in other words, plus 1 rather than plus 3.

3. Logical properties of knowability

This section explores the logical properties of the knowability operator
in the logic LK.

It has been shown in [27] that everything is knowable, in the sense
that ♦Kiϕ ∨ ♦Ki¬ϕ is valid. In LK this becomes ♦K

i ϕ ∨ ♦K

i ¬ϕ and
indeed this is also valid, by a very similar proof (only the case quantifier
is occasionally different). For clarity we give the entire proof.

Given a model M, the valuation of propositional variable p is con-
stant on its domain S if V (p) = S or V (p) = ∅, i.e., if any two states in
S agree on the value of p.

Proposition 3.1 (5, Lemma 3.2). Let ϕ ∈ LK, and let M be a model

with constant values for all variables occurring in ϕ. Then M � ϕ or

M � ¬ϕ.

Proof. Suppose that each propositional variable occurring in ϕ has
constant value on M. If V (p) = S, that is, M � p ↔ ⊤, then M � ϕ ↔
ϕ(⊤/p); if V (p) = ∅, that is, M � p ↔ ⊥, then M � ϕ ↔ ϕ(⊥/p). We
denote the result obtained by substituting ⊤ or ⊥ for all propositional
variables in ϕ in that way as ϕ∅. Obviously, M � ϕ ↔ ϕ∅. Note that
ϕ∅ contains no propositional variables.

We now show by induction on the structure of ϕ that � ϕ∅ ↔ ⊤ or
� ϕ∅ ↔ ⊥. Cases atom, conjunction and negation are trivial. Further:

• � Ki⊤ ↔ ⊤ and � Ki⊥ ↔ ⊥;
• � 〈⊤〉⊤ ↔ ⊤, � 〈⊤〉⊥ ↔ ⊥, � 〈⊥〉⊤ ↔ ⊥, and � 〈⊥〉⊥ ↔ ⊥;
• � ♦K

i ⊤ ↔ ⊤ and � ♦K

i ⊥ ↔ ⊥ (in particular, � ⊤ → ♦K

i ⊤ follows from
the correctness of knowledge after the trivial announcement of ⊤).

Therefore � ϕ∅ ↔ ⊤ or � ϕ∅ ↔ ⊥. Combining this with M � ϕ ↔ ϕ∅,
we derive that M � ϕ ↔ ⊤ or M � ϕ ↔ ⊥, that is, M � ϕ or M � ¬ϕ,
respectively. ⊣
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Theorem 3.2 (27, Thm. 1). For all ϕ ∈ LK, we have

� ♦K

i ϕ ∨ ♦K

i ¬ϕ.

Proof. Given any model M and s in M, define δϕs as the characteristic
formula of the restriction of the valuation in s to var(ϕ):

δϕs =
∧

{p | p ∈ var(ϕ) and M, s � p} ∧
∧

{¬p | p ∈ var(ϕ) and M, s 2 p}.

For all p ∈ var(ϕ), we obviously have

M, s � p or M, s � ¬p,

and therefore
M|δϕs , s � p or M|δϕs , s � ¬p

and even
M|δϕs � p or M|δϕs � ¬p.

Then by Proposition 3.1, we have

M|δϕs � ϕ or M|δϕs � ¬ϕ.

Thus
M|δϕs � Kiϕ or M|δϕs � Ki¬ϕ.

Since s ∈ M|δϕs , we have

M|δϕs , s � Kiϕ or M|δϕs , s � Ki¬ϕ.

Therefore,
M, s � 〈δϕs 〉Kiϕ or M, s � 〈δϕs 〉Ki¬ϕ,

that is,
M, s � ♦K

i ϕ ∨ ♦K

i ¬ϕ.

As M and s are arbitrary, we now conclude that

� ♦K

i ϕ ∨ ♦K

i ¬ϕ. ⊣

Since ♦K

i ϕ∨♦K

i ¬ϕ is equivalent to ¬♦K

i ¬ϕ → ♦K

i ϕ, and since �K

i is
the dual of ♦K

i , we immediately have

Corollary 3.3. For all ϕ ∈ LK, � �K

i ϕ → ♦K

i ϕ.
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However, we recall that although every formula is knowable in the
sense of Thm. 3.2, this does not mean that every true formula is knowable
(to be true), as the announcement may ‘flip’ the value of the formula
in question. Fitch [13] showed that there is an unknowable truth, for
example 2 (p ∧ ¬Kip) → ♦K

i (p ∧ ¬Kip). In fact, we have a stronger
result: every unknown truth is unknowable; in Salerno’s term in [20,
p. 32], this says that “Fitch-conjunctions are unknowable.”

Proposition 3.4. � ¬♦K

i (ϕ ∧ ¬Kiϕ).

Proof. Suppose not, that is, there is a pointed model (M, s) such that
M, s 2 ¬♦K

i (ϕ∧¬Kiϕ), then M, s � ♦K

i (ϕ∧¬Kiϕ). This means that for
some formula ψ ∈ EL such that M, s � ψ and M|ψ, s � Ki(ϕ ∧ ¬Kiϕ).
The latter entails that M|ψ, s � Kiϕ ∧ Ki¬Kiϕ. Since � Kiϕ → ϕ, we
have M|ψ, s � Kiϕ ∧ ¬Kiϕ: a contradiction. ⊣

Consequently, we have � (ϕ∧¬Kiϕ) → ¬♦K

i (ϕ∧¬Kiϕ)∧(ϕ∧¬Kiϕ),
which says that if it is an unknown truth that ϕ, it is an unknowable
truth that it is an unknown truth that ϕ; in short, every unknown truth
is itself unknowable, see [13, Thm. 2] and [30, p. 154].

Corollary 3.5. ♦K

i (ϕ ∧ ¬Kiϕ) is unsatisfiable. That is, there is no

pointed model satisfying ♦K

i (ϕ ∧ ¬Kiϕ).

In comparison, ♦K

j (p ∧ ¬Kip) is satisfiable, as one may easily check.
This tells us that the notion of knowability is a subjective concept: the
proposition p ∧ ¬Kip is unknowable for the agent i but knowable for
another agent j, as mentioned in the introduction.

Also, as we mentioned in the introduction, the knowability paradox
says that if all truths are knowable, then all truths are actually known.
This can be shown semantically as follows.

Corollary 3.6. If � ϕ → ♦K

i ϕ for all ϕ, then � ϕ → Kiϕ for all ϕ.

Proof. Suppose that � ϕ → ♦K

i ϕ for all ϕ. Then of course, � ϕ ∧
¬Kiϕ → ♦K

i (ϕ ∧ ¬Kiϕ) for all ϕ. By Proposition 3.4, we have � ¬(ϕ ∧
¬Kiϕ) for all ϕ, and therefore � ϕ → Kiϕ for all ϕ. ⊣

Proposition 3.7. � Kiϕ → ♦K

i ϕ

Proof. This is because � Kiϕ → 〈⊤〉Kiϕ and � 〈⊤〉Kiϕ → ♦K

i ϕ. ⊣

We continue our survey of the properties of the knowability operator
with a number of validities only involving that operator.
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Theorem 3.8. � ♦K

i ♦
K

i ϕ → ♦K

i ϕ

Proof. Let M = 〈S, {Ri | i ∈ Ag}, V 〉 and s ∈ S. First, suppose that
M, s � ♦K

i ♦
K

i ϕ, then for some ψ ∈ EL: M, s � 〈ψ〉Ki♦
K

i ϕ. This means
that M, s � ψ and M|ψ, s � Ki♦

K

i ϕ. Since Ri is an equivalence relation
and equivalence relations are closed under public announcements, Ri|ψ
is an equivalence relation as well. Thus M|ψ, s � ♦K

i ϕ, which entails
that for some χ ∈ EL: M|ψ, s � 〈χ〉Kiϕ, which amounts to saying that
M|ψ, s � χ and (M|ψ)|χ, s � Kiϕ.

Summarizing the above results, we have that for some ψ, χ ∈ EL:
M, s � ψ and M|ψ, s � χ and (M|ψ)|χ, s � Kiϕ. As a sequence of two
announcements is an announcement [28, Proposition 4.17], it directly
follows that M|〈ψ〉χ, s � Kiϕ. From M, s � 〈ψ〉χ and M|〈ψ〉χ, s � Kiϕ
it now follows that M, s � ♦K

i ϕ. ⊣

The following result indicates that ♦K

i (and thus �K

i ) are monotone.
Straightforward from the semantics we obtain:

Proposition 3.9. If � ϕ → ψ, then � ♦K

i ϕ → ♦K

i ψ and � �K

i ϕ → �K

i ψ.

Note that ♦K

i is not regular. In other words, 2 ♦K

i ϕ∧♦K

i ψ → ♦K

i (ϕ∧
ψ): one may easily construct a pointed model (M, s) such that M, s �
♦K

i p and M, s � ♦K

i ¬p but M, s 2 ♦K

i (p ∧ ¬p).
The next result states that unknowable truths are themselves un-

knowable.

Corollary 3.10. � ¬♦K

i (ϕ ∧ ¬♦K

i ϕ).

Proof. By Proposition 3.7, � Kiϕ → ♦K

i ϕ, thus � ϕ ∧ ¬♦K

i ϕ →
ϕ∧¬Kiϕ. Then from Proposition 3.9, it follows that � ♦K

i (ϕ∧¬♦K

i ϕ) →
♦K

i (ϕ ∧ ¬Kiϕ). Finally, using Proposition 3.4, we conclude that �

¬♦K

i (ϕ ∧ ¬♦K

i ϕ). ⊣

Proposition 3.11. � ♦K

i ϕ → ♦K

i Kiϕ.

Proof. Let M = 〈S,R, V 〉 and s ∈ S. Suppose that M, s � ♦K

i ϕ,
then for some ψ ∈ EL, M, s � 〈ψ〉Kiϕ. Since Ri is an equivalence
relation, � Kiϕ → KiKiϕ, and thus M, s � 〈ψ〉KiKiϕ. Therefore M, s �
♦K

i Kiϕ. ⊣

Theorem 3.12. � ♦K

i ϕ → ♦K

i ♦
K

i ϕ.

Proof. By Proposition 3.7, � Kiϕ → ♦K

i ϕ. Then by Proposition 3.9, �
♦K

i Kiϕ → ♦K

i ♦
K

i ϕ. Now due to Proposition 3.11, � ♦K

i ϕ → ♦K

i ♦
K

i ϕ. ⊣
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Corollary 3.13. � ♦K

i ϕ ↔ ♦K

i ♦
K

i ϕ, and thus � ♦K

i ♦
K

i ϕ ↔ ♦K

i Kiϕ,

� ♦K

i Kiϕ ↔ ♦K

i ϕ, and � Ki♦
K

i ϕ → ♦K

i Kiϕ.

Corollary 3.14. � �K

i ϕ → ♦K

i �
K

i ϕ and � �K

i ϕ → �K

i ♦
K

i ϕ. As a

consequence, � �K

i ♦
K

i ϕ → ♦K

i ϕ and � ♦K

i �
K

i ϕ → ♦K

i ϕ.

Proof. By Corollary 3.13, we have � �K

i ϕ ↔ �K

i �
K

i ϕ. By Coro. 3.3,
we infer that � �K

i �
K

i ϕ → ♦K

i �
K

i ϕ, and therefore � �K

i ϕ → ♦K

i �
K

i ϕ; by
Corollary 3.3 and Proposition 3.9, � �K

i �
K

i ϕ → �K

i ♦
K

i ϕ, and therefore
� �K

i ϕ → �K

i ♦
K

i ϕ. ⊣

We have shown that � �K

i ♦
K

i ϕ → ♦K

i ϕ. However, �K

i ϕ → ϕ is
not valid, since its equivalent ϕ → ♦K

i ϕ is not valid. Proposition 3.4
demonstrated that some true propositions are not knowable, for example
ϕ = p ∧ ¬Kip. This also shows that � ♦K

i ϕ ↔ ϕ does not hold for all
ϕ ∈ LLK, though it does hold for all ϕ ∈ LPL [5, Proposition 3.11.2].

Lemma 3.15. Let ϕ ∈ LK, and let M be a model where all states agree

on each propositional variable occurring in ϕ. Then M � ϕ → �K

i ϕ.

Proof. Let s be any state in M, and M, s � ϕ. Now consider any
EL-formula ψ such that M, s � ψ. Let M′ be the disjoint union of M
and M|ψ. The valuation of atoms in var(ϕ) is also constant on M′. By
Proposition 3.1, it follows that M′ � ϕ or M′ � ¬ϕ. If M′ � ¬ϕ, then
it contradicts M, s � ϕ. Thus M′ � ϕ, and therefore M|ψ � ϕ. That is
to say, for any state t such that sRit in M|ψ, we have M|ψ, t � ϕ. By
semantics, it follows that M|ψ, s � Kiϕ, and thus M|ψ, s � K̂iϕ. As ψ is
arbitrary, by semantics we know that M, s � �K

i ϕ. So far we have shown
that M, s � ϕ → �K

i ϕ. As s is arbitrary in M, M � ϕ → �K

i ϕ. ⊣

In what follows, we show that the McKinsey property (MK) and the
Church–Rosser property (CR) hold for LK.

Theorem 3.16 (MK). � �K

i ♦
K

i ϕ → ♦K

i �
K

i ϕ

Proof. Let a model M = 〈S, {Ri | i ∈ Ag}, V 〉 and a state s ∈ S
be given. Suppose that M, s � �K

i ♦
K

i ϕ. Then by the semantics, for all
ψ ∈ EL, we have M, s � [ψ]K̂i♦

K

i ϕ. Consider δϕs in the proof of Thm. 3.2.
It is obvious that M, s � δϕs and δϕs ∈ EL, thus M|δϕs , s � K̂i♦

K

i ϕ. Since
all states in M|δϕs have constant values for variables in ϕ, by Lemma 3.15
we have M|δϕs � ϕ → �K

i ϕ and its dual M|δϕs � ♦K

i ϕ → ϕ, therefore
M|δϕs � ♦K

i ϕ → �K

i ϕ. Note that all states in M|δϕs also have constant
values for variables in ♦K

i ϕ. Then by Prop. 3.1 we have M|δϕs � ♦K

i ϕ
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or M|δϕs � ¬♦K

i ϕ. As M|δϕs , s � K̂i♦
K

i ϕ, there is a state t such that
M|δϕs , t � ♦K

i ϕ, contradicting M|δϕs � ¬♦K

i ϕ. Thus M|δϕs � ♦K

i ϕ. From
that and M|δϕs � ♦K

i ϕ → �K

i ϕ already obtained above, it follows that
M|δϕs � �K

i ϕ. Therefore, for any state s′ such that sRis′ in M|δϕs we
have M|δϕs , s

′ � �K

i ϕ. By semantics, M|δϕs , s � Ki�
K

i ϕ, and therefore
M, s � ♦K

i �
K

i ϕ. ⊣

Theorem 3.17 (CR). � ♦K

i �
K

i ϕ → �K

i ♦
K

i ϕ

Proof. Let a model M = 〈S, {Ri | i ∈ Ag}, V 〉 and a state s ∈ S be
given. Suppose that M, s � ♦K

i �
K

i ϕ. By semantics, for some ψ ∈ EL:
M, s � 〈ψ〉Ki�

K

i ϕ. Then M, s � ψ and for any t in M|ψ such that
sRit, M|ψ, t � �K

i ϕ. Consider δϕs in the proof of Theorem 3.2, it is an
EL-formula and thus (M|ψ)|δϕs , t � K̂iϕ.

Let η ∈ EL be arbitrary such that M, s � η. The valuation of atoms
in var(ϕ) is constant on (M|η)|δϕs . By Prop. 3.1, we have (M|η)|δϕs � ϕ or
(M|η)|δϕs � ¬ϕ. Since ψ ∈ EL and M, s � ψ, we have also (M|ψ)|δϕs � ϕ

or (M|ψ)|δϕs � ¬ϕ. As (M|ψ)|δϕs , t � K̂iϕ, there must be a t′ such that
(M|ψ)|δϕs , t

′ � ϕ which contradicts (M|ψ)|δϕs � ¬ϕ. Thus we obtain
that (M|ψ)|δϕs � ϕ. Consider the disjoint union M′ of (M|ψ)|δϕs and
(M|η)|δϕs . Since M′ has constant values for variables in ϕ as well, we
conclude that M′ � ϕ, and therefore (M|η)|δϕs � ϕ. Let s′ be any state
such that sRis′ in (M|η)|δϕs . Now we know that (M|η)|δϕs , s

′ � ϕ. Then
(M|η)|δϕs , s � Kiϕ, and thus M|η, s � ♦K

i ϕ. This follows that M|η, s �

K̂i♦
K

i ϕ. As η ∈ EL is arbitrary, we conclude that M, s � �K

i ♦
K

i ϕ. ⊣

As we have seen above, not every true formula is knowable. In con-
trast, every valid formula is knowable, in symbol: � ϕ implies � ♦K

i ϕ, as
easily shown. This then follows that � ♦K

i ⊤. Besides, it may be worth
noting that the knowability operators are not normal.

Proposition 3.18. 2 ♦K

i (ϕ → ψ) → (♦K

i ϕ → ♦K

i ψ)

Proof. Consider the following model M:

t : ¬ps : p i

• M, s � ♦K

i (p → p ∧ ¬Kip): firstly, note that M, s � p → p ∧ ¬Kip
and M, t � p → p∧ ¬Kip, thus M, s � Ki(p → p∧ ¬Kip). By Prop. 3.7,
M, s � ♦K

i (p → p ∧ ¬Kip).
• M, s � ♦K

i p: clearly, M, s � 〈p〉Kip, thus M, s � ♦K

i p.
• M, s 2 ♦K

i (p ∧ ¬Kip): this follows directly from Prop. 3.4. ⊣
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This refutes the claim that “knowable-in-principle, knowability, is
closed under consequence” in [3].

We conclude this section with the fragment of the positive formulas
in LK. The fragment, denoted LK+, is inductively defined as follows:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | [¬ϕ]ϕ | �K

i ϕ

In modal logic, the fragment of the language where negations do not
bind (box-type) epistemic modalities is known as the positive fragment
[5, 23, 26]. It corresponds to the universal fragment in first-order logic.
It has the property that it preserves truth under submodels. Intuitively,
this is because a box modality says that something is true in all accessible
worlds, so if you go to a submodel it is still true in all remaining accessible
worlds, whatever remains. The result we present here is a generalization
of a similar result in [5]. We should point out the surprising negation
in the inductive clause [¬ϕ]ϕ. This has to do with the semantics of
public announcement. Note that we have that M, s � [¬ϕ]ψ, iff (by the
semantics of public announcement) M, s � ¬ϕ implies M|¬ϕ, s � ψ, iff
(propositionally) M, s � ϕ or M|¬ϕ, s � ψ. In the last formulation the
negation has disappeared! This aspect will also play a role in the proof
of the subsequent proposition.

We say that ϕ is successful, if after being announced, ϕ still holds;
in symbol, � [ϕ]ϕ. The following result states that positive formulas are
successful.

Proposition 3.19. For all ϕ ∈ LK+, we have � [ϕ]ϕ.

Proof. We show the following claim: For any M′ and M′′ with M′′ ⊆
M′, s ∈ SM′′

and ϕ ∈ LK+: If M′, s � ϕ, then M′′, s � ϕ.
The proof is by induction on the complexity of ϕ. Recall that the

notion of complexity is given in Def. 2.5.
• ϕ is atomic: Since the valuation of atoms is local, it is trivial.
• Boolean cases: It is straightforward by induction hypothesis.
• ϕ is Kiψ: Suppose M′, s � Kiψ, by semantics M′, s′ � ψ for any s′

such that sRM′

i s′. Consider any t such that sRM′′

i t. Since M′′ ⊆ M′,
we have sRM′

i t. Thus M′, t � ψ, and then by inductive hypothesis
M′′, t � ψ. By semantics again, it follows that M′′, s � Kiψ.

• ϕ is [¬ψ1]ψ2. Suppose M′, s � [¬ψ1]ψ2 and M′′, s � ¬ψ1. By
induction hypothesis, M′, s � ¬ψ1. By semantics, M′|¬ψ1

, s � ψ2. Note
that M′′|¬ψ1

⊆ M′|¬ψ1
, then by induction hypothesis M′′|¬ψ1

, s � ψ2.
By semantics M′′, s � [¬ψ1]ψ2.
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• ϕ is �K

i ψ. Suppose M′, s � �K

i ψ. Assume, for reductio, that
M′′, s 2 �K

i ψ. By semantics, there is a χ ∈ EL such that M′′, s � χ
and M′′|χ, s 2 K̂iψ. As M′′|χ ⊆ M′′ ⊆ M′, by induction hypothesis,
we infer that M′, s 2 K̂iψ, that is, M′, s 2 [⊤]K̂iψ. Then M′, s 2 �K

i ψ,
contrary to the supposition.

Given any ϕ ∈ LK+, for any model M and s ∈ SM: If M, s � ϕ, then
no matter what submodel of M that ϕ defines, it follow that M|ϕ, s � ϕ
by the above claim. By semantics it means M, s � [ϕ]ϕ. Since (M, s) is
arbitrary, we conclude � [ϕ]ϕ. ⊣

4. Bisimulation and Expressivity

4.1. Bisimulation

In this part, we show that the notion of bisimilarity is tailored for the
logic of knowability LK. That is, LK is invariant under bisimulation,
and the Hennessy-Milner Theorem (H-M for short) holds for LK. First,
we introduce the notion of bisimulation.

Definition 4.1 (Bisimulation). Let M = 〈SM, {RM
i | i ∈ Ag}, V M〉

and N = 〈SN , {RN
i | i ∈ Ag}, V N 〉 be models. A non-empty relation

Z ⊆ SM × SN is a bisimulation between M and N if for all Zst, p ∈ P

and i ∈ Ag:

• atoms: s ∈ V M(p) iff t ∈ V N (p).
• forth: if sRM

i s′, then there is a t′ ∈ SN such that tRN
i t

′ and Zs′t′.
• back: if tRN

i t
′, then there is a s′ ∈ SM such that sRM

i s′ and Zs′t′.

If there exists a bisimulation Z between M and N we write M ↔ N (or
Z : M ↔ N , to indicate the relation), and if it contains the pair (s, t),
we write (M, s) ↔ (N , t).

Given pointed models (M, s) and (N , t) and a language L, (M, s) ≡L

(N , t) denotes: for all ϕ ∈ LL, M, s |= ϕ iff N , t |= ϕ.

Proposition 4.2. For all pointed models (M, s) and (M′, s′), if (M, s)
↔ (M′, s′), then (M, s) ≡LK (M′, s′).

Proof. Suppose that (M, s) ↔ (M′, s′), we show for all ϕ ∈ LK:
M, s � ϕ if and only if M′, s′ � ϕ. The proof proceeds with induction on
the structure of ϕ. As it is known that PAL is invariant for bisimulation,
we need only present the case ♦K

i ψ.
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Assume that M, s � ♦K

i ψ. Then there is an EL-formula χ such
that M, s � χ and M|χ, s � Kiψ. As (M, s) ↔ (M′, s′) and χ is an
EL-formula, M′, s′ � χ. Consider a relation Z|χ as the bisimulation Z
between M and M′ restricted to M|χ and M′|χ. We can check Z|χ is
also a bisimulation and (s, s′) ∈ Z|χ . Therefore, for any t′ ∈ M′|χ such
that s′R′

it
′, there is a t ∈ M|χ such that sRit and (M|χ, t) ↔ (M′|χ, t

′),
which by induction hypothesis implies that M|χ, t � ψ if and only if
M′|χ, t′ � ψ. Since M|χ, s � Kiψ, for any t ∈ M|χ such that sRit:
M|χ, t � ψ. Then by induction hypothesis, M′|χ, t′ � ψ, and hence
M′|χ, s′ � Kiψ. We have now shown M′, s′ � χ and M′|χ, s′ � Kiψ. It
then follows that M′, s′ � ♦K

i ψ. The other direction is similar. ⊣

Proposition 4.3. For all image-finite models M and N , for all s in M
and t in N , if (M, s) ≡LK (N , t), then (M, s) ↔ (N , t).

Proof. Let M and N be image-finite. Suppose that (M, s) ≡LK (N , t).
Since LK is an extension of EL, it follows that (M, s) ≡EL (N , t). By the
Hennessy-Milner theorem of EL [see, e.g., 7], we have (M, s) ↔ (N , t),
as desired. ⊣

4.2. Expressivity

In this part, we shall compare the expressive powers of our logic LK,
PAL, and APAL. It turns out that in the case of single-agent, the three
logics are equally expressive; however, in the case of multi-agent, LK is
more expressive than PAL. First, we introduce the definition of related
concepts.

Definition 4.4 (Expressivity). Let L and L
′ be two logics are inter-

preted over models.

• L is at least as expressive as L
′, notation: L � L

′, if for ϕ ∈ L there is
a ϕ′ ∈ L

′ such that ϕ′ is equivalent to ϕ over the class of S5-models.
• L and L

′ are equally expressive, notation: L ≡ L
′, if L � L

′ and
L

′ � L.
• L is less expressive than L

′, or L
′ is more expressive than L, notation:

L ≺ L
′, if L � L

′ but L
′ 6� L.

• L and L
′ are incomparable (in expressivity), notation: L ≍ L

′, if
L 6� L

′ and L
′ 6� L.

Proposition 4.5. In the single-agent case, LK and APAL are equally

expressive. As a corollary, LK and PAL are equally expressive on the

single-agent case.



Logics for knowability 401

Proof. Recall that in the single-agent case, APAL is equally expressive
as EL (thus PAL) [5, Proposition 3.12]. Moreover, LK is an extension of
EL. This entails that LK is at least as expressive as APAL in single-agent
case. Besides, as LK is a fragment of APAL due to the definability of ♦K

in terms of ♦ and K, APAL is at least as expressive as LK. Therefore,
in the single-agent case, LK and APAL are equally expressive. ⊣

The following result is shown as in the proof of [5, Proposition 3.13]
via slight revisions. To make the exposition self-contained, we prove it
in the following.

Proposition 4.6. LK is more expressive than PAL.

Proof. First, as LK is an extension of PAL with the knowability op-
erators, PAL � LK. It suffices to show that LK 6� PAL. We show that
♦K

a (p ∧ ¬KbKap) is not equivalent to any PAL-formula.
Suppose not, then as PAL is equally expressive as EL, the given

knowability formula is equivalent to an EL-formula, say ψ. Because ψ
is finite, it contains only finite many propositional variables. Let q be a
propositional variable not occurring in ψ. Consider the following models,
where the left-hand side is M and the right-hand side is M′:

0 : ¬p1 : p a

00 : ¬p,¬q10 : p,¬q

01 : ¬p, q11 : p, q

b

a

a

b

Since (M, 1) and (M′, 10) are bisimilar for atoms other than q, we
have that M, 1 � ψ iff M′, 10 � ψ. However, M, 1 2 ♦K

a (p ∧ ¬KbKap)
but M′, 10 � ♦K

a (p∧¬KbKap). The argument for the former is as follows:
every announcement that makes a know that p at 1 (that is, M, 1 � Kap)
must delete the state 0, and therefore Ka¬KbKap is false at 1. To see
the latter, just notice that M′, 10 � 〈p ∨ q〉(Kap ∧ Ka¬KbKap), which is
equivalent to M′, 10 � 〈p ∨ q〉Ka(p ∧ ¬KbKap), and therefore M′, 10 �

♦K

a (p ∧ ¬KbKap). ⊣
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We conjecture that LK is less expressive than APAL. In the con-
cluding Section 8 we will explain in some detail why this is a difficult
problem.

5. Axiomatization

To present the proof system, we need a notion of ‘admissible forms’
originally from [15, pp. 55–56], also known as ‘necessity forms’ in [5, 6].

Definition 5.1 (Admissible Forms). Where ϕ ∈ LK and i ∈ Ag, the
set of admissible forms η(♯) is defined recursively as follows:

η(♯) ::= ♯ | ϕ → η(♯) | Kiη(♯) | [ϕ]η(♯)

It is worth noting that ♯ is not a formula, but a placeholder. The
result from replacing ♯ in an admissible form η(♯) by a formula ψ, denoted
η(ψ), is a formula. It is defined as follows:

♯(ψ) = ψ
(ϕ → η(♯))(ψ) = ϕ → η(ψ)
(Kiη(♯))(ψ) = Kiη(ψ)
([ϕ]η(♯))(ψ) = [ϕ]η(ψ)

Now we are close to the proof system, denoted by LK.

5.1. Proof system and soundness

Definition 5.2. The system LK consists of the following axioms and is
closed under the following rules.
TAUT all instances of propositional tautologies
K Ki(ϕ → ψ) → (Kiϕ → Kiψ)
T Kiϕ → ϕ

4 Kiϕ → KiKiϕ

5 ¬Kiϕ → Ki¬Kiϕ

!ATOM 〈ψ〉p ↔ (ψ ∧ p)
!NEG 〈ψ〉¬ϕ ↔ (ψ ∧ ¬〈ψ〉ϕ)
!CON 〈ψ〉(ϕ ∧ χ) ↔ (〈ψ〉ϕ ∧ 〈ψ〉χ)

!K 〈ψ〉Kiϕ ↔ (ψ ∧ Ki[ψ]ϕ)
!! 〈ψ〉〈χ〉ϕ ↔ 〈〈ψ〉χ〉ϕ

Dual ♦K

i ϕ ↔ ¬�K

i ¬ϕ
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AKK �K

i ϕ → [ψ]K̂iϕ, where ψ ∈ EL

MP
ϕ ϕ → ψ

ψ

NECK
ϕ

Kiϕ

RM〈·〉
ϕ → ψ

〈χ〉ϕ → 〈χ〉ψ

RKb
η([ψ]K̂iϕ) for all ψ ∈ EL

η(�K

i ϕ)

A formula ϕ is a theorem of LK, or ϕ is provable in LK, notation
⊢ ϕ, if ϕ is either an instantiation of an axiom, or obtained by applying
inferences to axioms. We use Thm for the set of all theorems of LK.

Note that although our reduction axioms are different from the more
familiar ones from, e.g., [6, 28], we will show that they are provable from
ours (see Proposition 5.7).

Also note that we include Dual as an axiom. This is because we are
now using ♦K

i rather than �K

i as modal primitives. This is similar to
some case in the minimal normal modal logic, e.g. [7, Sec. 1.6], where
the possibility operator ♦ instead of the necessity operator � is used as
a modal primitive and ♦ϕ ↔ ¬�¬ϕ is used as an axiom. The axiom
Dual will be used later, namely in the proofs of RE (Proposition 5.6),
Proposition 5.12 and Proposition 5.13.

To see the intuition of AKK, we can use its dual form:

〈ψ〉Kiϕ → ♦K

i ϕ,where ψ ∈ EL,

also denoted AKK. Intuitively, this formula says that if ϕ is known after
some announcement, then ϕ is knowable.

Proposition 5.3. LK is sound with respect to the class of all frames.

Proof. By the soundness of public announcement logic, it remains only
to show the soundness of Dual, AKK and RKb. The soundness of Dual is
obtained from the semantics of ♦K

i and �K

i . The soundness of AKK is
straightforward by semantics of �K

i . To show the soundness of RKb, we
show a stronger result:

(∗) for all (M, s), if M, s � η([ψ]K̂iϕ)for all ψ ∈ EL,
then M, s � η(�K

i ϕ).

The proof proceeds by induction on the structure of admissible forms.
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Base case ♯. Since ♯([ψ]K̂iϕ) = [ψ]K̂iϕ and ♯(�K

i ϕ) = �K

i ϕ, (∗)
follows directly from the semantics of �K

i ϕ.
Inductive cases. We assume by induction hypothesis (IH) that (∗)

holds for η(♯), we show that (∗) also holds for the cases χ → η(♯), Kiη(♯)
and [χ]η(♯), as follows.

• Case χ → η(♯). Note that (χ → η(♯))([ψ]K̂iϕ) = χ → η([ψ]K̂iϕ)
and (χ → η(♯))(�K

i ϕ) = χ → η(�K

i ϕ). Our goal is to show that for
all (M, s), if M, s � χ → η([ψ]K̂iϕ) for all ψ ∈ EL, then M, s � χ →
η(�K

i ϕ). For this, suppose that M, s � χ → η([ψ]K̂iϕ) for all ψ ∈ EL

and M, s � χ, then M, s � η([ψ]K̂iϕ) for all ψ ∈ EL. By (IH), we infer
that M, s � η(�K

i ϕ), as desired.
• Case Kiη(♯). Note that (Kiη(♯))([ψ]K̂iϕ) = Kiη([ψ]K̂iϕ) and

(Kiη(♯))(�K

i ϕ) = Kiη(�K

i ϕ). Our goal is to show that for all (M, s), if
M, s � Kiη([ψ]K̂iϕ) for all ψ ∈ EL, then M, s � Kiη(�K

i ϕ). For this,
suppose that M, s � Kiη([ψ]K̂iϕ) for all ψ ∈ EL, and for any t in M
such that sRit, then M, t � η([ψ]K̂iϕ) for all ψ ∈ EL. By (IH), we derive
that M, t � η(�K

i ϕ). Therefore, M, s � Kiη(�K

i ϕ), as desired.
• Case [χ]η(♯). Note that ([χ]η(♯))([ψ]K̂iϕ) = [χ]η([ψ]K̂iϕ) and

([χ]η(♯))(�K

i ϕ) = [χ]η(�K

i ϕ). Our goal is to show that for all (M, s),
if M, s � [χ]η([ψ]K̂iϕ) for all ψ ∈ EL, then M, s � [χ]η(�K

i ϕ). For
this, suppose that M, s � [χ]η([ψ]K̂iϕ) for all ψ ∈ EL and M, s � χ,
then M|χ, s � η([ψ]K̂iϕ) for all ψ ∈ EL. By (IH), we obtain that
M|χ, s � η(�K

i ϕ). Therefore, M, s � [χ]η(�K

i ϕ), as desired. ⊣

5.2. Proof theoretical results

In this subsection we present some proof theoretical results for LK. Al-
most all proofs are in Appendix, as they are rather lengthy.

In the first place, some common alternative derivation rules are deriv-
able in the system LK (where Lemma 5.5 is essential in showing Propo-
sition 5.6).

Proposition 5.4. The following rule is derivable in LK:

RM[·]
ϕ → ψ

[χ]ϕ → [χ]ψ

Proof. We have the following derivation in LK:

(i) ϕ → ψ assumption
(ii) ¬ψ → ¬ϕ (i)

(iii) 〈χ〉¬ψ → 〈χ〉¬ϕ (ii), RM〈·〉
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(iv) ¬〈χ〉¬ϕ → ¬〈χ〉¬ψ (iii)
(v) [χ]ϕ → [χ]ψ (iv), Def.[·] ⊣

Lemma 5.5. For all ϕ, ψ and χ, if ⊢ ψ ↔ χ, then ⊢ 〈ψ〉ϕ ↔ 〈χ〉ϕ.

Proposition 5.6. The following rule called RE (for ‘replacement of

equivalents’) is derivable in LK:

ψ ↔ χ

ϕ(p/ψ) ↔ ϕ(p/χ)

Recall that the axiomatization of public announcement logic, denoted
PA, is given in e.g. [28, Sec. 4.8].

Proposition 5.7. PA ⊆ LK.

Proposition 5.8. The following axiom is provable:

AKK∗ 〈ψ〉Kiϕ → ♦Ki ϕ, where ψ ∈ PAL.

Proof. It is known that for any PAL-formula ψ, there is an EL-fomula
ψ′ such that � ψ ↔ ψ′. By the completeness of PA, we have ⊢PA ψ ↔ ψ′.
By Proposition 5.7, PA ⊆ LK, thus ⊢LK ψ ↔ ψ′. Then by AKK and RE,
AKK∗ is derivable. ⊣

Proposition 5.9. Let ϕ ∈ LK. ⊢ ϕ ↔ 〈⊤〉ϕ

Corollary 5.10. ⊢ [⊤]ϕ ↔ ϕ for all ϕ ∈ LK.

Proof. By Proposition 5.9, ⊢ 〈⊤〉¬ϕ ↔ ¬ϕ. Thus ⊢ ¬〈⊤〉¬ϕ ↔ ¬¬ϕ.
By Def. [·], we obtain ⊢ [⊤]ϕ ↔ ϕ. ⊣

Proposition 5.11. If ⊢ ϕ → ψ, then ⊢ �K

i ϕ → �K

i ψ.

Recall that in Proposition 3.8 and Proposition 3.12 we show that
� ♦K

i ♦
K

i ϕ → ♦K

i ϕ and � ♦K

i ϕ → ♦K

i ♦
K

i ϕ, respectively. We can also give
a syntactic proof of them.

Proposition 5.12. ⊢ ♦K

i ϕ → ♦K

i ♦
K

i ϕ

Proposition 5.13. ⊢ ♦K

i ♦
K

i ϕ → ♦K

i ϕ

We conclude this section with a derivable rule.

Proposition 5.14. The following rule is derivable in LK:

ϕ

♦K

i ϕ
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Proof. We have the following derivation in LK:

(i) ϕ assumption
(ii) Kiϕ (i), NECK

(iii) 〈⊤〉Kiϕ (ii), Proposition 5.9
(iv) ♦K

i ϕ (iii), AKK ⊣

For contrast, note that ϕ → ♦K

i ϕ is not derivable (see the remarks
before Proposition 3.4).

6. Completeness and Decidability

6.1. Completeness

This section deals with a demonstration of the completeness of LK. The
canonical model will be based on a notion of maximal consistent theory,
rather than the more familiar notion of maximal consistent set. The
reason of defining consistency for a theory rather than any set of for-
mulas, is because we need the clousure condition under RKb, which is
indispensable in the completeness proof.

Definition 6.1 (MCT). A set Γ of formulas is said to be a theory, if
besides containing Thm, it is also closed under the rules MP and RKb. A
theory Γ is said to be consistent, if ⊥ /∈ Γ ; Γ is said to be maximal, if
for all ϕ, ϕ ∈ Γ or ¬ϕ ∈ Γ . Γ is a maximal consistent theory (MCT), if
it is a theory which is consistent and maximal.

One may easily check that Thm is the smallest theory.
Define s + ϕ as {ψ | ϕ → ψ ∈ s}. We omit the proof details of the

following result.

Proposition 6.2. Let ϕ ∈ LK and s be a theory. Then

1. s+ ϕ is a theory, and s ∪ {ϕ} ⊆ s+ ϕ.

2. s+ ϕ is consistent iff ¬ϕ /∈ s.

Lindenbaum’s Lemma can be proven as [5, Lemma 4.12], with only
corresponding changes of the rule RKb. Thus we omit the proof details.

Lemma 6.3 (Lindenbaum’s Lemma). Every consistent theory can be

extended to a MCT.

Definition 6.4 (Canonical Model). The canonical model for LK is
Mc = 〈Sc, {Rci | i ∈ Ag}, V c〉, where
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• Sc is the set of all MCTs;
• For all i ∈ Ag, sRci t iff {ϕ | Kiϕ ∈ s} ⊆ t;
• V c(p) = {s ∈ Sc | p ∈ s}.

Using axioms T, 4 and 5, we can show that each Rci is an equivalence
relation. Thus Mc is indeed a model.

The following proposition can be shown as in [6, Lemma 7]. Thus
again, we omit the proof details.

Proposition 6.5. Let s ∈ Sc, ψ ∈ LK, and i ∈ Ag such that Kiψ /∈ s.
Then there exists t ∈ Sc such that sRci t and ψ /∈ t.

Lemma 6.6 (Truth Lemma). For all ϕ ∈ LK and s ∈ Sc, we have

Mc, s � ϕ ⇐⇒ ϕ ∈ s.

Proof. It is straightforward to show that <S♦ is a well-founded strict
partial order between formulas. Let ϕ ∈ LK and s ∈ Sc, we proceed
with <S♦-induction on ϕ, that is, with induction on the complexity of ϕ.

• ϕ = p. We have Mc, s � p ⇐⇒ s ∈ V c(p) Def. V c
⇐⇒ p ∈ s.

• ϕ = ¬ψ. Recall that ψ <S♦ ¬ψ (Proposition 2.6). We have

Mc, s � ¬ψ ⇐⇒ Mc, s 2 ψ

IH
⇐⇒ ψ /∈ s

⇐⇒ ¬ψ ∈ s.

• ϕ = ψ∧χ. Recall that ψ <S♦ ψ∧χ and χ <S♦ ψ∧χ (Proposition 2.6).
We have

Mc, s � ψ ∧ χ ⇐⇒ Mc, s � ψ and Mc, s � χ

IH
⇐⇒ ψ ∈ s and χ ∈ s

⇐⇒ ψ ∧ χ ∈ s.

• ϕ = Kiψ. Recall that ψ <S♦ Kiψ (Proposition 2.6). We have

Mc, s � Kiψ ⇐⇒ Mc, t � ψ for all t ∈ Rci (s)
IH

⇐⇒ ψ ∈ t for all t ∈ Rci (s)
(∗)

⇐⇒ Kiψ ∈ s.

The equivalence (∗) follows from the definition of Rci and Proposition 6.5.
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• ϕ = 〈ψ〉p. Recall that ψ <S♦ 〈ψ〉p and p <S♦ 〈ψ〉p (Proposition 2.6).
We have

Mc, s � 〈ψ〉p ⇐⇒ Mc, s � ψ and Mc, s � p

IH
⇐⇒ ψ ∈ s and p ∈ s

⇐⇒ ψ ∧ p ∈ s

Ax. !ATOM

⇐⇒ 〈ψ〉p ∈ s.

• ϕ = 〈ψ〉¬χ. Recall that ψ <S♦ 〈ψ〉¬χ and 〈ψ〉χ <S♦ 〈ψ〉¬χ (Propo-
sition 2.6). We have

Mc, s � 〈ψ〉¬χ ⇐⇒ Mc, s � ψ and Mc, s 2 〈ψ〉χ

IH
⇐⇒ ψ ∈ s and 〈ψ〉χ /∈ s

⇐⇒ ψ ∈ s and ¬〈ψ〉χ ∈ s

Ax. !NEG
⇐⇒ 〈ψ〉¬χ ∈ s.

• ϕ = 〈ψ〉(χ1 ∧χ2). Recall that 〈ψ〉χ1 <
S
♦ 〈ψ〉(χ1 ∧χ2) and 〈ψ〉χ2 <

S
♦

〈ψ〉(χ1 ∧ χ2) (Proposition 2.6). We have

Mc, s � 〈ψ〉(χ1 ∧ χ2) ⇐⇒ Mc, s � 〈ψ〉χ1 and Mc, s � 〈ψ〉χ2

IH
⇐⇒ 〈ψ〉χ1 ∈ s and 〈ψ〉χ2 ∈ s

⇐⇒ 〈ψ〉χ1 ∧ 〈ψ〉χ2 ∈ s

Ax. !CON
⇐⇒ 〈ψ〉(χ1 ∧ χ2) ∈ s.

• ϕ = 〈ψ〉Kiχ. Recall that ψ <S♦ 〈ψ〉Kiχ and Ki[ψ]ϕ <S♦ 〈ψ〉Kiχ
(Proposition 2.6). We have

Mc, s � 〈ψ〉Kiχ ⇐⇒ Mc, s � ψ and Mc, s � Ki[ψ]χ
IH

⇐⇒ ψ ∈ s and Ki[ψ]χ ∈ s

⇐⇒ ψ ∧ Ki[ψ]χ ∈ s

Ax. !CON
⇐⇒ 〈ψ〉Kiχ ∈ s.

• ϕ = 〈ψ〉〈χ〉δ. Recall that 〈〈ψ〉χ〉δ <S♦ 〈ψ〉〈χ〉δ (Proposition 2.6).
We have

Mc, s � 〈ψ〉〈χ〉δ ⇐⇒ Mc, s � 〈〈ψ〉χ〉δ

IH
⇐⇒ 〈〈ψ〉χ〉δ ∈ s

Ax. !!
⇐⇒ 〈ψ〉〈χ〉δ ∈ s.
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• ϕ = 〈ψ〉♦K

i χ. We have

Mc, s � 〈ψ〉♦K

i χ ⇐⇒ Mc, s � ψ and Mc|ψ, s � ♦K

i χ

⇐⇒ Mc, s � ψ, Mc|ψ, s � 〈δ〉Kiχ for some δ ∈ EL

⇐⇒ Mc, s � 〈ψ〉〈δ〉Kiχ for some δ ∈ EL

IH
⇐⇒ 〈ψ〉〈δ〉Kiχ ∈ s for some δ ∈ EL

(1)
⇐⇒ [ψ][δ]K̂i¬χ /∈ s for some δ ∈ EL

(∗∗)
⇐⇒ [ψ]�K

i ¬χ /∈ s

(2)
⇐⇒ 〈ψ〉♦K

i χ ∈ s.

Recall that 〈ψ〉〈δ〉Kiχ <
S
♦ 〈ψ〉♦K

i χ for any δ ∈ EL (Proposition 2.6),
thus we can use the induction hypothesis (IH) in the fourth step. In
(∗∗), the left-to-right direction follows from Axiom AKK and rule RM[·],
and the other direction is because s is closed under the rule RKb for the
admissible form [ψ]♯. (1) and (2) hold due to the maximal consistency
of s.

• ϕ = ♦K

i ψ. We have

Mc, s � ♦K

i ψ ⇐⇒ Mc, s � 〈χ〉Kiψ for some χ ∈ EL

IH
⇐⇒ 〈χ〉Kiψ ∈ s for some χ ∈ EL

(a)
⇐⇒ [χ]K̂i¬ψ /∈ s for some χ ∈ EL

(∗∗∗)
⇐⇒ �K

i ¬ψ /∈ s

(b)
⇐⇒ ♦K

i ψ ∈ s.

Recall that 〈χ〉Kiψ <S♦ ♦K

i ψ for any χ ∈ EL (Proposition 2.6), thus
we can use the induction hypothesis (IH) in the second step. The equiv-
alence (∗∗∗) is due to Axiom AKK and the fact that s is closed under the
rule RKb for the possible form ♯. (a) and (b) hold because of the maximal
consistency of s. ⊣

With the Truth Lemma in mind, we obtain the completeness theorem
as usual.

Theorem 6.7 (Completeness Theorem). LK is sound and complete with

respect to the class of frames. That is, if � ϕ, then ⊢ ϕ.
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Proof. The soundness is immediate. For the completeness, suppose
0 ϕ, i.e. ϕ /∈ Thm. Since Thm is a theory, it is closed under MP, thus
¬¬ϕ /∈ Thm. By Proposition 6.2, Thm + {¬ϕ} is a consistent theory
and ¬ϕ ∈ Thm + {¬ϕ}. By Lindenbaum’s Lemma (Lemma 6.3), there
exists t ∈ Sc with Thm + {¬ϕ} ⊆ t, and thus ¬ϕ ∈ t, that is, ϕ /∈ t. Due
to the Truth Lemma (Lemma 6.6), we obtain Mc, t 2 ϕ. Moreover, as
remarked before, Mc is a model. Therefore 2 ϕ. ⊣

6.2. Decidability

Recall that the satisfiability problem of APAL is shown to be undecidable
when there are at least two agents [2, 14]. The approach is by reducing an
undecidable tiling problem into APAL [2]. Following the same approach,
we may infer that LK is also undecidable when there are at least three
agents. We will sketch the main idea of the proof.

In [2] an APAL-formula ϕ is defined such that a certain finite set of
tiles Γ tiles the infinite plain N × N, if and only if ϕ is satisfiable on a
certain model M defined for two agents a and b. We can transform ϕ into
an LK-formula ψ by substituting all quantifiers � in ϕ for knowability
operators �K

i , and we can change the model M into a model MLK that is
the same as M except that we add another agent i that has the identity
relation on the domain. Since for any state t in the model, t has itself
as the only i-successor, it follows for any subformula θ of ϕ:

MLK � θ ↔ K̂iθ

For example, a constituent of the formula ϕ is:

capal(♥) := ♥ → �(Ks(r → (Ke(l → (Ks(u → Ke(d →

Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))))

It is transformed into:

clk(♥) := ♥ → �K

i (Ks(r → (Ke(l → (Ks(u → Ke(d →

Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))))

and MLK , t � clk(♥) if and only if M, t � capal(♥).
This may sufficiently demonstrate that a detailed proof of the unde-

cidability of the satisfiability of LK would be nearly identical to the proof
in [2]. Therefore, LK is undecidable for at least three agents. Whether
LK is decidable for only two agents needs further investigation.

In what follows, we will give two decidable knowability logics.
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7. Decidable knowability logics

7.1. Logic LK=

We recall that the language of the logic LK= was defined as the fragment

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦K

i ϕ

In this fragment we can no longer quantify over all epistemic formulas,
but, for a similar treatment of the quantifier, over all Booleans only. Its
semantics are:

M, s � ♦K

i ϕ ⇐⇒ there is a ψ ∈ PL such that
M, s � ψ and for all t ∈ Ri(s),M|ψ, t � ϕ

This quantification is therefore like the one in so-called Boolean arbitrary
public announcement logic BAPAL [24] (where again ♦Kiϕ corresponds
to ♦K

i ϕ).

M, s � ♦ϕ ⇐⇒ there is ψ ∈ PL such that M, s � ψ and M|ψ, s � ϕ

As the semantics of the quantifier in LK= are different, the properties of
the quantifier ♦K

i that were observed in Section 3 now have to be shown
again. It is straightforward that ♦K

i ϕ implies ♦ϕ.
It may be interesting and surprising to see that the knowability oper-

ators are dispensable in classical propositional logic. That is to say, the
addition of knowability operators does not increase the expressive power
of classical propositional logic.

Proposition 7.1. LK= is equally expressive as PL.

Proof. As LK= extends PL, LK= is at least as expressive as PL. It
suffices to prove that PL is at least as expressive as LK.

For this, let ϕ be a formula in the language of LK=. We prove that
ϕ is equivalent to a formula in PL. The proof is by induction on the
number of ♦K

i modalities in ϕ.
If ϕ contains no ♦K

i modality, then ϕ is already in PL, and we are
done. Otherwise, consider a subformula ♦K

i ψ of ϕ such that ψ ∈ PL.
We first show that � ♦K

i ψ ↔ ψ.
Let M = 〈S,R, V 〉 and s ∈ S be given.
Assume that M, s � ♦K

i ψ. By definition, there is a χ ∈ PL such that
M, s � χ and for all t ∈ Ri(s), M|χ, t � ψ. In particular, M|χ, s � ψ.
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Therefore, as ψ is Boolean and as the valuation does not change after
model restriction, we have M, s � ψ.

Conversely, assume that M, s � ψ. Consider the characteristic for-
mula δψs defined as in the proof of Thm. 3.2. Then M, s � δψs , and also
M|

δ
ψ
s
, s � ψ. As the valuation of the variables in ψ is constant on M|

δ
ψ
s

,
it follows from Proposition 3.1 that M|

δ
ψ
s
� ψ, and therefore M|

δ
ψ
s
, t � ψ

for all t ∈ Ri(s). From that and M, s � δψs it follows by semantics that
M, s � ♦K

i ψ.
This proves � ♦K

i ψ ↔ ψ. Now replace ♦K

i ψ by ψ in ϕ. Let the result
be ϕ′. Note that � ϕ ↔ ϕ′. As ϕ′ contains one less knowability modality
than ϕ, by induction hypothesis we can conclude that ϕ′ is equivalent
to a Boolean formula ϕ′′. From � ϕ ↔ ϕ′ and � ϕ′ ↔ ϕ′′ it follows that
� ϕ ↔ ϕ′′. ⊣

It may be instructive to present an example.

Example 7.2. We will show that the formula ♦K

i ♦
K

j (�K

k (p → q)∨�K

k ¬r),
read “it is knowable for i that it is knowable for j that either it is
unknowable for k that p does not imply q or it is unknowable for k that
r”, is equivalent to a Boolean formula. The proof is as follows:

♦K

i ♦
K

j (�K

k (p → q) ∨ �K

k ¬r) ↔ ♦K

i ♦
K

j (¬♦K

k ¬(p → q) ∨ ¬♦K

k ¬¬r)

↔ ♦K

i ♦
K

j (¬¬(p → q) ∨ ¬¬¬r)

↔ ♦K

i ♦
K

j ((p → q) ∨ ¬r)

↔ ♦K

i ((p → q) ∨ ¬r)

↔ (p → q) ∨ ¬r

In what follows, we show the properties of Church-Rosser and McK-
insey hold for LK=. For this, we define a translation from LK= to PL.

Definition 7.3. Define t : LK= → PL as follows.

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(♦K

i ϕ) = t(ϕ).

Intuitively, t removes every occurrence of ♦K

i in the formulas of LK=.

It is straightforward to compute that t(�K

i ϕ) = ¬¬t(ϕ).
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This translation helps us show the properties of Church-Rosser and
McKinsey holds for LK

=, namely, ♦K

i �
K

i ϕ → �K

i ♦
K

i ϕ and �K

i ♦
K

i ϕ →
♦K

i �
K

i ϕ, respectively, are valid on the semantics of LK
=. To see this,

we first show the following result.

Lemma 7.4. For all ϕ ∈ LK
=, we have

� ϕ ↔ t(ϕ).

Proof. By induction on ϕ ∈ LK
=.

• ϕ = p ∈ P. Since t(p) = p, we obviously have � p ↔ t(p).
• ϕ = ¬ψ. By induction hypothesis, � ψ ↔ t(ψ). Then � ¬ψ ↔

t(¬ψ).
• ϕ = ψ ∧ χ. By induction hypothesis, � ψ ↔ t(ψ) and � χ ↔ t(χ).

Then � (ψ ∧ χ) ↔ t(ψ ∧ χ).
• ϕ = ♦K

i ψ. By induction hypothesis, � ψ ↔ t(ψ). Then � ♦K

i ψ ↔
♦K

i t(ψ). Since t(ψ) ∈ PL, by the proof of Proposition 7.1, � ♦K

i t(ψ) ↔
t(ψ). This follows that � ♦K

i ψ ↔ t(ψ).3 As t(♦K

i ψ) = t(ψ), we conclude
that � ♦K

i ψ ↔ t(♦K

i ψ). ⊣

Theorem 7.5 (CR and MK). � ♦K

i �
K

i ϕ ↔ �K

i ♦
K

i ϕ.

Proof. Note that t(♦K

i �
K

i ϕ) = t(�K

i ϕ) = ¬¬t(ϕ) and t(�K

i ♦
K

i ϕ) =
¬¬t(♦K

i ϕ) = ¬¬t(ϕ). Thus t(♦K

i �
K

i ϕ) = t(�K

i ♦
K

i ϕ). By Lemma 7.4, we
have � ♦K

i �
K

i ϕ ↔ t(♦K

i �
K

i ϕ) and � �K

i ♦
K

i ϕ ↔ t(�K

i ♦
K

i ϕ). Therefore,
� ♦K

i �
K

i ϕ ↔ �K

i ♦
K

i ϕ. ⊣

Now we add an axiomatization for LK=. In retrospect, Lemma 7.4
essentially gives us the following reduction-like axiom (denoted Red):

♦K

i ϕ ↔ ϕ.

Intuitively, Red removes all ♦K

i operators from formulas in LK= within
finitely many steps.

We use LK
= to denote PL+ Red, in which PL is the classical propo-

sitional calculus. In what follows, we will show that LK
= is determined

by the class of frames. For this, we first need an important result.

Lemma 7.6. For all ϕ ∈ LK=, we have ⊢ ϕ ↔ t(ϕ).

3 Note that Proposition 7.1 only shows that � ♦
K

i χ ↔ χ holds for every χ ∈ PL,
but it does not show this statement holds for any LK=-formula. This is what we are
doing here.
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Proof. By induction on ϕ ∈ LK=.
• ϕ = p ∈ P. As t(p) = p, we have ⊢ p ↔ t(p).
• ϕ = ¬ψ. By induction hypothesis, ⊢ ψ ↔ t(ψ), and thus ⊢ ¬ψ ↔

¬t(ψ), that is, ⊢ ¬ψ ↔ t(¬ψ).
• ϕ = ψ ∧ χ. By induction hypothesis, we have ⊢ ψ ↔ t(ψ) and

⊢ χ ↔ t(χ). Therefore, ⊢ (ψ ∧ χ) ↔ t(ψ ∧ χ).
• ϕ = ♦K

i ψ. By induction hypothesis, ⊢ ψ ↔ t(ψ). By axiom
Red, ⊢ ♦K

i ψ ↔ ψ. Moreover, t(♦K

i ψ) = t(ψ). Then we conclude that
⊢ ♦K

i ψ ↔ t(♦K

i ψ). ⊣

Theorem 7.7. LK
= is sound and complete with respect to the class of

all frames.

Proof. For the soundness, it remains only to show the validity of axiom
Red. By Lemma 7.4, � ♦K

i ϕ ↔ t(♦K

i ϕ) and � ϕ ↔ t(ϕ). As t(♦K

i ϕ) =
t(ϕ), we therefore obtain � ♦K

i ϕ ↔ ϕ.
As for the completeness, suppose � ϕ, then by Lemma 7.4, � t(ϕ).

Since t(ϕ) ∈ PL, by the completeness of PL, ⊢PL t(ϕ). Since PL ⊆ LK
=,

then ⊢ t(ϕ). Now using Lemma 7.6, we conclude that ⊢ ϕ, as desired. ⊣

Remark 7.8. With axiom Red in hand, we can even give a syntactic proof
of CR and MK in LK

= (without use of completeness), because we can
derive that ⊢ ♦K

i ϕ ↔ ϕ and ⊢ �K

i ϕ ↔ ϕ. Therefore, both ♦K

i �
K

i ϕ and
�K

i ♦
K

i ϕ are provably equivalent to ϕ. Therefore, ⊢ ♦K

i �
K

i ϕ ↔ �K

i ♦
K

i ϕ.

7.2. Logic LK−

One may naturally ask whether the announcement operators increase the
expressivity in LK=. Again, the answer is negative. Recall that when
the announcement operators are added to LK=, we obtain the language
LK−. In other words, LK− is defined recursively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈ϕ〉ϕ | ♦K

i ϕ

Proposition 7.9. LK− is equally expressive as PL.

Proof. As LK− extends PL, LK− is at least as expressive as PL. It
suffices to show that PL is at least as expressive as LK−.

For this, let ϕ be a formula in the language of LK−. We show that
ϕ is equivalent to a formula in PL. The proof is by induction on the
number of 〈·〉 modalities in ϕ.
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If ϕ contains no 〈·〉 modality, then ϕ is a formula in the language of
LK=. As we shown in Proposition 7.1, ϕ is equivalent to a PL-formula.
Otherwise, consider a subformula 〈χ〉ψ of ϕ such that ψ, χ ∈ LK=. By
Proposition 7.1 again, each of ψ and χ is equivalent to some PL-formula.
Then by using the reduction axioms concerning announcements and
Boolean formulas, we can infer that 〈χ〉ψ is equivalent to a PL-formula,
namely χ ∧ ψ. Now replace 〈χ〉ψ by χ ∧ ψ in ϕ. Let the result be ϕ′.
Note that � ϕ ↔ ϕ′. As ϕ′ contains one less 〈·〉 modality than ϕ, by
induction hypothesis we conclude that ϕ′ is equivalent to a formula ϕ′′

in PL. From � ϕ ↔ ϕ′ and � ϕ′ ↔ ϕ′′, it follows that � ϕ ↔ ϕ′′. ⊣

Also, we give a concrete example to illustrate the result.

Example 7.10. We will show that the formula ♦K

i 〈p〉♦K

j 〈♦K

i (q ∧ r)〉(p →
q), read “it is knowable for i that after a truthful announcement of p, it
is knowable for j that after a truthful announcement of the fact that the
conjunction of q and r is knowable for i, p implies q”, is equivalent to a
Boolean formula, as follows:

♦K

i 〈p〉♦K

j 〈♦K

i (q ∧ r)〉(p → q) ↔ ♦K

i 〈p〉♦K

j 〈q ∧ r〉(p → q)

↔ ♦K

i 〈p〉♦K

j ((q ∧ r) ∧ (p → q))

↔ ♦K

i 〈p〉((q ∧ r) ∧ (p → q))

↔ ♦K

i (p ∧ (q ∧ r) ∧ (p → q))

↔ p ∧ (q ∧ r) ∧ (p → q)

↔ p ∧ q ∧ r

Also, we can axiomatize LK− over the class of all frames. Define
LK

− as the smallest extension of LK= plus the following axiom Red’:

〈ϕ〉ψ ↔ (ϕ ∧ ψ).

In what follows, we show the properties of Church-Rosser and McK-
insey also hold for LK−. For this, we define a translation from LK− to
PL.

Definition 7.11. Define t′ : LK− → PL as follows.

t′(p) = p
t′(¬ϕ) = ¬t′(ϕ)
t′(ϕ ∧ ψ) = t′(ϕ) ∧ t′(ψ)
t′(〈ϕ〉ψ) = t′(ϕ) ∧ t′(ψ)
t′(♦K

i ϕ) = t′(ϕ)
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That is, t′ extends t for the fragment LK= in Def. 7.3 with the extra
case 〈ϕ〉ψ.

Lemma 7.12. For all ϕ ∈ LK−, we have � ϕ ↔ t′(ϕ).

Proof. By induction on ϕ ∈ LK−. By Lemma 7.4, it suffices to show
the case that ϕ = 〈ψ〉χ.

By induction hypothesis, � ψ ↔ t′(ψ) and � χ ↔ t′(χ). Thus
� 〈ψ〉χ ↔ 〈t′(ψ)〉t′(χ). Since t′(χ) ∈ PL, � 〈t′(ψ)〉t′(χ) ↔ (t′(ψ)∧ t′(χ)).
As t′(〈ψ〉χ) = t′(ψ) ∧ t′(χ), we conclude that � 〈ψ〉χ ↔ t′(〈ψ〉χ). ⊣

Then as in Theorem 7.5, we can show that the properties of Church-
Rosser and McKinsey hold for LK−.

Theorem 7.13 (CR and MK). � ♦K

i �
K

i ϕ ↔ �K

i ♦
K

i ϕ.

In what follows, we will also show that LK
− is determined by the

class of all frames. For this, we show

Lemma 7.14. For all ϕ ∈ LK−, we have ⊢ ϕ ↔ t′(ϕ).

Proof. By induction on ϕ ∈ LK−. The cases for ϕ ∈ LK= formulas is
similar as in Lemma 7.6. It remains only to prove the case that ϕ = 〈ψ〉χ.

By induction hypothesis, ⊢ ψ ↔ t′(ψ) and ⊢ χ ↔ t′(χ). Thus
⊢ (ψ ∧ χ) ↔ (t′(ψ) ∧ t′(χ)). By axiom Red’ and definition of t′, we
derive that ⊢ 〈ψ〉χ ↔ t′(〈ψ〉χ). ⊣

Theorem 7.15. LK
− is sound and complete with respect to the class of

all frames.

Proof. For the soundness, by Theorem 7.7, it suffices to show the va-
lidity of axiom Red’. By Lemma 7.12, � 〈ϕ〉ψ ↔ t′(〈ϕ〉ψ), � ϕ ↔ t′(ϕ),
and � ψ ↔ t′(ψ). By definition of t′, t′(〈ϕ〉ψ) = t′(ϕ) ∧ t′(ψ). Therefore,
� 〈ϕ〉ψ ↔ (ϕ ∧ ψ).

As for the completeness, suppose � ϕ, then by Lemma 7.12, � t(ϕ).
Since t(ϕ) ∈ PL, by the completeness of PL, ⊢PL t

′(ϕ). Since PL ⊆ LK
−,

we have ⊢ t′(ϕ). Now using Lemma 7.14, we conclude that ⊢ ϕ, as
desired. ⊣

Similar to Remark 7.8, we can also give a syntactic proof of CR and
MK in LK− without use of completeness.

As both LK= and LK− are equally expressive as PL, and PL is
decidable, we have the following decidability result.

Theorem 7.16. LK= and LK− are both decidable.
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8. Conclusion and future work

In this paper, we proposed three knowability logics, namely LK, LK−

and LK=. We compared the relative expressivity of the three logics and
other related logics. It turns out that in the single-agent case, LK is
equally expressive as arbitrary public announcement logic APAL and
public announcement logic PAL, whereas in the multi-agent case, LK is
more expressive than PAL. In contrast, both LK− and LK= are equally
expressive as classical propositional logic PL. We axiomatized the three
knowability logics and showed their soundness and completeness. We
showed that the properties of Church-Rosser (CR) and McKinsey (MK)
holds for all three knowability logics, both syntactically and semantically.
LK is undecidable for at least three agents; in contrast, LK− and LK=

are both decidable for any number of agents.
We currently see three topics for future research.
Firstly, one may investigate whether LK is already undecidable for

only two agents.
Secondly, we would wish to determine whether LK is less expres-

sive than APAL. We have a proof that LK < APAL on the class of
reflexive models, but we have not yet managed to modify this proof to
work with S5 models. The issue with S5 models is that they provide
far less freedom to make certain states distinguishable while others are
indistinguishable. For example, if s1 and s2 in an S5 model are distin-
guishable and t1 and t2 are a-successors of s1 and s2, respectively, and
only of those states, then t1 and t2 cannot be indistinguishable. As a
consequence, potential S5 counterexamples to LK being as expressive
as APAL need to be for more complex than the counterexamples for
reflexive models, and are therefore harder to find. We do still conjecture
that such counterexamples exist, and therefore that LK < APAL on S5

models, but so far we have not managed to find them.
Finally, an remaining important open question is what the axiom-

atization is of the logic with the language of LK but without public
announcements, so that the semantics of the quantifier is given directly
(and equivalently). A similar open question remains for the logic APAL

but without the public announcement in the language (see also [25] where
this is discussed at some length). In such cases, we can no longer resort
to the public announcement in the axiom and in the derivation rule for
the quantifier, and it is very unclear how to proceed alternatively.
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Appendix

This appendix deals with the proof details in Section 5.2.

Proof of Lemma 5.5. Assume that ⊢ ψ ↔ χ, to show that ⊢ 〈ψ〉ϕ ↔
〈χ〉ϕ. The proof goes by induction on the complexity of ϕ (recall that
the notion of the complexity of a formula is given in Definition 2.5).

Case p. We have the following derivation in LK:

(i) 〈ψ〉p ↔ (ψ ∧ p) !ATOM

(ii) 〈χ〉p ↔ (χ ∧ p) !ATOM

(iii) (ψ ∧ p) ↔ (χ ∧ p) assumption
(iv) 〈ψ〉p ↔ 〈χ〉p (i)–(iii)

Case ¬ϕ. Recall that ϕ is less complex than ¬ϕ (Proposition 2.6).
By induction hypothesis (IH), ⊢ 〈ψ〉ϕ ↔ 〈χ〉ϕ. We have the following
derivation in LK:

(i) 〈ψ〉¬ϕ ↔ (ψ ∧ ¬〈ψ〉ϕ) !NEG

(ii) 〈χ〉¬ϕ ↔ (χ ∧ ¬〈χ〉ϕ) !NEG

(iii) (ψ ∧ ¬〈ψ〉ϕ) ↔ (χ ∧ ¬〈χ〉ϕ) assumption, IH
(iv) 〈ψ〉¬ϕ ↔ 〈χ〉¬ϕ (i)–(iii)

Case ϕ1 ∧ ϕ2. Recall that both ϕ1 and ϕ2 are less complex than
ϕ1 ∧ ϕ2 (Proposition 2.6). By induction hypothesis (IH), ⊢ 〈ψ〉ϕ1 ↔
〈χ〉ϕ1 and ⊢ 〈ψ〉ϕ2 ↔ 〈χ〉ϕ2. We have the following derivation in LK:

(i) 〈ψ〉(ϕ1 ∧ ϕ2) ↔ (〈ψ〉ϕ1 ∧ 〈ψ〉ϕ2) !CON

(ii) 〈χ〉(ϕ1 ∧ ϕ2) ↔ (〈χ〉ϕ1 ∧ 〈χ〉ϕ2) !CON

https://doi.org/10.1111/j.1755-2567.2011.01119.x
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(iii) 〈ψ〉ϕ1 ↔ 〈χ〉ϕ1 IH
(iv) 〈ϕ〉ϕ2 ↔ 〈χ〉ϕ2 IH
(v) (〈ψ〉ϕ1 ∧ 〈ψ〉ϕ2) ↔ (〈χ〉ϕ1 ∧ 〈χ〉ϕ2) (iii), (iv)

(vi) 〈ψ〉(ϕ1 ∧ ϕ2) ↔ 〈χ〉(ϕ1 ∧ ϕ2) (i), (ii), (v)

Case Kiϕ. Recall that ϕ is less complex than Kiϕ (Proposition 2.6).
By induction hypothesis (IH), ⊢ 〈ψ〉ϕ ↔ 〈χ〉ϕ. We have the following
derivation in LK:

(i) 〈ψ〉Kiϕ ↔ (ψ ∧ Ki[ψ]ϕ) !K

(ii) 〈χ〉Kiϕ ↔ (χ ∧ Ki[χ]ϕ) !K

(iii) 〈ψ〉ϕ ↔ 〈χ〉ϕ IH
(iv) 〈ψ〉¬ϕ ↔ 〈χ〉¬ϕ (iii), similar to the case ¬ϕ
(v) [ψ]ϕ ↔ [χ]ϕ (iv), Def.[·]

(vi) Ki[ψ]ϕ ↔ Ki[χ]ϕ (v), NECK, K, MP

(vii) (ψ ∧ Ki[ψ]ϕ) ↔ (χ ∧ Ka[χ]ϕ) (vi), assumption
(viii) 〈ψ〉Kiϕ ↔ 〈χ〉Kiϕ (i), (ii), (vii)

Case 〈ϕ1〉ϕ2. Recall that ϕ1 is less complex than 〈ϕ1〉ϕ2 (Proposi-
tion 2.6). By induction hypothesis (IH), ⊢ 〈ψ〉ϕ1 ↔ 〈χ〉ϕ1. We have the
following derivation in LK:

(i) 〈ψ〉〈ϕ1〉ϕ2 ↔ 〈〈ψ〉ϕ1〉ϕ2 !!

(ii) 〈χ〉〈ϕ1〉ϕ2 ↔ 〈〈χ〉ϕ1〉ϕ2 !!

(iii) 〈ψ〉ϕ1 ↔ 〈χ〉ϕ1 IH
(iv) 〈〈ψ〉ϕ1〉ϕ2 ↔ 〈〈χ〉ϕ1〉ϕ2 IH by (iii)
(v) 〈ψ〉〈ϕ1〉ϕ2 ↔ 〈χ〉〈ϕ1〉ϕ2 (i), (ii), (iv)

Case ♦K

i ϕ. Let θ be any EL-formula. Recall that 〈θ〉Kiϕ is less
complex than ♦K

i ϕ (Proposition 2.6), and thus ¬[θ]K̂i¬ϕ is less ex-
pressive than ♦K

i ϕ. By induction hypothesis (IH), ⊢ 〈ψ〉¬[θ]K̂i¬ϕ ↔
〈χ〉¬[θ]K̂i¬ϕ. Then ⊢ ¬〈ψ〉¬[θ]K̂i¬ϕ ↔ ¬〈χ〉¬[θ]K̂i¬ϕ. By Def. [·],
⊢ [ψ][θ]K̂i¬ϕ ↔ [χ][θ]K̂i¬ϕ. We denote this by (∗). Then we have the
following derivation in LK:

(i) �K

i ¬ϕ → [θ]K̂i¬ϕ AKK

(ii) [ψ]�K

i ¬ϕ → [ψ][θ]K̂i¬ϕ (i), RM[·] (Proposition 5.4)
(iii) [ψ]�K

i ¬ϕ → [χ][θ]K̂i¬ϕ (ii), (∗)
(iv) [ψ]�K

i ¬ϕ → [χ]�K

i ¬ϕ (iii), RKb

(v) 〈χ〉♦K

i ϕ → 〈ψ〉♦K

i ϕ (iv)
(vi) 〈ψ〉♦K

i ϕ → 〈χ〉♦K

i ϕ similar to the proof of (v)
(vii) 〈ψ〉♦K

i ϕ ↔ 〈χ〉♦K

i ϕ (v), (vi) ⊣
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Proof of Proposition 5.6. Assume that ⊢ ψ ↔ χ. Then, by induc-
tion on the complexity of ϕ, we show ⊢ ϕ(p/ψ) ↔ ϕ(p/χ). Recall that
the notion of complexity is given in Definition 2.5.

• ϕ = p. Then ϕ(p/ψ) = ψ and ϕ(p/χ) = χ. By assumption, we
have immediately that ⊢ ϕ(p/ψ) ↔ ϕ(p/χ).

• ϕ = q 6= p. Then ϕ(p/ψ) = ϕ(p/χ) = q. It is then clear that
⊢ ϕ(p/ψ) ↔ ϕ(p/χ).

• ϕ = ¬θ. Then ϕ(p/ψ) = ¬θ(p/ψ) and ϕ(p/χ) = ¬θ(p/χ). Since θ
is less complex than ϕ (Proposition 2.6), by induction hypothesis (IH),
⊢ θ(p/ψ) ↔ θ(p/χ). Then ⊢ ¬θ(p/ψ) ↔ ¬θ(p/χ).

• ϕ = ϕ1 ∧ ϕ2. Then ϕ(p/ψ) = ϕ1(p/ψ) ∧ ϕ2(p/ψ) and ϕ(p/χ) =
ϕ1(p/χ)∧ϕ2(p/χ). Since both ϕ1 and ϕ2 are less complex than ϕ (Propo-
sition 2.6), by induction hypothesis (IH), ⊢ ϕ1(p/ψ) ↔ ϕ1(p/χ) and
⊢ ϕ2(p/ψ) ↔ ϕ2(p/χ). Then ⊢ ϕ(p/ψ) ↔ ϕ(p/χ).

• ϕ = Kiθ. Then ϕ(p/ψ) = Kiθ(p/ψ) and ϕ(p/χ) = Kiθ(p/χ). Since
θ is less complex than ϕ, by induction hypothesis (IH), ⊢ θ(p/ψ) ↔
θ(p/χ). Then using NECK, K and MP, we obtain that ⊢ ϕ(p/ψ) ↔ ϕ(p/χ).

• ϕ = 〈ϕ1〉ϕ2. Then ϕ(p/ψ) = 〈ϕ1(p/ψ)〉ϕ2(p/ψ) and ϕ(p/χ) =
〈ϕ1(p/χ)〉ϕ2(p/χ). Since both ϕ1 and ϕ2 are less complex than ϕ (Propo-
sition 2.6), by induction hypothesis (IH), ⊢ ϕ1(p/ψ) ↔ ϕ1(p/χ) and
⊢ ϕ2(p/ψ) ↔ ϕ2(p/χ). From the former and Lemma 5.5, it follows
that ⊢ 〈ϕ1(p/ψ)〉ϕ2(p/ψ) ↔ 〈ϕ1(p/χ)〉ϕ2(p/ψ); from the latter and
RM〈·〉, it follows that ⊢ 〈ϕ1(p/χ)〉ϕ2(p/ψ) ↔ 〈ϕ1(p/χ)〉ϕ2(p/χ). Then
⊢ ϕ(p/ψ) ↔ ϕ(p/χ).

• ϕ = ♦K

i θ. Then ϕ(p/ψ) = ♦K

i θ(p/ψ) and ϕ(p/χ) = ♦K

i θ(p/χ). Let
η be any EL-formula. By Proposition 2.6, 〈η〉Kiθ is less complex than
ϕ, so is [η]K̂i¬θ. Then by induction hypothesis (IH), ⊢ [η]K̂i¬θ(p/ψ) ↔
[η]K̂i¬θ(p/χ). We then have the following derivation in LK:

(i) �K

i ¬θ(p/χ) → [η]K̂i¬θ(p/χ) AKK

(ii) �K

i ¬θ(p/χ) → [η]K̂i¬θ(p/ψ) (i), IH
(iii) �K

i ¬θ(p/χ) → �K

i ¬θ(p/ψ) (ii), RKb

(iv) ¬�K

i ¬θ(p/ψ) → ¬�K

i ¬θ(p/χ) (iii)
(v) ♦K

i θ(p/ψ) → ♦K

i θ(p/χ) (iv), Dual

(vi) ♦K

i θ(p/χ) → ♦K

i θ(p/ψ) similar to the proof of (v)
(vii) ♦K

i θ(p/ψ) ↔ ♦K

i θ(p/χ) (v),(vi) ⊣

Proof of Proposition 5.7. We need only show the reduction axioms
of PA are derivable in LK:
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[ϕ]p ↔ ¬〈ϕ〉¬p Def. [·]

↔ ¬(ϕ ∧ ¬〈ϕ〉p) !NEG

↔ ¬(ϕ ∧ ¬(ϕ ∧ p)) !ATOM

↔ (ϕ → p) TAUT

[ϕ]¬ψ ↔ ¬〈ϕ〉¬¬ψ Def. [·]

↔ ¬(ϕ ∧ ¬〈ϕ〉¬ψ) !NEG

↔ ¬(ϕ ∧ [ϕ]ψ) Def. [·]

↔ (ϕ → ¬[ϕ]ψ) TAUT

[ϕ](ψ ∧ χ) ↔ ¬〈ϕ〉¬(ψ ∧ χ) Def. [·]

↔ ¬(ϕ ∧ ¬〈ϕ〉(ψ ∧ χ)) !NEG

↔ ¬(ϕ ∧ ¬(〈ϕ〉ψ ∧ 〈ϕ〉χ)) !CON

↔ ¬((ϕ ∧ ¬〈ϕ〉ψ) ∨ (ϕ ∧ ¬〈ϕ〉χ)) TAUT

↔ ¬(〈ϕ〉¬ψ ∨ 〈ϕ〉¬χ) !NEG

↔ ([ϕ]ψ ∧ [ϕ]χ) TAUT,Def. [·]

[ϕ]Kiψ ↔ ¬〈ϕ〉¬Kiψ Def. [·]

↔ ¬(ϕ ∧ ¬〈ϕ〉Kiψ) !NEG

↔ ¬(ϕ ∧ ¬(ϕ ∧ Ki[ϕ]ψ)) !K

↔ (ϕ → ϕ ∧ Ki[ϕ]ψ) TAUT

↔ (ϕ → Ki[ϕ]ψ) TAUT

[ϕ][ψ]χ ↔ ¬〈ϕ〉¬¬〈ψ〉¬χ Def. [·]

↔ ¬〈ϕ〉〈ψ〉¬χ RM〈·〉

↔ ¬〈〈ϕ〉ψ〉¬χ !!

↔ ¬〈ϕ ∧ [ϕ]ψ〉¬χ

↔ [ϕ ∧ [ϕ]ψ]χ Def. [·]

where the penultimate ‘↔’ follows from ⊢ 〈ϕ〉ψ ↔ (ϕ ∧ [ϕ]ψ) and
Lemma 5.5. The proof for ⊢ 〈ϕ〉ψ ↔ (ϕ ∧ [ϕ]ψ) is as follows:

〈ϕ〉ψ ↔ 〈ϕ〉¬¬ψ TAUT, RM〈·〉

↔ (ϕ ∧ ¬〈ϕ〉¬ψ) !NEG

↔ (ϕ ∧ [ϕ]ψ) Def. [·] ⊣
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Proof of Proposition 5.9. By induction on the complexity of LK-
formulas ϕ (recall the notion of complexity of a formula is given in
Definition 2.5).

Case p.

(i) 〈⊤〉p ↔ (⊤ ∧ p) !ATOM

(ii) (⊤ ∧ p) ↔ p TAUT

(iii) 〈⊤〉p ↔ p (i), (ii)

Case ¬ϕ. Recall that ϕ is less complex than ¬ϕ, that is, ϕ <S♦ ¬ϕ
(Proposition 2.6). By induction hypothesis (IH), ⊢ 〈⊤〉ϕ ↔ ϕ

(i) 〈⊤〉¬ϕ ↔ (⊤ ∧ ¬〈⊤〉ϕ) !NEG

(ii) (⊤ ∧ ¬〈⊤〉ϕ) ↔ ¬〈⊤〉ϕ TAUT

(iii) 〈⊤〉¬ϕ ↔ ¬〈⊤〉ϕ (i), (ii)
(iv) 〈⊤〉ϕ ↔ ϕ IH
(v) 〈⊤〉¬ϕ ↔ ¬ϕ (iii), (iv)

Case ϕ ∧ ψ. Recall that both ϕ and ψ are less complex than ϕ ∧
ψ (Proposition 2.6). By induction hypothesis (IH), ⊢ 〈⊤〉ϕ ↔ ϕ and
⊢ 〈⊤〉ψ ↔ ψ.

(i) 〈⊤〉(ϕ ∧ ψ) ↔ (〈⊤〉ϕ ∧ 〈⊤〉ψ) !CON

(ii) 〈⊤〉ϕ ↔ ϕ IH
(iii) 〈⊤〉ψ ↔ ψ IH
(iv) 〈⊤〉(ϕ ∧ ψ) ↔ (ϕ ∧ ψ) (i)–(iii)

Case Kiϕ. Recall that ϕ is less complex than Kiϕ (Proposition 2.6).
By induction hypothesis (IH), ⊢ 〈⊤〉ϕ ↔ ϕ.

(i) 〈⊤〉Kiϕ ↔ (⊤ ∧ Ki[⊤]ϕ) !K

(ii) ⊤ ∧ Ki[⊤]ϕ ↔ Ki¬〈⊤〉¬ϕ TAUT, Def. [·]
(iii) Ki¬〈⊤〉¬ϕ ↔ Ki¬(⊤ ∧ ¬〈⊤〉ϕ) !NEG, RE

(iv) Ki¬(⊤ ∧ ¬〈⊤〉ϕ) ↔ Ki〈⊤〉ϕ TAUT, RE

(v) 〈⊤〉ϕ ↔ ϕ IH
(vi) Ki〈⊤〉ϕ ↔ Kiϕ (v), RE

(vii) 〈⊤〉Kiϕ ↔ Kiϕ (i)–(iv), (vi)

Case 〈ψ〉ϕ. Recall that ψ is less complex than 〈ψ〉ϕ (Proposition 2.6).
By induction hypothesis (IH), ⊢ 〈⊤〉ψ ↔ ψ.

(i) 〈⊤〉〈ψ〉ϕ ↔ 〈〈⊤〉ψ〉ϕ !!

(ii) 〈⊤〉ψ ↔ ψ IH
(iii) 〈⊤〉〈ψ〉ϕ ↔ 〈ψ〉ϕ (i), (ii), RE
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Case ♦K

i ϕ. Let ψ be any EL-formula. Recall that 〈ψ〉Kiϕ is less
complex than ♦K

i ϕ (Proposition 2.6). By induction hypothesis (IH),
⊢ 〈⊤〉〈ψ〉Kiϕ ↔ 〈ψ〉Kiϕ.

(i) �K

i ¬ϕ → [ψ]K̂i¬ϕ AKK

(ii) [ψ]K̂i¬ϕ ↔ [⊤][ψ]K̂i¬ϕ IH
(iii) �K

i ¬ϕ → [⊤][ψ]K̂i¬ϕ (i), (ii)
(iv) �K

i ¬ϕ → [⊤]�K

i ¬ϕ (iii), RKb

(v) [⊤]�K

i ¬ϕ → [⊤][ψ]K̂i¬ϕ (i), RM[·]
(vi) [⊤]�K

i ¬ϕ → [ψ]K̂i¬ϕ (ii), (v)
(vii) [⊤]�K

i ¬ϕ → �K

i ¬ϕ (vi), RKb

(viii) [⊤]�K

i ¬ϕ ↔ �K

i ¬ϕ (iv), (vii)
(ix) 〈⊤〉♦K

i ϕ ↔ ♦K

i ϕ (viii), RE ⊣

Proof of Proposition 5.11. Assume that ⊢ ϕ → ψ, we have the
following derivation in LK, where χ is any EL-formula:

(i) ¬ψ → ¬ϕ assumption, TAUT

(ii) Ki¬ψ → Ki¬ϕ (i), NECK, K, MP

(iii) 〈χ〉Ki¬ψ → 〈χ〉Ki¬ϕ (ii), RM〈·〉
(iv) 〈χ〉Ki¬ϕ → ♦K

i ¬ϕ AKK

(v) 〈χ〉Ki¬ψ → ♦K

i ¬ϕ (iii), (iv)
(vi) ¬♦K

i ¬ϕ → ¬〈χ〉Ki¬ψ (v)
(vii) ¬〈χ〉Ki¬ψ ↔ ¬〈χ〉¬¬Ki¬ψ TAUT, RM〈·〉

(viii) ¬〈χ〉Ki¬ψ ↔ [χ]K̂iψ (vii), Def. [·], Def. K̂i

(ix) �K

i ϕ → [χ]K̂iψ (vi), (viii), Def. �K

i

(x) �K

i ϕ → �K

i ψ (ix), RKb ⊣

Proof of Proposition 5.12. We have the following derivation in LK,
where χ is any EL-formula:

(i) �K

i K̂i¬ϕ → [χ]K̂iK̂i¬ϕ AKK

(ii) K̂iK̂i¬ϕ → K̂i¬ϕ 4

(iii) [χ]K̂iK̂i¬ϕ → [χ]K̂i¬ϕ (ii), Proposition 5.4
(iv) �K

i K̂i¬ϕ → [χ]K̂i¬ϕ (i), (iii)
(v) �K

i K̂i¬ϕ → �K

i ¬ϕ (iv), RKb

(vi) �K

i ¬ϕ → [⊤]K̂i¬ϕ AKK

(vii) [⊤]K̂i¬ϕ ↔ K̂i¬ϕ Corollary 5.10
(viii) �K

i ¬ϕ → K̂i¬ϕ (vi), (vii)
(ix) �K

i �
K

i ¬ϕ → �K

i K̂i¬ϕ (viii), Proposition 5.11
(x) �K

i �
K

i ¬ϕ → �K

i ¬ϕ (ix), (v)
(xi) ♦K

i ϕ → ♦K

i ♦
K

i ϕ (x), RE, Dual ⊣
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Proof of Proposition 5.13. We have the following derivation in LK,
where ψ, χ are any EL-formulas (thus 〈ψ〉χ ∈ PAL).:

(i) �K

i ¬ϕ → K̂i�
K

i ¬ϕ T

(ii) [ψ]�K

i ¬ϕ → [ψ]K̂i�
K

i ¬ϕ (i), Proposition 5.4
(iii) �K

i ¬ϕ → [ψ ∧ [ψ]χ]K̂i¬ϕ AKK∗

(iv) [ψ ∧ [ψ]χ]K̂i¬ϕ ↔ [ψ][χ]K̂i¬ϕ Proposition 5.7
(v) �K

i ¬ϕ → [ψ][χ]K̂i¬ϕ (iii), (iv)
(vi) �K

i ¬ϕ → [ψ]�K

i ¬ϕ (v), RKb

(vii) �K

i ¬ϕ → [ψ]K̂i�
K

i ¬ϕ (vi), (ii)
(viii) �K

i ¬ϕ → �K

i �
K

i ¬ϕ (vii), RKb

(ix) ♦K

i ♦
K

i ϕ → ♦K

i ϕ (viii), RE, Dual ⊣
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