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S5-Style Non-Standard Modalities
in a Hypersequent Framework

Abstract. The aim of the paper is to present some non-standard modali-
ties (such as non-contingency, contingency, essence and accident) based on
S5-models in a framework of cut-free hypersequent calculi. We also study
negated modalities, i.e. negated necessity and negated possibility, which
produce paraconsistent and paracomplete negations respectively. As a ba-
sis for our calculi, we use Restall’s cut-free hypersequent calculus for S5.
We modify its rules for the above-mentioned modalities and prove strong
soundness and completeness theorems by a Hintikka-style argument. As a
consequence, we obtain a cut admissibility theorem. Finally, we present a
constructive syntactic proof of cut elimination theorem.
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1. Introduction

Modal logic is usually formulated in a language containing a necessity op-
erator (denoted as �) and/or possibility operator (denoted as ♦). How-
ever, in the literature one may find other modalities (and not just tem-
poral, deontic, epistemic, etc. ones). One of them is the non-contingency
operator (following Zolin [57], we denote it as ⊲) which can be defined
as follows: ⊲A = �A ∨ �¬A. Thus, a proposition is non-contingent iff
it is necessary or its negation is necessary. A contingency operator (◮
in our notation) is defined as follows: ◮A = ¬⊲A = ♦A ∧ ♦¬A, i.e. a
proposition is contingent iff it is possibly true and also possibly false.

Contingency may be also understood as ‘ignorance’ in epistemic logic
[53] or a ‘knowing whether’ operator [15] which may be used to formalise
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some problems in AI [44] or microeconomics [21]. Among other inter-
pretations of contingency are doxastic (’no belief’ or ‘undecided’ [36]),
deontic (‘(moral) indifference’ [55]), spatial (‘topological border’ [51]),
and provability (‘undecidable (in Peano Arithmetic)’ [56]).

Although ⊲ and ◮ are expressed in the standard modal language,
starting with Montgomery and Routley [40, 41, 42] logicians have studied
non-contingent and contingent versions of well-known modal logics, i.e.
that ones which contain ⊲ and ◮ as primitive operators instead of �

and ♦. Their languages in many cases are less expressive than the stan-
dard one that makes the problem of their axiomatization non-trivial.
Montgomery and Routley themselves formalised via Hilbert-style calculi
contingent and non-contingent logics based on T, S4, and S5. The basic
logics, contingent and non-contingent versions of K, have various axiom-
atizations developed by Humberstone [22], Kuhn [30], Zolin [57, 58], van
der Hoek and Lomuscio [53]. Transitive and Euclidian contingent and
non-contingent logics were formalised by Kuhn [30], Zolin [58], Steinsvold
[51]. Fan [12, 13] paid special attention to symmetric logics. Probably,
the most impressive results were obtained in the case of reflexive non-
contingent logics: Zolin [56] formulated a general method of construct-
ing Hilbert-style calculi for them, using the fact that �A = A ∧ ⊲A.1

However, the non-reflexive case is still non-trivial.2 Surprisingly, from
a proof-theoretic perspective even the relatively simple reflexive case
is problematic. Zolin [56, 57] developed sequent calculi for many non-
contingent logics, including the S5-based one, but none of them is cut-
free. This fact has inspired us to try to present cut-free calculi for these
logics, but using a more general framework of hypersequents instead of
ordinary sequents. This paper is supposed to be a starting point in
solving this task and we choose S5-style modal logics, since S5 is known
for having plenty of cut-free hypersequent calculi. We choose Restall’s
[48] hypersequent calculus for S5, since it is one of the simplest calculi
for this logic.3

1 It is clear that his method may be adapted for contingent logics, since in reflex-
ive logics it holds that �A = A∧¬◮A as well as ♦A = ⊲A → A and ♦A = ¬◮A → A.

2 There are also studies of neighbourhood frames in the contingent language [10].
Among other variants of contingent logic let us mention its combination with public
announcement logic [7].

3 Pioneers in the development of hypersequent calculi as such and for S5 in par-
ticular are Mints [39], Pottinger [47], and Avron [2]. Later on various hypersequent
calculi for S5 were presented by Poggiolesi [45], Lahav [34], Kurokawa [31], Restall
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Aside from contingency and non-contingency, there are concepts of
essence and accident. A sentence is essentially true iff it is either false or
necessarily true, i.e. if it is true, then it is necessarily true. A sentence
is accidentally true iff it is true, but not necessarily true (i.e. its falsity
is possible). Thus, the operators of essential and accidental truth (we
denote them as ◦ and •, following Marcos [37]) are defined as follows:
◦A = ¬A ∨ �A = A → �A and •A = ¬◦A = A ∧ ¬�A = A ∧ ♦¬A. We
should emphasize two points here. First, we follow Marcos’ approach to
essence and accidence which is the de dicto one, while Fine [16, 17, 18]
developed a de re approach to essence. Second, as Gilbert and Venturi
[19, p. 888] note, it is important to not conflate ‘the notion of being
accidentally/essentially true and the notion of being accidental/essential
in the sense of being mutable or immutable’. They argue that Marcos
deals with ‘accidentally/essentially true’, although he himself does not
emphasize it. They introduce their own accident and essence operators:
AA = •A ∨ •¬A and EA = ¬AA = ◦A ∨ ◦¬A.

As for ‘accidentally true’ and ‘essentially true’, these can now be given
straightforward formalizations as A ∧ AA and A ∧ EA, respectively.’
<...> ‘As a final remark, one might wonder what the logic of these
new operators is. But the logic of A and E is the logic of ◦ and •,
because all four of these operators are interdefinable (one can define •A
as A ∧ AA, as we mentioned above). Therefore, our ultimate claim is
that the formal framework for exploring notions of essence and accident
proposed by Marcos in [37] is a good one, but more precision is required
to separate, and formalize, all of the desirable concepts within this
sphere. [19, p. 890, notation adjusted]

We consider the modalities ◦ and •, since the logic of A and E is
reducible to them. Additionally, we consider ‘accidentally/essentially
false’ modalities, denoting as ◦̃ and •̃, respectively, and defining them as
◦̃A = ◦¬A = ¬A → �¬A and •̃A = •¬A = ¬A ∧ ♦A. So a proposition
is essentially false iff its falsity implies the necessity of its falsity and a
proposition is accidently false iff it is false, but its truth is possible.

In accidentally/essentially true logics, we have the following equalities
in the case of serial frames: �A = A ∧ ¬•A, ♦A = ¬•A → A, �A =
A ∧ ◦A, and ♦A = ◦A → A [see 8]. It simplifies the task of providing an
axiomatization of these logics, but the non-serial case is non-trivial as

[48], Bednarska and Indrzejczak [3], and Indrzejczak [27] himself. See [3, 28] for a
survey and comparison of these calculi.



430 Yaroslav Petrukhin

well as well-behaved (hyper)sequent calculi have not been developed for
these logics (to the best of our knowledge). As for Hilbert-style calculi for
them [see 8, 11, 50]. Papers [11, 14] suggest a combination of accident and
contingent logics. At that labeled (i.e. using explicit semantic elements)
analytic tableaux were developed by Venturi and Yago [54] for essence
and contingent logics. Notice that our calculi do not have any explicit
semantic elements (see [46] for the advantages of such calculi). Let us
also mention that the very notion of accidental truth was used by Small
[49] in the context of Gödel’s ontological proof.

The idea to formulate a paraconsistent logic over S5 is due to Jaś-
kowski [29]. Taking his inspiration from Jaśkowski’s work, Béziau [4]
presented a paraconsistent logic Z which is the result of the replacement
of Boolean negation in classical logic with a paraconsistent one defined as
negated necessity. Thus, we have ∼A = ¬�A, where ∼ is paraconsistent
negation, as well as �A = ¬∼A and ♦A = ∼¬A. Marcos [37] generalized
Béziau’s approach: he considered paraconsistent logics based on modal
logics which are weaker than as S5, and investigated a paracomplete
negation (we denote it as ∼̇) defined as ∼̇A = ¬♦A (hence, �A = ∼̇¬A
and ♦A = ¬∼̇A). Avron and Lahav [1] developed a cut-free hypersequent
calculus for Z which is similar to Restall’s one for S5. We mention their
calculus in the next sections (and additionally present a constructive cut
elimination proof for it) to make our study more complete. Moreover, we
introduce a related calculus for a paracomplete version of Z which we call
Ż and understood as the result of the replacement of Boolean negation in
classical logic with the paracomplete negation ∼̇. For a systematic study
of proof systems for the logics with negative modalities see the paper [33]
by Lahav, Marcos and Zohar. However, notice that not all the calculi
presented there are cut-free. In particular, the case of S5-based ones is
problematic.

The structure of the paper is as follows. In Section 2, we describe
the semantics of S5 and its modifications with non-standard modalities.
Section 3 is devoted to the presentation of hypersequent calculi for the
logics in question. Section 4 contains proofs of strong soundness and
completeness theorems. In section 5, we present a constructive proof of
the cut elimination theorem. Section 6 contains concluding remarks.
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2. Semantics

Let ♣ ∈ {�,♦,⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇}, P be a set {p, q, r, s, p1, . . .} of
propositional variables, ¬, ∧, ∨, → be classical truth-value connectives,
A be the alphabet 〈P, ♣, ¬, ∧, ∨, →, (, )〉. We fix a modal language L♣

with the alphabet A which forms the set F♣ of all L♣-formulas in a
standard inductive way. In some cases we use bimodal languages, e.g.
L�♦, defined in an analogous way.

The modal logic S5 is usually built in one of the following languages:
L�, L♦, and L�♦. Let us consider the latter variant. A pair 〈W, ϑ〉
is said to be an S5-model iff W 6= ∅ and ϑ is a mapping from W ×
F�♦ to {1, 0} such that it preserves classical conditions for truth-value
connectives and for any A ∈ F�♦ and x ∈ W we have:4

• ϑ(�A, x) = 1 iff ∀y∈W ϑ(A, y) = 1,
• ϑ(♦A, x) = 1 iff ∃y∈W ϑ(A, y) = 1.

A formula A is true in a world w ∈ W iff ϑ(A, w) = 1. A formula
A follows from the set of formulas Γ (Γ |=S5 A) iff for every S5-model
〈W, ϑ〉 and every w ∈ W , if any B ∈ Γ is true in w, then A is true in w.
A formula is S5-valid iff it follows from the empty set of formulas.

We write S5⊲ for the non-contingency version of S5, i.e. the logic over
S5-models in the language L⊲. Thus, we have the case for ⊲ instead of
the cases for � and ♦:

• ϑ(⊲A, x) = 1 iff ∀y∈W ϑ(A, y) = 1 or ∀y∈W ϑ(A, y) = 0.

The contingency version of S5 is built in the language L◮ over S5-
frames and is denoted as S5◮. A semantic condition for contingency
operator is presented below:

• ϑ(◮A, x) = 1 iff ∃y∈W ϑ(A, y) = 1 and ∃y∈W ϑ(A, y) = 0.

The essentially and accidentally true versions of S5, S5◦ and S5•,
respectively, are built over S5-frames in languages L◦ and L•. The
appropriate semantic conditions are as follows:

• ϑ(◦A, x) = 1 iff ϑ(A, x) = 0 or ∀y∈W ϑ(A, y) = 1.
• ϑ(•A, x) = 1 iff ϑ(A, x) = 1 and ∃y∈W ϑ(A, y) = 0.

The essentially and accidentally false versions of S5, S5◦̃ and S5•̃,
respectively, are built over S5-frames in languages L

◦̃
and L

•̃
. We have

the following semantic conditions:

4 One can consider models of the form 〈W, R, ϑ〉 as well, where R = W ×W . Then
one needs to postulate some more complicated conditions for ϑ, e.g. ϑ(�A, x) = 1 iff
∀y∈W (R(x, y) implies ϑ(A, y) = 1).
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• ϑ(◦̃A, x) = 1 iff ϑ(A, x) = 1 or ∀y∈W ϑ(A, y) = 0,
• ϑ(•̃A, x) = 1 iff ϑ(A, x) = 0 and ∃y∈W ϑ(A, y) = 1.

The logic S5∼ is built over S5-frames in the language L∼. Its ¬-free
fragment is Béziau’s [4] paraconsistent logic Z. The logic S5∼̇ is built over
S5-frames in the language L∼̇. We introduce a paracomplete companion
of Z as the ¬-free fragment of S5∼̇ and call it Ż. Semantic conditions for
paraconsistent and paracomplete negations are as follows:

• ϑ(∼A, x) = 1 iff ∃y∈W ϑ(A, y) = 0,
• ϑ(∼̇A, x) = 1 iff ∀y∈W ϑ(A, y) = 0.

The notion of the entailment relation in the logics with non-standard
modalities is defined in the same manner as in S5.

3. Hypersequent calculi

An ordered pair written as Γ ⇒ ∆, where Γ and ∆ are finite multisets of
formulas (of one of the languages considered in the paper), is a sequent.
A finite multiset of sequents written as Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n is a
hypersequent. Let 〈W, ϑ〉 be an S5-model. A sequent Γ ⇒ ∆ is true in
a world w ∈ W iff ϑ(A, w) = 0 (for some A ∈ Γ ) or ϑ(B, w) = 1 (for
some B ∈ ∆). A sequent is valid in 〈W, ϑ〉 iff it is true in any w ∈ W .
A sequent S follows from the set of sequents S iff for every S5-model
〈W, ϑ〉, if any S′ ∈ S is valid 〈W, ϑ〉, then S is valid in it as well. A
sequent is S5-valid iff it is valid in any S5-model. A hypersequent H
is valid in 〈W, ϑ〉 (or 〈W, ϑ〉 is a model of H) iff at least one of the
components of H is valid in 〈W, ϑ〉. A hypersequent H follows from the
set of hypersequents H (H |=S5 H) iff every model of H is a model
of H as well. These notions are defined for the logics with non-standard
modalities in a similar way.

Consider Restall’s [48] hypersequent calculus HS5 for S5. It has the
following axiom: (Ax) A ⇒ A. Its structural rules are presented below:

(EW′ ⇒)
H

A ⇒ | H
(⇒EW′)

H

⇒ A | H

(IC⇒)
A, A, Γ ⇒ ∆ | H

A, Γ ⇒ ∆ | H
(⇒IC)

Γ ⇒ ∆, A, A | H

Γ ⇒ ∆, A | H

(Cut)
Γ ⇒ ∆, A | H A, Θ ⇒ Λ | G

Γ, Θ ⇒ ∆, Λ | H | G
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(Merge)
Γ ⇒ ∆ | Θ ⇒ Λ | H

Γ, Θ ⇒ ∆, Λ | H

In contrast to Restall, we will use a more general version of external
weakening which allows to add not only a sequent of the form A ⇒
or ⇒ A, but any hypersequent (including empty). The latter issue is
important for a constructive cut elimination proof.

(EW⇒)
G

G | H
(⇒EW)

H

G | H

One can add internal weakening and external contraction rules:

(IW⇒)
Γ ⇒ ∆ | H

A, Γ ⇒ ∆ | H
(⇒IW)

Γ ⇒ ∆ | H

Γ ⇒ ∆, A | H

(EC)
Γ ⇒ ∆ | Γ ⇒ ∆ | H

Γ ⇒ ∆ | H

However, it is not necessary to postulate them as primitive rules:

Γ ⇒ ∆ | H
(EW⇒)

⇒ A | Γ ⇒ ∆ | H
(Merge)

A, Γ ⇒ ∆ | H

Γ ⇒ ∆ | H
(⇒EW)

Γ ⇒ ∆ | ⇒ A | H
(Merge)

Γ ⇒ ∆, A | H

Γ ⇒ ∆ | Γ ⇒ ∆ | H
(Merge)

Γ, Γ ⇒ ∆, ∆ | H
(IC⇒), (⇒IC)

Γ ⇒ ∆ | H

The rules for truth-value connectives are as follows:

(¬ ⇒)
Γ ⇒ ∆, A | H

¬A, Γ ⇒ ∆ | H
(⇒ ¬)

A, Γ ⇒ ∆ | H

Γ ⇒ ∆, ¬A | H

(∧ ⇒)
A, B, Γ ⇒ ∆ | H

A ∧ B, Γ ⇒ ∆ | H
(⇒ ∧)

Γ ⇒ ∆, A | H Γ ⇒ ∆, B | G

Γ ⇒ ∆, A ∧ B | H | G

(∨ ⇒)
A, Γ ⇒ ∆ | H B, Γ ⇒ ∆ | G

A ∨ B, Γ ⇒ ∆ | H | G
(⇒ ∨)

Γ ⇒ ∆, A, B | H

Γ ⇒ ∆, A ∨ B | H

(→ ⇒)
Γ ⇒ ∆, A | H B, Θ ⇒ Λ | G

A → B, Γ, Θ ⇒ ∆, Λ | H | G
(⇒ →)

A, Γ ⇒ ∆, B | H

Γ ⇒ ∆, A → B | H

The rules for necessity and possibility operators are as follows:5

5 Restall’s original formulation of his calculus [48] does not have the rules for ∨,
→, and ♦. They were added to it in [20].
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(� ⇒)
A, Γ ⇒ ∆ | H

�A ⇒ | Γ ⇒ ∆ | H
(⇒ �)

⇒ A | H

⇒ �A | H

(♦ ⇒)
A ⇒ | H

♦A ⇒ | H
(⇒ ♦)

Γ ⇒ ∆, A | H

Γ ⇒ ∆ | ⇒ ♦A | H

Let us formulate the rules for the non-standard modalities (all these
rules are new except (∼ ⇒) and (⇒ ∼) which were introduced in [1]6).

(⊲ ⇒)
A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

⊲A ⇒ | Γ ⇒ ∆ | Θ ⇒ Λ | H | G
(⇒ ⊲)

⇒ A | A ⇒ | H

⇒ ⊲A | H

(◮ ⇒)
⇒ A | A ⇒ | H

◮A ⇒ | H
(⇒ ◮)

A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

⇒ ◮A | Γ ⇒ ∆ | Θ ⇒ Λ | H | G

(◦ ⇒)
A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

◦A, Θ ⇒ Λ | Γ ⇒ ∆ | H | G
(⇒ ◦)

⇒ A | A, Γ ⇒ ∆ | H

Γ ⇒ ∆, ◦A | H

(• ⇒)
⇒ A | A, Γ ⇒ ∆ | H

•A, Γ ⇒ ∆ | H
(⇒ •)

A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

Θ ⇒ Λ, •A | Γ ⇒ ∆ | H | G

(◦̃ ⇒)
A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

◦̃A, Γ ⇒ ∆ | Θ ⇒ Λ | H | G
(⇒ ◦̃)

Γ ⇒ ∆, A | A ⇒ | H

Γ ⇒ ∆, ◦̃A | H

(•̃ ⇒)
Γ ⇒ ∆, A | A ⇒ | H

•̃A, Γ ⇒ ∆ | H
(⇒ •̃)

A, Γ ⇒ ∆ | H Θ ⇒ Λ, A | G

Γ ⇒ ∆, •̃A | Θ ⇒ Λ | H | G

(∼ ⇒)
⇒ A | H

∼A ⇒ | H
(⇒ ∼)

A, Γ ⇒ ∆ | H

Γ ⇒ ∆ | ⇒ ∼A | H

(∼̇ ⇒)
Γ ⇒ ∆, A | H

∼̇A ⇒ | Γ ⇒ ∆ | H
(⇒ ∼̇)

A ⇒ | H

⇒ ∼̇A | H

Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇}. A hypersequent calculus HS5♣ for
the logic S5♣ is obtained from Restall’s one for S5 by the replacement
of the rules for � and ♦ with the ones for ♣. Hypersequent calculi HZ
and HŻ, respectively, for logics Z and Ż are ¬-free versions of HS5∼

and HS5∼̇. The notion of a proof in hypersequent calculi in question
is defined in the standard way. We write HL ⊢ H iff there is a proof
of a hypersequent H in the hypersequent calculus for a given logic L.
Similarly, H ⊢HL H means that there is a proof of a hypersequent

6 Avron and Lahav’s [1] original version of a hypersequent for Z is a bit different
from the one which we present here. They understand hypersequents as finite sets
of sequents which are understood themselves as pairs of finite sets of formulas. They
use internal weakening rules, but do not use (Merge) and (IC).
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p ⇒ p
(⇒ ¬)⇒ p, ¬p

p ⇒ p
(¬ ⇒)¬p, p ⇒
(⊲ ⇒)

⊲p ⇒ | ⇒ ¬p | ¬p ⇒
(⇒ ⊲)

⊲p ⇒ | ⇒ ⊲¬p
(Merge)

⊲p ⇒ ⊲¬p
(⇒→)

⇒ ⊲p → ⊲¬p

p ⇒ p
(¬ ⇒)¬p, p ⇒

p ⇒ p
(⇒ ¬)⇒ p, ¬p
(⊲ ⇒)

⊲¬p ⇒ | p ⇒ | ⇒ p
(⇒ ⊲)

⊲¬p ⇒ | ⇒ ⊲p
(Merge)

⊲¬p ⇒ ⊲p
(⇒→)

⇒ ⊲¬p → ⊲p

p ⇒ p p ⇒ p
(⊲ ⇒)

⊲p ⇒ | ⇒ p | p ⇒
(⇒ ⊲)

⊲p ⇒ | ⇒ ⊲p
(⇒ ⊲)

⇒ ⊲⊲p

p ⇒ p q ⇒ q
(→⇒)p, p → q ⇒ q p ⇒ p

(·)
⊲p ⇒ | p → q ⇒ q | p ⇒

q ⇒ q
(IW⇒)p, q ⇒ q
(IW⇒)p, p, q ⇒ q

(⇒→)p, q ⇒ p → q p ⇒ p
(·)

⊲p ⇒ | q ⇒ p → q | p ⇒
(·)

⊲(p → q) ⇒ | ⊲p ⇒ | p ⇒ | q ⇒ | ⇒ q
(⇒ ⊲)

⊲(p → q) ⇒ | ⊲p ⇒ | p ⇒ | ⇒ ⊲q
(Merge)3x

p,⊲(p → q),⊲p ⇒ ⊲q
(⇒→)3x

⇒ p →
(
⊲(p → q) → (⊲p → ⊲q)

)

Figure 1. Examples of proofs in HS5⊲, where (·) stands for (⊲ ⇒).

H from a finite set of hypersequents H in HL. If in this proof each
cut is on a formula A ∈ Γ ∪ ∆ for some component Γ ⇒ ∆ of some
hypersequent in H , then we write H ⊢cf

HL
H. Four examples of proofs

in HS5⊲ are presented in Figure 1 (the formulas are taken from Zolin’s
[56] Hilbert-style axiomatization of S5⊲).

4. Soundness and completeness

Theorem 4.1 (Strong soundness). Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇} and

L ∈ {S5♣, Z, Ż}. For each finite set of hypersequents H ∪ {H}, if

H ⊢HL H, then H |=L H.

Proof. Consider the rule (⇒ ◦). Suppose that ⇒ A | A, Γ ⇒ ∆ | H is
valid in an arbitrary S5◦-model 〈W, ϑ〉. Then at least one of the compo-
nents of this hypersequent is valid in 〈W, ϑ〉. If ⇒ A is valid in 〈W, ϑ〉,
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then ϑ(A, w) = 1 for all w ∈ W . Then ⇒ ◦A is valid in 〈W, ϑ〉, and
hence Γ ⇒ ∆, ◦A | H is valid in this model as well. If A, Γ ⇒ ∆ is valid
in 〈W, ϑ〉, then ϑ(A, w) = 0 for some w ∈ W or Γ ⇒ ∆ is valid in 〈W, ϑ〉.
Hence, Γ ⇒ ∆, ◦A | H is valid in 〈W, ϑ〉. Obviously, if a component of
H is valid in 〈W, ϑ〉, then Γ ⇒ ∆, ◦A | H is valid in it as well.

Consider the rule (◦ ⇒). Suppose that A, Γ ⇒ ∆ | H and Θ ⇒ Λ, A |
G are valid in S5◦-model 〈W, ϑ〉. If H or G is valid in it, then ◦A, Θ ⇒ Λ |
Γ ⇒ ∆ | H | G is valid as well. Suppose that A, Γ ⇒ ∆ and Θ ⇒ Λ, A
are valid in 〈W, ϑ〉. Then ϑ(A, x) = 0 for some x ∈ W or Γ ⇒ ∆ is
valid in 〈W, ϑ〉. Also, Θ ⇒ Λ is valid in 〈W, ϑ〉 or ϑ(A, y) = 1 for some
y ∈ W . Assume that ϑ(A, x) = 0 for some x ∈ W . Suppose that Θ ⇒ Λ
is valid in 〈W, ϑ〉. Then ◦A, Θ ⇒ Λ is valid in 〈W, ϑ〉. Hence, ◦A, Θ ⇒
Λ | Γ ⇒ ∆ | H | G is valid in 〈W, ϑ〉 as well. Suppose that ϑ(A, y) = 1
for some y ∈ W . Then ◦A ⇒ is valid in 〈W, ϑ〉, and hence ◦A, Θ ⇒ Λ |
Γ ⇒ ∆ | H | G is valid. Assume that Γ ⇒ ∆ is valid in 〈W, ϑ〉. Then
◦A, Θ ⇒ Λ | Γ ⇒ ∆ | H | G is valid as well in the model in question.

The other cases are considered similarly. ⊣

Theorem 4.2 (Strong completeness). Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇}
and L ∈ {S5♣, Z, Ż}. For each finite set of hypersequents H ∪ {H}, if

H |=L H, then H ⊢cf
HL

H.

Proof. We adapt Avron and Lahav’s [1] completeness proof for Z. Sup-
pose that H 0cf

HL
H. We construct a model of H which is not a model

of H. Let F be the set of subformulas of formulas in H ∪ {H}. We
call a hypersequent G an F-hypersequent iff it satisfies the following
conditions:

• if A ∈ G, then A ∈ F, for each formula A;
• H 0cf

HL
G;

• if Γ ∪ ∆ ⊆ F, then either Γ ⇒ ∆ ∈ G or H ⊢cf
HL

G | Γ ⇒ ∆.
Since H is finite, F is finite as well. Let S1, . . . , Sn be an enumeration

of all the sequents Γ ⇒ ∆ such that Γ ∪ ∆ ⊆ F. We put, H0 = H, for
each 1 ¬ i ¬ n:

Hi =

{
Hi−1 | Si if H 0cf

HL
Hi−1 | Si

Hi−1 otherwise,

and H∗ = Hn. Then H∗ is an F-hypersequent such that H ⊆ H∗.
A component Γ ∗ ⇒ ∆∗ of H∗ is said to be maximal iff it has no proper
extension in H∗ (i.e. if Γ ∗∗ ⇒ ∆∗∗ ∈ H∗, Γ ∗ ⊆ Γ ∗∗, and ∆∗ ⊆ ∆∗∗, then
Γ ∗ = Γ ∗∗ and ∆∗ = ∆∗∗). Let W be the set of all maximal components
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of H∗. We write Γw and ∆w (where w ∈ W ), respectively, for Γ ∗ and
∆∗ iff w = Γ ∗ ⇒ ∆∗. Let ϑ be the valuation such that ϑ(p, w) = 1 iff
p ∈ Γw, for each p ∈ P.

We need to prove that for each A ∈ F and each maximal component
w of H∗ it holds that:

(a) A ∈ Γw implies ϑ(A, w) = 1,
(b) A ∈ ∆w implies ϑ(A, w) = 0.

The proof is by induction on the complexity of A. The basic case
(i.e. A ∈ P) follows from the definition of ϑ. The proof for ∧ and ∼ one
may find in [1]. Other propositional connectives are considered similarly.

Let A be ⊲B. Suppose that A ∈ Γw. Assume that there is y ∈ W such
that B /∈ Γy and there is a z ∈ W such that B /∈ ∆z. Since y and z are
maximal, B, Γy ⇒ ∆y /∈ H∗ and Γz ⇒ ∆z, B /∈ H∗. Since H∗ is an F-
hypersequent, H ⊢cf

HL
H∗ | B, Γy ⇒ ∆y and H ⊢cf

HL
H∗ | Γz ⇒ ∆z, B.

By the rule (⊲ ⇒), H ⊢cf
HL

H∗ | ⊲B ⇒ | Γy ⇒ ∆y | Γz ⇒ ∆z, i.e.
H ⊢cf

HL
H∗ | A ⇒ | Γy ⇒ ∆y | Γz ⇒ ∆z. Then H ⊢cf

HL
H∗ | A ⇒

| y | z. By the rule (Merge), H ⊢cf
HL

H∗ | A ⇒. Since A ∈ Γw, by
(EW) and (Merge), we get H ⊢cf

HL
H∗ | w. By (Merge), H ⊢cf

HL
H∗.

A contradiction. Hence, for each x ∈ W , B ∈ Γx, or for each x ∈ W ,
B ∈ ∆x. By the induction hypothesis for B, for each x ∈ W , ϑ(B, x) = 1
or for each x ∈ W , ϑ(B, x) = 0. Thus, ϑ(A, w) = 1.

Suppose that A ∈ ∆w. Assume that B⇒ /∈ H∗. Then H ⊢cf
HL

H∗ |
B ⇒, since H∗ is an F-sequence. By (EW), H ⊢cf

HL
H∗ | ⇒ B | B ⇒.

By (⇒ ⊲), H ⊢cf
HL

H∗ | ⇒ ⊲B, i.e. H ⊢cf
HL

H∗ | ⇒ A. Since A ∈ ∆w,
by (EC) and (Merge), H ⊢cf

HL
H∗ | w. By (Merge), H ⊢cf

HL
H∗. A

contradiction. Hence, B ⇒ ∈ H∗. Therefore, there is a y ∈ W such
that B ∈ Γy. By the induction hypothesis for B, there is a y ∈ W such
that ϑ(B, y) = 1. Assume that ⇒ B /∈ H∗. Then H ⊢cf

HL
H∗ | ⇒ B,

since H∗ is an F-sequence. By (EW), H ⊢cf
HL

H∗ | ⇒ B | B ⇒, and by
(⇒ ⊲), H ⊢cf

HL
H∗ | ⇒ A which implies H ⊢cf

HL
H∗. A contradiction.

Hence, ⇒ B ∈ H∗. Thus, there is a z ∈ W such that B ∈ ∆z. By
the induction hypothesis for B, there is a z ∈ W such that ϑ(B, z) = 1.
Therefore, ϑ(A, w) = 0.

Let A be ◮B. Suppose that A ∈ Γw. We show that there is an x ∈ W
such that B ∈ ∆x and there is an x ∈ W such that B ∈ Γx. Assume that
⇒ B /∈ H∗. Then H ⊢cf

HL
H∗ | ⇒ B, since H∗ is an F-sequence. By

(EW), H ⊢cf
HL

H∗ | ⇒ B | B ⇒ and by (◮ ⇒), H ⊢cf
HL

H∗ | ◮B ⇒,
i.e. H ⊢cf

HL
H∗ | A ⇒ which gives us due to the fact that A ∈ Γw
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and the rules (EW) and (Merge) that H ⊢cf
HL

H∗ | w, and so that
H ⊢cf

HL
H∗. A contradiction. Thus, ⇒ B ∈ H∗. Hence, there is a

maximal component x of H∗ that extends it, i.e. B ∈ ∆x. Therefore,
the induction hypothesis for B implies that there is an x ∈ W such
that ϑ(B, x) = 0. Assume that B ⇒ /∈ H∗. Then H ⊢cf

HL
H∗ | B ⇒,

and so that H ⊢cf
HL

H∗ | ⇒ B | B ⇒ which implies H ⊢cf
HL

H∗. A
contradiction. Thus, B ⇒ ∈ H∗. Hence, there is a maximal component
x of H∗ such that B ∈ Γx. Therefore, the induction hypothesis for B
implies that there is an x ∈ W such that ϑ(B, x) = 1. Thus, ϑ(A, x) = 1.

Suppose that A ∈ ∆w. We show that for each x ∈ W , B ∈ Γx, or
for each x ∈ W , B ∈ ∆x. Assume the converse, i.e. that there is a
y ∈ W such that B /∈ Γy and there is a z ∈ W such that B /∈ ∆z. Then
H ⊢cf

HL
H∗ | B, Γy ⇒ ∆y and H ⊢cf

HL
H∗ | Γz ⇒ ∆z, B. By (⇒ ◮),

H ⊢cf
HL

H∗ | ⇒ A | Γy ⇒ ∆y | Γz ⇒ ∆z. Then H ⊢cf
HL

H∗ | ⇒ A |
y | z which implies H ⊢cf

HL
H∗ | ⇒ A. Since A ∈ ∆w, by (EW) and

(Merge), H ⊢cf
HL

H∗ | w, and so H ⊢cf
HL

H∗. A contradiction. By the
induction hypothesis for B, for each x ∈ W , ϑ(B, x) = 1 or for each
x ∈ W , ϑ(B, x) = 0. Hence, ϑ(A, w) = 0.

Let A be ◦B. Suppose that A ∈ Γw. Suppose that {B} ∪ ∆w = ∅ and
for some maximal x ∈ W , B /∈ Γx. Then by the maximality of w and x as
well as the fact that H∗ is an F-hypersequent, H ⊢cf

HL
H∗ | Γw ⇒ ∆w, B

and H ⊢cf
HL

H∗ | B, Γx ⇒ ∆x. By the rule (◦ ⇒), H ⊢cf
HL

H∗ |
◦B, Γw ⇒ ∆w, | Γx ⇒ ∆x. Then H ⊢cf

HL
H∗ | w | x. By (Merge),

H ⊢cf
HL

H∗. A contradiction. Thus, B ∈ ∆w and for each x ∈ W ,
B ∈ Γx. It follows by the induction hypothesis for B that ϑ(B, w) = 0
and for each maximal x ∈ W , ϑ(B, x) = 1. Hence, ϑ(A, w) = 0.

Suppose that A ∈ ∆w. Assume that B /∈ Γw or ⇒ B /∈ H∗. Suppose
that B 6∈ Γw. Then since w is maximal, B, Γw ⇒ ∆w 6∈ H∗. Since
B 6∈ Γw and H∗ is an F-hypersequent, H ⊢cf

HL
H∗ | B, Γw ⇒ ∆w.

By (EW), H ⊢cf
HL

H∗ | ⇒ B | B, Γw ⇒ ∆w. By the rule (⇒ ◦),
H ⊢cf

HL
H∗ | Γw ⇒ ∆w, ◦B. Since A ∈ ∆w, H ⊢cf

HL
H∗ | w.

Using (Merge), we have H ⊢cf
HL

H∗. A contradiction. Suppose that
⇒ B /∈ H∗. Since H∗ is an F-hypersequent, H ⊢cf

HL
H∗ | ⇒ B. By

(EW), H ⊢cf
HL

H∗ | ⇒ B | B, Γw ⇒ ∆w. Using (⇒ ◦) and (Merge), we
get H ⊢cf

HL
H∗. A contradiction. Hence, B ∈ Γw and ⇒ B ∈ H∗. Then

by the induction hypothesis for B, ϑ(B, w) = 1 and for some x ∈ W ,
ϑ(B, x) = 0. Hence, ϑ(A, w) = 1.

Let A be •B. Suppose that A ∈ Γw. Assume that B /∈ Γw or ⇒ B /∈
H∗. Suppose that B /∈ Γw. Then since w is maximal, B, Γw ⇒ ∆w /∈ H∗.



S5-style non-standard modalities . . . 439

Since B /∈ Γw and H∗ is an F-hypersequent, H ⊢cf
HL

H∗ | B, Γw ⇒ ∆w.
By (EW), H ⊢cf

HL
H∗ | ⇒ B | B, Γw ⇒ ∆w. By the rule (• ⇒),

H ⊢cf
HL

H∗ | •B, Γw ⇒ ∆w, i.e. H ⊢cf
HL

H∗ | A, Γw ⇒ ∆w. Since
A ∈ Γw, H ⊢cf

HL
H∗ | w. Using (Merge), we have H ⊢cf

HL
H∗. A con-

tradiction. Suppose that ⇒ B /∈ H∗. Since H∗ is an F-hypersequent,
H ⊢cf

HL
H∗ | ⇒ B. By (EW), H ⊢cf

HL
H∗ | ⇒ B | B, Γw ⇒ ∆w. Using

(• ⇒) and (Merge), we get H ⊢cf
HL

H∗. A contradiction. Hence, B ∈ Γw

and ⇒ B ∈ H∗. Then by the induction hypothesis for B, ϑ(B, w) = 1
and for some x ∈ W ϑ(B, x) = 0. Hence, ϑ(A, w) = 1.

Suppose that A ∈ ∆w. Suppose that {B} ∪ ∆w = ∅ and for some
maximal x ∈ W , B /∈ Γx. Then by the maximality of w and x as well
as the fact that H∗ is an F-hypersequent, H ⊢cf

HL
H∗ | Γw ⇒ ∆w, B

and H ⊢cf
HL

H∗ | B, Γx ⇒ ∆x. By the rule (⇒ •), H ⊢cf
HL

H∗ | Γw ⇒
∆w, •B | Γx ⇒ ∆x. Then H ⊢cf

HL
H∗ | w | x. By (Merge), H ⊢cf

HL
H∗.

A contradiction. Thus, B ∈ ∆w and for each maximal x ∈ W , B ∈ Γx.
It follows by the induction hypothesis for B that ϑ(B, w) = 0 and for
each maximal x ∈ W , ϑ(B, x) = 1. Hence, ϑ(A, w) = 0.

Let A be ∼B. This case is considered in [1] by Avron and Lahav.
The other cases are similar to the previous ones.
Now we show that 〈W, ϑ〉 is a model for H , but not for H. Let

H ′ ∈ H∗. If its every component is a subsequent of some component of
H∗, then due to (EW) and (Merge) H∗ is derivable from H ′ and hence
from H which contradicts to the fact that H 0cf

HL
H∗. Hence, there is

a component Γ ⇒ ∆ of H ′ which is not a subsequent of any component
of H∗. Let us prove that Γ ⇒ ∆ is valid in 〈W, ϑ〉. Let w ∈ W . Then
either Γ * Γw or ∆ * ∆w. Suppose that Γ * Γw (the case of ∆ * ∆w

is similar). Then for some A ∈ Γ , A /∈ Γw. Since A ∈ F, w is maximal,
and H∗ is an F-hypersequent, H ⊢cf

HL
H∗ | A, Γw ⇒ ∆w. Assume that

A /∈ ∆w. Then H ⊢cf
HL

H∗ | Γw ⇒ ∆w, A. By (Cut), A /∈ ∆w. Then
H ⊢cf

HL
H∗ | Γw ⇒ ∆w, i.e. H ⊢cf

HL
H∗ | w. Hence, H ⊢cf

HL
H∗. A

contradiction. Then A ∈ ∆w which implies, by proposition (b) and the
maximality of w, that ϑ(A, w) = 0. Since A ∈ Γ , Γ ⇒ ∆ is true in a
world w. Since w is an arbitrary world, Γ ⇒ ∆ is valid in 〈W, ϑ〉 which
implies that H is valid in 〈W, ϑ〉 as well.

Assume that Γ ⇒ ∆ is some component of H. Since H ⊆ H∗, there
is a maximal component w of H∗ such that Γ ⊆ Γw and ∆ ⊆ ∆w. By
propositions (a) and (b), we obtain that A ∈ Γ implies ϑ(A, w) = 1 as
well as A ∈ ∆ implies ϑ(A, w) = 0. Thus, Γ ⇒ ∆ is not true at w. Hence,
it is not valid in 〈W, ϑ〉. Therefore, 〈W, ϑ〉 is not a model for H. ⊣
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Corollary 4.1. Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇} and L ∈ {S5♣, Z, Ż}.

For each finite set of hypersequents H ∪ {H}, H ⊢HL H iff H |=L H.

Proof. Follows from Theorems 4.1 and 4.2. ⊣

Corollary 4.2. Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇}, L ∈ {S5♣, Z, Ż}, and

H ∪ {H} be a finite set of hypersequents. Then H ⊢HL H implies

H ⊢cf
HL

H.

Proof. Follows from Theorem 4.2. Notice that in the proof of this
theorem (Cut) is used only once in order to show that 〈W, ϑ〉 is a model
for H and is applied only to formulas which belongs to H . ⊣

Corollary 4.3 (Cut admissibility). Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇},

L ∈ {S5♣, Z, Ż}, and H be a hypersequent. Then ⊢HL H implies that

there is a cut-free proof of H in HL.

Proof. Put H = ∅ in the proof of Theorem 4.2. Then the only appli-
cation of (Cut) in the proof of this Theorem disappears. ⊣

Corollary 4.4 (Subformula property). Let ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇},

L ∈ {S5♣, Z, Ż}. For every hypersequent which is provable in HL there

is a proof such that each formula which occurs in it is a subformula of

the formulas which occur in the conclusion.

Proof. Follows from Corollary 4.3 and the fact that in any of the rules
of HL each formula which occurs in the premises is a subformula of the
formulas which occur in the conclusion. ⊣

Let us recall that strong soundness and completeness as well as cut
admissibility theorems are proven for Z by Avron and Lahav [1] (how-
ever, constructive cut elimination was not proven). As we know from
Corollary 4.3, in any of the hypersequent calculi in question if we have
a proof of a hypersequent H, then we can be sure that there exists a
cut-free proof of the same hypersequent. However, the problem is how
to find such a cut-free proof. Constructive cut elimination will give us
an answer.

5. Constructive cut elimination

We use the strategy originally introduced by Metcalfe, Olivetti, and Gab-
bay [38] for fuzzy logics and further developed by Ciabattoni, Metcalfe,
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and Montagna [6]. It was adapted for modal logics by Kurokawa [31],
Indrzejczak [23, 24, 25, 26, 28], Lellmann [35], Kuznets and Lellmann
[32]. We use the following version of the cut rule for our syntactic proof.

(Multi-Cut)
Γ ⇒ ∆, Ai | H Aj , Θ ⇒ Λ | G

Γ, Θ ⇒ ∆, Λ | H | G
,

where i, j > 0 and Ai (resp. Aj) denotes i (resp. j) occurrences of A.
Similarly, Γ i denotes i occurrences of Γ .

Let us recall that a formula introduced by the application of a logical
rule is said to be principal formula, formulas used for the proof of the
principal formula are said to be side formulas, all other elements of the
hypersequent are said to be parametric formulas. We say that a hyper-
sequent which contains a principal formula is an active hypersequent.

The length l(D) of a derivation D is (the maximal number of appli-
cations of inference rules) plus 1 occurring on any branch of D. The
complexity c(A) of a formula A is the number of occurrences of its con-
nectives. The cut rank r(D) of a derivation D is the maximal complexity
of cut formulas in D plus 1. Thus, a cut-free derivation D has r(D) = 0.

We need to prove two lemmas.

Lemma 5.1 (Right reduction). Let D1 and D2 be derivations such that:

(1) D1 is a derivation of Γ ⇒ ∆, A | H,

(2) D2 is a derivation of Ai1 , Θ1 ⇒ Λ1 | . . . | Ain , Θn ⇒ Λn | G,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A),
(4) A is a principal formula of a logical rule in D1.

Then we can construct a derivation D0 of Γ i1 , Θ1 ⇒ Λ1, ∆i1 | . . . |
Γ in , Θn ⇒ Λn, ∆in | H | G such that r(D0) ≤ c(A).

Proof. By induction on l(D2). Basic case is easy and left for the reader.
Inductive case. We have different cases depending on the last rule

applied to D2.
Case 1. The last rule is applied on only side sequents G. Left for the

reader.
Case 2. The last rule is any non-modal rule that does not have A as

the principal formula.
Let us use the following abbreviations, for any 1 ≤ l ≤ n and 1 ≤

k ≤ n, where x, y ∈ {l, il, jl} and Φ, Ψ, Υ, Ω ∈ {Γ, ∆, Θ, Λ, Π, Σ}:
• AΦΨ

l = Φl ⇒ Ψl,
• AΦΨ

il
= Φil ⇒ Ψil ,
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• A
ΦΨ
l × A

ΥΩ
k = Φl, Υk ⇒ Ψl, Ωk,

• AΦΨ
il

× AΥΩ
k = Φil , Υk ⇒ Ψil , Ωk.

Subcase 2.1. The rule of last inference of D2 is (Merge).

Θ ⇒ Λ, Aj | G

Ai1 , Γ1 ⇒ ∆1 | Ai2 , Γ2 ⇒ ∆2 | Ai3 ,AΓ ∆
3 | . . . | Ain ,AΓ ∆

n | H

Ai1+i2 , Γ1, Γ2 ⇒ ∆1, ∆2 | Ai3 ,AΓ ∆
3 | . . . | Ain ,AΓ ∆

n | H

Γ1, Γ2, Θi1+i2 ⇒ ∆1, ∆2, Λi1+i2 | AΓ ∆
3 × A

ΘΛ
i3

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

We transform the derivation as follows: we first apply cut and then
(Merge).

Θ ⇒ Λ, Aj | G Ai1 , Γ1 ⇒ ∆1 | Ai2 , Γ2 ⇒ ∆2 | Ai3 ,AΓ ∆
3 | . . . | Ain ,AΓ ∆

n | H

Γ1, Θi1 ⇒ ∆1, Λi1 | Γ2, Θi2 ⇒ ∆2, Λi2 | AΓ ∆
3 × A

ΘΛ
i3

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

Γ1, Γ2, Θi1+i2 ⇒ ∆1, ∆2, Λi1+i2 | AΓ ∆
3 × A

ΘΛ
i3

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

The other cases are considered similarly.
Case 3. The last inference is an application of non-modal left intro-

duction rule whose principal formula is A. Left for the reader.
Case 4. The rule of last inference of D2 is (⊲ ⇒).
Subcase 4.1. A is principal in D2 and A = ⊲B. The last inference

of D2 looks as follows.

B,⊲Bi1 ,AΘΛ
1 | . . . | ⊲Bin ,AΘΛ

n | G1 ⊲Bi1 ,AΠΣ
1 , B | . . . | ⊲Bin ,AΠΣ

n | G2

⊲B ⇒ | ⊲Bi1 ,AΘΛ
1 | . . . | ⊲Bin ,AΘΛ

n | ⊲Bi1 ,AΠΣ
1 | . . . | ⊲Bin ,AΠΣ

n | G1 | G2

Since D1 ends as the condition (4) states, the last inference of D1 is
as follows.

⇒ B | B ⇒ | H

⇒ ⊲B | H

We have

D1 D2

⇒ | AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΘΛ
1 | AΘΛ

2 | . . . | AΘΛ
n | H | G1.

A
ΠΣ
1 , B | AΠΣ

2 | . . . | AΠΣ
n | H | G2.

Using these hypersequents and ⇒ B | B ⇒ | H, by (Cut), (Merge)
with (IC) (or just (EC)) as well as (EW), we get
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A
ΠΣ
1 , B | . . . | AΠΣ

n | H | G2

⇒ B | B ⇒ | H B,AΘΛ
1 | . . . | AΘΛ

n | H | G1

B ⇒ | AΘΛ
1 | . . . | AΘΛ

n | H | H | G1

A
ΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | H | H | G1 | G2

A
ΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2

⇒ | AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2

Subcase 4.2. The rule of the last inference of D2 is (⊲ ⇒) and the
principal formula in D2 is not A. Then the last inference of D2 looks as
follows.

B, Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G1 Ai1 ,AΠΣ
1 , B | . . . | Ain ,AΠΣ

n | G2

⊲B ⇒ | Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | Ai1 ,AΠΣ
1 | . . . | Ain ,AΠΣ

n | G1 | G2

D1 ends with the hypersequent Γ ⇒ ∆, Aj | H. We have:

D1 D2

⊲B ⇒ | AΓ ∆

i1

× AΘΛ

1
| . . . | AΓ ∆

in

× AΘΛ
n | AΓ ∆

i1

× AΠΣ

1
| . . . | AΓ ∆

in

× AΠΣ
n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΓ ∆
i1

× A
ΘΛ
1 | AΓ ∆

i2
× A

ΘΛ
2 | . . . | AΓ ∆

in
× A

ΘΛ
n | H | G1.

A
Γ ∆
i1

× A
ΠΣ
1 , B | AΓ ∆

i2
× A

ΠΣ
2 | . . . | AΓ ∆

in
× A

ΠΣ
n | H | G2.

Applying (⊲ ⇒), we get the required result.

Case 5. The rule of last inference of D2 is (◮ ⇒). Hence, A = ◮B
and A is principal in D2. (Cut) is applied to D1 and D2 as follows:

B, Γ ⇒ ∆ | H1 Θ ⇒ Λ, B | H2

⇒ ◮B | Γ ⇒ ∆ | Θ ⇒ Λ | H1 | H2

⇒ B | B ⇒ | G

◮B ⇒ | G

⇒ | Γ ⇒ ∆ | Θ ⇒ Λ | H1 | H2 | G

Using (Cut) and (EW), we transform this derivation as follows:

Θ ⇒ Λ, B | H2

⇒ B | B ⇒ | G B, Γ ⇒ ∆ | H1

B ⇒ | Γ ⇒ ∆ | H1 | G

Γ ⇒ ∆ | Θ ⇒ Λ | H1 | H2 | G

⇒ | Γ ⇒ ∆ | Θ ⇒ Λ | H1 | H2 | G

Case 6. The rule of last inference of D2 is (∼ ⇒). Hence, A = ∼B
and A is principal in D2. Cut is applied to D1 and D2 as follows:



444 Yaroslav Petrukhin

B, Γ ⇒ ∆ | H

Γ ⇒ ∆ | ⇒ ∼B | H

⇒ B | G

∼B ⇒ | G

⇒ | Γ ⇒ ∆ | H | G

Using (Cut) and (EW), we transform this derivation as follows:

⇒ B | G B, Γ ⇒ ∆ | H

Γ ⇒ ∆ | H | G

⇒ | Γ ⇒ ∆ | H | G

Case 7. The rule of last inference of D2 is (∼̇ ⇒).

Subcase 7.1. A is principal in D2 and A = ∼̇B. Cut is applied to D1

and D2 as follows.

B ⇒ | H

⇒ ∼̇B | H

∼̇Bi1 ,AΘΛ
1 , B | ∼̇Bi2 ,AΘΛ

2 | . . . | ∼̇Bin ,AΘΛ
n | G

∼̇B ⇒ | ∼̇Bi1 ,AΘΛ
1 | . . . | ∼̇Bin ,AΘΛ

n | G

⇒ | AΘΛ
1 | . . . | AΘΛ

n | H | G

Using the induction hypothesis, (Cut), (EC), and (EW) we obtain
the required result.

A
ΘΛ
1 , B | AΘΛ

2 | . . . | AΘΛ
n | H | G1 B ⇒ | H

AΘΛ
1 | . . . | AΘΛ

n | H | H | G

A
ΘΛ
1 | . . . | AΘΛ

n | H | G

⇒ | AΘΛ
1 | . . . | AΘΛ

n | H | G

Subcase 7.2. The rule of the last inference of D2 is (∼̇ ⇒) and the
principal formula in D2 is not A. Then we have:

Γ ⇒ ∆, Aj | H

Ai1 ,AΘΛ
1 , B | Ai1 ,AΘΛ

2 | . . . | Ain ,AΘΛ
n | G

∼̇B ⇒ | Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G

∼̇B ⇒ | AΓ ∆
i1

× A
ΘΛ
1 | . . . | AΓ ∆

in
× A

ΘΛ
n | H | G

Using the induction hypothesis and (∼̇ ⇒), we obtain the required
result.

AΓ ∆
i1

× AΘΛ
1 , B | AΓ ∆

i2
× AΘΛ

2 | . . . | AΓ ∆
in

× AΘΛ
n | H | G

∼̇B ⇒ | AΓ ∆
i1

× AΘΛ
1 | . . . | AΓ ∆

in
× AΘΛ

n | H | G

Case 8. The rule of last inference of D2 is (◦ ⇒).

Subcase 8.1. A is principal in D2 and A = ◦B. The last inference of
D2 looks as follows.
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B, ◦Bi1 ,AΘΛ
1 | . . . | ◦Bin ,AΘΛ

n | G1 ◦Bi1 ,AΠΣ
1 , B | . . . | ◦Bin ,AΠΣ

n | G2

◦Bi1+1,AΠΣ
1 | ◦Bi1 ,AΘΛ

1 | . . . | ◦Bin ,AΘΛ
n | ◦Bi2 ,AΠΣ

2 | . . . | ◦Bin ,AΠΣ
n | G1 | G2

Since D1 ends as the condition (4) states, the last inference of D1 is
as follows.

⇒ B | B, Γ ⇒ ∆ | H

Γ ⇒ ∆, ◦B | H

We have:

D1 D2

AΓ ∆
i1+1 × AΠΣ

1 | AΓ ∆ΘΛ
1,...,n | AΓ ∆ΠΣ

2,...,n | H | G1 | G2

where:
• AΓ ∆ΘΛ

1,...,n = AΓ ∆
i1

× AΘΛ
1 | . . . | AΓ ∆

in
× AΘΛ

n

• AΓ ∆ΠΣ
2,...,n = AΓ ∆

i2
× AΠΣ

2 | . . . | AΓ ∆
in

× AΠΣ
n

By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΓ ∆
i1

× AΘΛ
1 | AΓ ∆

i2
× AΘΛ

2 | . . . | AΓ ∆
in

× AΘΛ
n | H | G1

AΓ ∆
i1

× AΠΣ
1 , B | AΓ ∆

i2
× AΠΣ

2 | . . . | AΓ ∆
in

× AΠΣ
n | H | G2

Let us abbreviate them as follows:

B,AΓ ∆
i1

× AΘΛ
1 | A1 | H

AΓ ∆
i1

× AΠΣ
1 , B | A2 | H

Then we reason as follows, using (Cut) and (EC):

A
Γ ∆
i1

× A
ΠΣ
1 , B | A2 | H

⇒ B | B, Γ ⇒ ∆ | H B,AΓ ∆
i1

× A
ΘΛ
1 | A1 | H

B, Γ ⇒ ∆ | AΓ ∆
i1

× A
ΘΛ
1 | A1 | H | H

A
Γ ∆
i1+1 × A

ΠΣ
1 | AΓ ∆

i1
× A

ΘΛ
1 | A1 | A2 | H | H | H

A
Γ ∆
i1+1 × A

ΠΣ
1 | AΓ ∆

i1
× A

ΘΛ
1 | A1 | A2 | H

Subcase 8.2. The rule of the last inference of D2 is (◦ ⇒) and the
principal formula in D2 is not A. Then the last inference of D2 looks as
follows.

B, Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G1 Ai1 ,AΠΣ
1 , B | . . . | Ain ,AΠΣ

n | G2

◦B, Ai1 ,AΠΣ
1 | Ai1 ,AΘΛ

1 | . . . | Ain ,AΘΛ
n | Ai2 ,AΠΣ

2 | . . . | Ain ,AΠΣ
n | G1 | G2

D1 ends as follows: Γ ⇒ ∆, Aj | H. The result of the application of
(Cut) to D1 and D2 is as follows:
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◦B,AΓ ∆
i1

× A
ΠΣ
1 | AΓ ∆

i1
× A

ΘΛ
1 | . . . | AΓ ∆

in
× A

ΘΛ
n | AΓ ∆

i2
× A

ΠΣ
2 | . . . |

AΓ ∆
in

× AΠΣ
n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΓ ∆
i1

× AΘΛ
1 | AΓ ∆

i2
× AΘΛ

2 | . . . | AΓ ∆
in

× AΘΛ
n | H | G1

A
Γ ∆
i1

× A
ΠΣ
1 , B | AΓ ∆

i2
× A

ΠΣ
2 | . . . | AΓ ∆

in
× A

ΠΣ
n | H | G2

Applying (◦ ⇒), we get the required result.
Cases dealing with •, ◦̃, and •̃ are considered similarly. ⊣

Lemma 5.2 (Left reduction). Let D1 and D2 be derivations such that:

(1) D1 is a derivation of Γ1 ⇒ ∆1, Ai1 | . . . | Γn ⇒ ∆n, Ain | H,

(2) D2 is a derivation of A, Θ ⇒ Λ | G,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A).

Then we can construct a derivation D0 of Γ1, Θi1 ⇒ Λi1 , ∆1 | . . . |
Γn, Θin ⇒ Λin , ∆n | H | G such that r(D0) ≤ c(A).

Proof. The proof is by induction on the height of D1. By induction on
l(D2). The basic case is easy and left for the reader.

Inductive case. We have different cases depending on the last rule
applied to D2. The first three cases are similar to Lemma 5.1.

Case 4. The rule of last inference of D1 is (⊲ ⇒). In this case, A is
not a principal formula. The last inference of D1 is as follows.

B,AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | G1 AΠΣ
1 , Ai1 , B | . . . | AΠΣ

n , Ain | G2

⊲B ⇒ | AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | AΠΣ
1 , Ai1 | . . . | AΠΣ

n , Ain | G1 | G2

D2 ends with the hypersequent Aj , Γ ⇒ ∆ | H. We have:

D1 D2

⊲B ⇒ | AΓ ∆

i1

× AΘΛ

1
| . . . | AΓ ∆

in

× AΘΛ
n | AΓ ∆

i1

× AΠΣ

1
| . . . | AΓ ∆

in

× AΠΣ
n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΓ ∆
i1

× A
ΘΛ
1 | AΓ ∆

i2
× A

ΘΛ
2 | . . . | AΓ ∆

in
× A

ΘΛ
n | H | G1.

A
Γ ∆
i1

× A
ΘΛ
1 , B | AΓ ∆

i2
× A

ΘΛ
2 | . . . | AΓ ∆

in
× A

ΘΛ
n | H | G2.

Applying (⊲ ⇒), we get the required result.
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Case 5. The rule of last inference of D1 is (⇒ ⊲). In this case, A
has to be a principal formula. We have:

B ⇒ | ⇒ B | H

⇒ ⊲B | H ⊲B, Γ ⇒ ∆ | G

Γ ⇒ ∆ | H | G

By Lemma 5.1, the claim holds since this case satisfies the condition
of application of the Lemma.

Case 6. The rule of last inference of D1 is (◮ ⇒). In this case A
is not principal and is contained in a side hypersequent G. The case is
similar to the Case 1 of Lemma 5.1.

Case 7. The rule of last inference of D1 is (⇒ ◮).
Subcase 7.1. A is a principal formula. The last inference of D1 is as

follows.

B,AΘΛ
1 ,◮Bi1 | . . . | AΘΛ

n ,◮Bin | G1 A
ΠΣ
1 ,◮Bi1 , B | . . . | AΠΣ

n ,◮Bin | G2

⇒ ◮B | AΘΛ
1 ,◮Bi1 | . . . | AΘΛ

n ,◮Bin | AΠΣ
1 ,◮Bi1 | . . . | AΠΣ

n ,◮Bin | G1 | G2

D2 ends with the hypersequent ◮Bj , Γ ⇒ ∆ | H. We have:

D1 D2

Γ ⇒ ∆ | AΓ ∆

i1

× AΘΛ

1
| . . . | AΓ ∆

in

× AΘΛ
n

| AΓ ∆

i1

× AΠΣ

1
| . . . | AΓ ∆

in

× AΠΣ
n

|H|G1|G2

Using the inductive hypothesis and (⇒ ◮), we get the following
derivation D3 with r(D3) ≤ c(A).

Γ ⇒ ∆ | B,AΓ ∆
i1

× A
ΘΛ
1 | AΓ ∆ΘΛ

2,...,n | AΓ ∆
i1

× A
ΠΣ
1 , B | AΓ ∆ΠΣ

2,...,n | H | G1 | G2

Γ ⇒ ∆ | ⇒ ◮B | AΓ ∆
i1

× A
ΘΛ
1 | AΓ ∆ΘΛ

2,...,n | AΓ ∆
i1

× A
ΠΣ
1 | AΓ ∆ΠΣ

2,...,n | H | G1 | G2

where
• A

Γ ∆ΘΛ
2,...,n = A

Γ ∆
i2

× A
ΘΛ
2 | . . . | AΓ ∆

in
× A

ΘΛ
n

• AΓ ∆ΠΣ
2,...,n = AΓ ∆

i2
× AΠΣ

2 | . . . | AΓ ∆
in

× AΠΣ
n

By Lemma 5.1, the claim holds since this case satisfies the condition
of application of the Lemma.

Subcase 7.2. A is not a principal formula. The last inference of D1

is as follows.

B,AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | G1 AΠΣ
1 , Ai1 , B | . . . | AΠΣ

n , Ain | G2

⇒ ◮B | AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | AΠΣ
1 , Ai1 | . . . | AΠΣ

n , Ain | G1 | G2

D2 ends with the hypersequent Aj , Γ ⇒ ∆ | H. We have:

D1 D2

⇒ ◮B | AΓ ∆ΘΛ
1,...,n | AΓ ∆ΠΣ

1,...,n | H | G1 | G2
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where
• AΓ ∆ΘΛ

1,...,n = AΓ ∆
i1

× AΘΛ
1 | . . . | AΓ ∆

in
× AΘΛ

n

• AΓ ∆ΠΣ
1,...,n = AΓ ∆

i1
× AΠΣ

1 | . . . | AΓ ∆
in

× AΠΣ
n

By the induction hypothesis and (◮ ⇒), we get the required result
similarly to Case 4 of this Lemma.

Case 8. The rule of last inference of D1 is (∼ ⇒). In this case A
is not principal and is contained in a side hypersequent G. The case is
similar to the Case 1 of Lemma 5.1.

Case 9. The rule of last inference of D1 is (⇒ ∼).
Subcase 9.1. A is principal.

B,AΘΛ
1 , ∼Bi1 | AΘΛ

2 , ∼Bi2 | . . . | AΘΛ
n , ∼Bin | G

A
ΘΛ
1 , ∼Bi1 | . . . | AΘΛ

n , ∼Bin | ⇒ ∼B | G ∼Bj , Γ ⇒ ∆ | H

Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | . . . | Γ in , Θn ⇒ ∆in , Λn | Γ ⇒ ∆ | H | G

Using the inductive hypothesis and (⇒ ∼), we get the following
derivation D3 with r(D3) ≤ c(A).

B, Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | . . . | Γ in , Θn ⇒ ∆in , Λn | H | G

Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | . . . | Γ in , Θn ⇒ ∆in , Λn | Γ ⇒ ∆ | ⇒ ∼B | H | G

By Lemma 5.1, the claim holds since this case satisfies the condition
of application of the Lemma.

Subcase 9.2. A is not principal.

B, Θ1 ⇒ Λ1, Ai1 | Θ2 ⇒ Λ2, Ai2 | . . . | Θn ⇒ Λn, Ain | G

Θ1 ⇒ Λ1, Ai1 | . . . | Θn ⇒ Λn, Ain | ⇒ ∼B | G Aj , Γ ⇒ ∆ | H

Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | . . . | Γ in , Θn ⇒ ∆in , Λn | ⇒ ∼B | H | G

Using the inductive hypothesis, we get the required result.

B, Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | Γ i2 , Θ2 ⇒ ∆i2 , Λ2 | . . . | Γ in , Θn ⇒ ∆in , Λn | G

Γ i1 , Θ1 ⇒ ∆i1 , Λ1 | . . . | Γ in , Θn ⇒ ∆in , Λn | ⇒ ∼B | G

Case 10. The rule of last inference of D1 is (◦ ⇒). In this case, A is
not a principal formula. Then the last inference of D1 looks as follows.

B, Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G1 Ai1 ,AΠΣ
1 , B | . . . | Ain ,AΠΣ

n | G2

◦B, Ai1 ,AΠΣ
1 | Ai1 ,AΘΛ

1 | . . . | Ain ,AΘΛ
n | Ai2 ,AΠΣ

2 | . . . | Ain ,AΠΣ
n | G1 | G2

D1 ends as follows: Γ ⇒ ∆, Aj | H. The result of the application of
(Cut) to D1 and D2 is as follows:

◦B,AΓ ∆
i1

× AΠΣ
1 | AΓ ∆

i1
× AΘΛ

1 | . . . | AΓ ∆
in

× AΘΛ
n | AΓ ∆

i2
× AΠΣ

2 | . . . |
AΓ ∆

in
× AΠΣ

n | H | G1 | G2
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By the induction hypothesis, we obtain derivations D3 and D4, re-
spectively, of the following hypersequents such that r(D3) ≤ c(A) and
r(D4) ≤ c(A):

B,AΓ ∆
i1

× AΘΛ
1 | AΓ ∆

i2
× AΘΛ

2 | . . . | AΓ ∆
in

× AΘΛ
n | H | G1

AΓ ∆
i1

× AΠΣ
1 , B | AΓ ∆

i2
× AΠΣ

2 | . . . | AΓ ∆
in

× AΠΣ
n | H | G2

Applying (◦ ⇒), we get the required result.

Case 11. The rule of last inference of D1 is (⇒ ◦).

Subcase 11.1. A is principal. Then we have:

⇒ B | B,AΓ ∆
1 , ◦Bi1 | AΓ ∆

2 , ◦Bi2 | . . . | AΓ ∆
n , ◦Bin | G

A
Γ ∆
1 , ◦Bi1+1 | AΓ ∆

2 , ◦Bi2 | . . . | AΓ ∆
n , ◦Bin | G ◦Bj , Θ ⇒ Λ | H

A
Γ ∆
1 × A

ΘΛ
i1+1 | AΓ ∆

2 × A
ΘΛ
i2

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

By the inductive hypothesis, we have the following derivation D3

with r(D3) ≤ c(A).

⇒ B | B,AΓ ∆
1 × AΘΛ

i1+1 | AΓ ∆
2 × AΘΛ

i2
| . . . | AΓ ∆

n × AΘΛ
in

| H | G

A
Γ ∆
1 × A

ΘΛ
i1

, ◦B | AΓ ∆
2 × A

ΘΛ
i2

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

By Lemma 5.1, the claim holds since this case satisfies the condition
of application of the Lemma.

Subcase 11.2. A is not principal. Then we have:

⇒ B | B,AΓ ∆
1 , Ai1 | AΓ ∆

2 , Ai2 | . . . | AΓ ∆
n , Ain | G

AΓ ∆
1 , ◦B, Ai1 | AΓ ∆

2 , Ai2 | . . . | AΓ ∆
n , Ain | G Aj, Θ ⇒ Λ | H

AΓ ∆
1 × AΘΛ

i1
, ◦B | AΓ ∆

2 × AΘΛ
i2

| . . . | AΓ ∆
n × AΘΛ

in
| H | G

Then we transform this derivation as follows:

⇒ B | B,AΓ ∆
1 , Ai1 | AΓ ∆

2 , Ai2 | . . . | AΓ ∆
n , Ain | G Aj, Θ ⇒ Λ | H

⇒ B | B,AΓ ∆
1 × AΘΛ

i1
| AΓ ∆

2 × AΘΛ
i2

| . . . | AΓ ∆
n × AΘΛ

in
| H | G

A
Γ ∆
1 × A

ΘΛ
i1

, ◦B | AΓ ∆
2 × A

ΘΛ
i2

| . . . | AΓ ∆
n × A

ΘΛ
in

| H | G

The other cases are treated similarly. ⊣

Theorem 5.1 (Constructive elimination of cuts). Let L ∈ {S5♣, Z, Ż},

where ♣ ∈ {⊲,◮, ◦, •, ◦̃, •̃, ∼, ∼̇}. If a derivation D in HL has an appli-

cation of (Cut), then it can be transformed into a cut-free derivation D′.
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Proof. Assume that a derivation D in HL has at least one application
of (Cut), i.e. r(D) > 0. The proof proceeds by the double induction on
〈r(D), nr(D)〉, where nr(D) is the number of application of (Cut) in D.
Consider an uppermost application of (Cut) in D with cut rank r(D).
We apply Lemmas 5.1 and 5.2 to its premises and decrease either r(D)
or nr(D). Then we can use the inductive hypothesis. ⊣

6. Conclusion

In this paper, we have developed cut-free hypersequent calculi for several
modal logics over S5-frames having non-standard modalities as primitive
ones. There are other modalities one may also consider. For example,
Pan and Yang [43] introduced the following weak essentially true and
strong accidentally true modalities:

• ϑ(⊛A, x) = 1 iff ϑ(A, x) = 0 or ∃y∈W ϑ(A, y) = 1,
• ϑ(⊙A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈W ϑ(A, y) = 0.

Thus, ⊛A = ¬A ∨ ♦A = A → ♦A and ⊙A = A ∧ �¬A. Since these
modalities are quite unusual, we decided not to include them into the
main part of our paper, but we can present sound, complete, and cut-free
hypersequent rules for them:

(⊛ ⇒)
Γ ⇒ ∆, A | H A ⇒ | G

⊛A, Γ ⇒ ∆ | H | G
(⇒ ⊛)

A, Γ ⇒ ∆ | Θ ⇒ Λ, A | H

Γ ⇒ ∆,⊛A | Θ ⇒ Λ | H

(⊙ ⇒)
A, Γ ⇒ ∆ | Θ ⇒ Λ, A | H

⊙A, Γ ⇒ ∆ | Θ ⇒ Λ | H
(⇒ ⊙)

Γ ⇒ ∆, A | H A ⇒ | G

Γ ⇒ ∆, ⊙A | H | G

By analogy we may define weak essentially false and strong acciden-
tally false modalities as follows:

• ϑ(⊛̃A, x) = 1 iff ϑ(A, x) = 1 or ∃y∈W ϑ(A, y) = 0,
• ϑ(⊙̃A, x) = 1 iff ϑ(A, x) = 0 and ∀y∈W ϑ(A, y) = 1.

Hence, ⊛̃A = A ∨ ♦¬A = ¬A → ♦¬A and ⊙̃A = ¬A ∧ �A. The
appropriate sound, complete, and cut-free hypersequent rules for them
are presented below:

(⊛̃ ⇒)
A, Γ ⇒ ∆ | H ⇒ A | G

⊛̃A, Γ ⇒ ∆ | H | G
(⇒ ⊛̃)

Γ ⇒ ∆, A | A, Θ ⇒ Λ | H

Γ ⇒ ∆, ⊛̃A | Θ ⇒ Λ | H

(⊙̃ ⇒)
Γ ⇒ ∆, A | A, Θ ⇒ Λ | H

⊙̃A, Γ ⇒ ∆ | Θ ⇒ Λ | H
(⇒ ⊙̃)

A, Γ ⇒ ∆ | H ⇒ A | G

Γ ⇒ ∆, ⊙̃A | H | G
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Among other non-standard modalities we would like to mention the
so called ‘boxdot’ modality ⊡A = �A ∧ A introduced by Boolos [5] for
the needs of provability logic and being interpreted as ‘provable and true’
(for its use in context of essence and accident logics [see 52]):
• ϑ(⊡A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈W ϑ(A, y) = 1.

The appropriate rules for ⊡ are as follows:

(⊡ ⇒)
A, Γ ⇒ ∆ | H A, Θ ⇒ Λ | G

⊡A, Γ ⇒ ∆ | Θ ⇒ Λ | H | G

(⇒ ⊡)
Γ ⇒ ∆, A | H ⇒ A | G

Γ ⇒ ∆,⊡A | H | G

One may also consider strong non-contingency modality D A = (A →
�A) ∧ (¬A → �¬A) (the symbol for it is ours) introduced by Fan [9].
We believe there might be other interesting non-standard modalities in
the literature. As for future research, we emphasize two tasks. First, to
formulate the uniform method of generation of hypersequent calculi for
the non-standard modalities defined over S5-models. Second, to extend
our results on other modal logics, such as S4, T, K, etc.
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