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Equality and Near-Equality in a Nonstandard World

Abstract. In the context of nonstandard analysis, the somewhat vague
equality relation of near-equality allows us to relate objects that are indis-
tinguishable but not necessarily equal. This relation appears to enable us to
better understand certain paradoxes, such as the paradox of Theseus’s ship,
by identifying identity at a time with identity over a short period of time.
With this view in mind, I propose and discuss two mathematical models for
this paradox.
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1. Introduction

A superficial look at equality may create the impression that it is a
rather simple matter. By contrast, a more attentive analysis reveals
that, in some cases, equality is more involved and subtle than expected.
For example, the so-called paradoxes of identity [cf., e.g., Deutsch, 2008]
have provoked countless philosophical discussions, interpretations and
developments which have retained their interest throughout the history
of philosophy.

One may be led to believe that the situation is dramatically different
in mathematics. Indeed, many dictionaries of mathematical terms either
don’t bother to define equality (even though that term is widely used
throughout) or contain definitions that are far too vague to be useful.
For example [Dic, 2003, p. 75] defines being equal as “being the same in
some sense determined by context” and Boursin [1983] claims that
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(Reflexivity) ∀x(x = x)

(Symmetry) ∀x∀y(x = y → y = x)

(Transitivity) ∀x∀y∀z(x = y ∧ y = z → x = z)

Figure 1. Axioms of equality

A igualdade é uma relação muito simples, relação de equivalência e
de ordem simultaneamente. Escreve-se a igualdade x = y se qualquer
propriedade verificada para x se verifica para y.1

The latter, not only claims that equality is a facile matter but presup-
poses the law known as Leibniz law, which states that no two distinct
things can have exactly the same properties. Nevertheless, this principle
is not universally agreed upon, being widely discussed in the literature
(see for example [Bender, 2019; Black, 1952]), and may even be false in
the quantum domain [Cortes, 1976; French, 2019].

In the following I will consider identity to be the binary relation that
any object has with itself and only with itself, and that thus fails to
hold between distinct objects. As for equality, it is generally (but not
universally) understood as a reflexive, symmetric and transitive binary
relation between terms of a formal language (see Figure 1).

The fact that, from a mathematical perspective, equality is not a
trivial matter is made clear by the many different forms that it takes
in mathematics. In this paper I argue that equality can be used to
understand some paradoxes of identity by considering the notion of near-
equality in the context of nonstandard analysis. As argued in Section 3,
this notion seems to be especially useful for understanding how equality
behaves over time. Indeed, near-equality can be used to identify identity
at a time with identity over a “short” period of time. I will look into the
perspective that everything is constantly changing, as advocated by Her-
aclitus, and to the paradox of Theseus’s ship. The “short” period of time
mentioned above may be outside of the scale of human perception, even
infinitesimal, thus spawning infinitesimal differences over infinitesimal
periods of time, making clear the relevance of using nonstandard analy-
sis. To this end, the necessary concepts from nonstandard analysis are in

1 A direct translation would be: “Equality is a very simple relation which is
simultaneously an equivalence relation and an order relation. One writes x = y if any
property which is verified for x is also verified for y.”
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fact quite basic and common to almost any presentation of nonstandard
analysis. In Section 2, a simple and “economical” version of nonstandard
analysis that suffices for the purpose of this paper is presented.

2. Nonstandardness and equality

The advent of nonstandard analysis by Abraham Robinson [1961; 1966]
allowed for a first formal consistent treatment of infinitesimals. In spite
of some criticism (notably by George Berkeley [2005]), infinitesimals were
crucial for the intuitive development of mathematical knowledge by au-
thors such as Archimedes of Syracuse, Simon Stevin, Pierre de Fermat,
Gottfried Leibniz, Leonard Euler and even Augustin-Louis Cauchy, to
name but a few [Bair et al., 2018; Bair et al., 2020; Katz and Sherry,
2013].2 The key factor for the arguments in this paper is the fact that
the existence of infinitesimals allows us to define different orders of mag-
nitude and a notion of near-equality. For that purpose, a very “eco-
nomical” version of Nonstandard Analysis due to Edward Nelson [1987,
Chapter 4], dubbed ENA− in [Dinis and van den Berg, 2019, Chapter 1],
for Elementary Nonstandard Analysis, is sufficient. Using the notation
of the latter reference, I will describe that system below. Nevertheless,
almost any other theory that incorporates infinitesimals can be used
instead so that the arguments below still make sense [cf., e.g., di Nasso,
1999; Fletcher et al., 2017]. In spite of that, there are important philo-
sophical differences in the different approaches to nonstandard analysis.
For example, let us consider Robinson’s approach versus Nelson’s ap-
proach towards the real numbers. In Robinson’s approach, there are
two sets of real numbers, the usual real numbers (denoted R) and the
hyperreal numbers (denoted ∗

R), which include the usual reals as well as
the new nonstandard elements. In Nelson’s approach there is only one
set of real numbers that has  and always had  nonstandard elements.
The nonstandard elements are now “accessible” because we are consid-
ering a richer language. The major advantage of the Nelson’s approach

2 The formal existence of infinitesimals is not really required by these authors.
So, one may wish to think of infinitesimals as “useful fictions”, as for example Leibniz
himself admitted in a letter to Samuel Masson [Leibniz, 1989, p. 230]. Hendrik Bos
claims that “[Leibniz] had to treat the infinitesimals as ‘fictions’ which need not
correspond to actually existing quantities, but which nevertheless can be used in the
analysis of problems” [Bos, 1974, pp. 54–55]. A more detailed discussion of this matter
can be found in [Bair et al., 2018].
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is its familiarity: one can work there almost as if one were in ZFC.
Furthermore, the weaker version presented below is characterized by its
simplicity, indeed it is aimed to be “[. . . ] readily available to anyone who
can add, multiply and reason” [Nelson, 1987, p. vii].

Classical mathematics is usually formalized by the axioms ZFC of
Zermelo-Fraenkel Set Theory with the Axiom of Choice, in a language
which only contains one undefined non-logical symbol, ‘∈’, for set mem-
bership [cf., e.g., Kunen, 1980; Potter, 2004]. The theory ENA− (cf.
Figure 2) is ruled by a simple set of axioms after adding to the language
a new predicate ‘st’. One should read st(x) as ‘x is standard’. Formulas
which involve the predicate ‘st’ are called external and formulas which
do not involve that predicate, i.e. formulas in the language of classical
mathematics, are called internal. The first two axioms state that the
usual natural numbers are standard3 and the third axiom postulates the
existence of nonstandard natural numbers. The fourth and final axiom is
indeed an axiom scheme called external induction. It is a form of induc-
tion that allows to conclude that some property is true for all standard
natural numbers given that it is true for zero and that whenever it is true
for some standard n, then it is also true for its successor n + 1. Since
ENA− is a conservative extension of classical mathematics, the usual
form of induction is still valid, albeit only for internal properties. To see
why such restriction is required, consider the formula Φ(n) :≡ st(n). If
one could apply internal induction to Φ the conclusion would be that
every natural number is standard, in contradiction to the third axiom.

The theory ENA− allows us to define different orders of magnitude
in the following way. A real number x is said to be infinitesimal4 if
its absolute value is smaller than the inverse of any positive standard
natural number; limited, if it is, in absolute value, bounded by some
standard natural number and unlimited, or infinitely large if x is not
limited. Finally, the number x is said to be appreciable if it is limited but
not infinitesimal. Two real numbers x, y whose distance is infinitesimal
are said to be infinitely close or near equal and we write x ≃ y. As it

3 Georges Reeb called “naive” the natural numbers which can be obtained from
zero by the successive addition of one, and then claimed that not all natural numbers
are naive. “Les entiers naïfs ne remplissent pas N” [Diener and Reeb, 1989]. Indeed,
the first two axioms imply that the nonstandard natural numbers cannot be accessed,
in a naive way, by the successor function and can, at least in that sense, be considered
ideal elements.

4 Such a real number, if different from zero, is necessarily nonstandard.
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(1) st(0)

(2) ∀n ∈ N(st(n) → st(n + 1))

(3) ∃ω(¬st(ω))

(4) (Φ(0) ∧ ∀stn(Φ(n) → Φ(n + 1))) → ∀stn Φ(n),

where Φ is an arbitrary formula (internal or external)
and ∀stn Φ(n) is an abbreviation of ∀n(st(n) → Φ(n)).

Figure 2. The axioms of ENA−

turns out, given a real number x, there is only one standard real number
which is infinitely close to x. Such number is called the shadow (or
standard part5) of x and is denoted ◦(x). It is not difficult to see that
◦(−x) = − ◦(x) and ◦(y + x) = ◦(x) + ◦(y).

It is also a simple exercise to check that the Leibniz’s rules hold
[Callot, 1992; Dinis and van den Berg, 2017; Lutz, 1987]. Leibniz’s rules
are rules for orders of magnitude. For example, the sum and product
of infinitesimals are infinitesimal, the sum and product of appreciable
numbers are appreciable, the product of an infinitely large number with
an appreciable number is infinitely large, etc. These were the intuitive
rules, used by Leibniz and others, that it is possible to formalize and
prove rigorously with nonstandard analysis. Indeed, nonstandard analy-
sis allows us to treat rigorously concepts such as ‘big’ and ‘small’ as well
as the fact that ‘small’ values can somewhat be neglected, unless there
are “too many” things to neglect. This art of neglecting is quite com-
mon in physics and in some heuristic methods in mathematics, namely
in asymptotics.6 This approach allows one to take into account the im-
portant measurements or factors and neglect the not so important ones.

The notion of near-equality can be seen as a flexible notion of identity,
imbued with a certain vagueness: two objects are only different when
one can tell them apart, i.e. when they are appreciably different. This
means that if the difference between two objects is infinitesimal, then

5 The standard part map can be seen as a formalization of heuristic principles
such as Leibniz’s transcendental law of homogeneity [Katz and Sherry, 2013, Sec-
tion 5.3] and of Fermat’s adequality [Bascelli et al., 2014, p. 854].

6 The interested reader may consult [Dinis and van den Berg, 2019; van den Berg,
1987] for approaches using nonstandard analysis which can be seen as a formalization
of Johannes Van der Corput’s ars negligendi [van der Corput, 1959/1960].
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in practice one is not able to tell them apart and therefore one regards,
for all practical purposes, the two objects as being the same object.
Nevertheless, Leibniz’s rules ensure that near-equality still satisfies the
axioms for equality. Indeed, reflexivity holds because 0 is infinitesimal;
symmetry follows from the fact that if an element is infinitesimal then
its symmetric is also infinitesimal and transitivity follows from the fact
that the sum of two infinitesimals is still infinitesimal.

An important remark should be made here. Since, near-equality
is an external relation one cannot use transitivity indefinitely. Indeed,
consider the sequence (un) defined by un = n

ν
, where ν is infinitely large.

Observe that 1
ν

is infinitesimal. So, one obtains the following sequence
of near-equalities:

0 ≃ u1, u1 ≃ u2, u2 ≃ u3, . . . , un−1 ≃ un, . . . (1)

For standard n one may conclude that u0 ≃ un but for nonstandard
n the same conclusion is not acceptable. For example, one could take
n = ν, thus deriving that un = 1 which is clearly not near-equal to 0.

A near-equal version of extensionality is not valid in general as in
some cases there is some chaotic behaviour: near-equal inputs produce
outputs that are very far apart. Nevertheless, there is a sort of exten-
sionality related with the so-called S-notions. Consider, as an illustrative
example, the notion of an S-continuous function [Diener and Diener,
1995, Section 1.3], which states that whenever x is near-equal to y, the
respective images must also be near-equal. S-continuous functions are
functions that appear to be continuous (even if they are not!). The fol-
lowing two examples are instructive. Let ε be a non-zero infinitesimal.
Consider the real-valued functions f and g defined respectively by

f(x) :=

{

0 x is rational

ε otherwise
g(x) := arctan

(

x

ε

)

.

The function f is S-continuous in spite of being discontinuous at every
point and the function g is continuous but not S-continuous. Around
the origin, the function g grows “too fast” and, to the “naked eye” (after
rescaling by a factor of π

2 ) it seems like the sign function sgn, defined by

sgn(x) :=















−1 x < 0

0 x = 0

1 x > 0

,
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which is not continuous at the origin.
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3. Applications of near-equality

In this section, the notion of near-equality is applied to some concrete
case studies. The main goal is to question certain intriguing kinds of
reasoning involving equality, namely the proof that 0.999 . . . = 1, the
problem of continuous change and the paradox of Theseus’s ship, and to
propose nonstandard analysis as a possible framework to better under-
stand these kinds of reasoning.

3.1. From 0.999. . . to 1

Does 0.999 . . . equal 1? A classical proof of the equality of these two
representations goes as follows. Let x = 0.999 . . . . Then 10x = 9.999 . . .

which entails 9x = 10x − x = 9.999 . . . − 0.999 . . . = 9 and therefore
x must be equal to 1. Even in the presence of a proof, this is still a
puzzling fact. Intuitively, 0.999 . . . seems to always be a little shy of
1, nevertheless these are two representations of the same number. The
discomfort of not having a unique representation in decimal expansion
may be overcome, in a practical way, by banning every decimal expansion
ending with an infinite number of 9’s. This indeed results in a unique
representation in spite of the rather harsh restriction. Other authors
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take their criticism to another level and propose that indeed 0.999 . . .

and 1 are not the same number [Bedürftig and Murawski, 2018] (see also
[Katz and Katz, 2010a,b]). This is made possible using near-equality
and the notion of a shadow. Let us assume, that 0.999 . . . is infinitely
close but not equal to 1. Then there must exist an ε ≃ 0 separating
the two numbers, i.e. such that 0.999 . . . + ε = 1. The latter is clearly
equivalent to 0.999 . . . = 1 − ε. Going back to “standard” mathematics
via the notion of shadow one obtains

◦(0.999 . . .) = ◦(1 − ε) = ◦(1) − ◦(ε) = 1 − 0 = 1.

This means that standard methods cannot distinguish the difference be-
tween 0.999 . . . and 1 but a nonstandard framework offers that possibility,
mostly due to the fact that one is working with an enriched language.
In this way, nonstandard analysis acts as a “microscope” on the real line
allowing one to distinguish elements that before were impossible to tell
apart [cf., e.g., Kusraev and Kutateladze, 1994, p. 26].

3.2. Heraclitus and continuous change

The pre-Socratic philosopher Heraclitus of Ephesus claimed that all
things were constantly flowing (πάντα ῥεῖ) in such a way that one could
not bathe oneself in the same river twice as both the person and the
river had changed in the meantime. Moreover, he added that “We both
step and do not step into the same rivers; we both are and are not”
[fragment B49a, Barnes, 2002, p. 49]. The full meaning of this sentence
is not entirely clear but it seems to advocate that this constant flux
implies some sort of inner contradiction. One can find something similar
in everyday life, such as when people say things like “I’m not quite myself
today” without necessarily intending a contradiction.7 Is then reflexiv-
ity of equality at stake? At an atomic level an individual is constantly
changing; however, one still thinks of oneself at a non-atomic (psycho-
logical) level as the same person. Can the idea of constant change be
reconciled with Wittgenstein’s “meaning as use” [1953, Section 43]? Or
with Quine’s argument that terms can name the same thing but differ in
meaning [1951]? Moreover, as seen in more detail in Subsection 3.3, the

7 Also related to this conception are the notions of personal identity: being the
same man is not the same as being the same person [Locke, 2015, Chapter XXVII]
and of relative identity [cf., e.g., Noonan, 2017].
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transitivity of equality is not entirely clear and may also be questioned
since it seems to be related to vagueness. Of course, one could use the
distinction between equality and identity to argue that being the same
person is not the same as being the same individual. But one is then
forced to accept that there is a certain vagueness in the notion of ‘being
the same person’. This vagueness is deeply related with paradoxes which
arise from the inability of taking into account the different orders of
magnitude, interpreted as a whole. So, and more generally, is equality
(even in a small degree) a vague relation?

Given two infinitely close instances of time, sometimes one can argue
that very small changes have occurred, in which case the changes can be
modelled by an S-continuous function. If, on the other hand, the changes
are drastic, for example when the so-called butterfly effect occurs, such
a model is no longer adequate. However, even in the latter case, models
using nonstandard analysis seem adequate as they permit to take into
account several orders of magnitude. Indeed, one can (formally) create a
mathematical model for which infinitesimal differences in time produce
effects which are appreciable or infinitely large.

The fact that near-equality is used here is crucial in several ways.
Firstly, changes over time can be explained by the fact that appreciable
changes are a consequence of an accumulation of infinitesimal changes.
Secondly, using the notion of a shadow one can argue that at a human
scale there is no perceptible change. As such, it is possible to say that
the river, at two very close instances in time, is near-equal but not equal
and so, at least in this sense, it is and it is not the same. Finally, near-
equality is an external relation. As such, one cannot use induction, nor
transitivity an unlimited number of times. This is further explored in
the next subsection.

3.3. Two models of the paradox of Theseus’s ship

The well-known paradox of Theseus’s ship [Clark, 2012, pp. 230–233] can
roughly be stated as follows. The ship sailed by Theseus was entirely
made of wood. As the years went by, some of the wooden boards began
to rot and were replaced by new ones. Eventually, all boards composing
the ship were replaced. One can then ask if the restored ship is still the
same object as the original ship. Given the difference of scale between
the ship and a single wooden board, intuitively one may be led to refer
to the initial and final ships as being distinct, while if, say, only one
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small repair is made as still being the same ship. Presented in this way,
it resembles the so-called sorites paradox. Indeed, we are in the presence
of vagueness of the sorites kind because if the ships are distinct when all
the parts are replaced, then at what point does the new ship arises?

In the spirit of [Dinis and van den Berg, 2019, Chapter 10], using
nonstandard analysis, I will consider two simple thought experiments and
give the corresponding mathematical formulations, hopefully providing
some insight into the paradox.

The first model relies essentially on near-equality, mimicking (1).
For that matter, let us assume that there is an initial ship S0 which
is composed of a nonstandard natural number n of boards of wood (or
atoms, for that matter) and that a difference of just one component is
not sufficient for one to claim that she is in the presence of a new ship.

Consider the sequence of ships S0, S1, . . . , Sn, where Si, i ∈ {0, . . . , n}
denotes the ship after i components have been replaced. So, S0 denotes
the original ship, and Sn the resulting ship after all the components have
been replaced. This reasoning can be represented as follows















































S0 ≃ S0

S0 ≃ S1

S1 ≃ S2

...

Sn−1 ≃ Sn

S0 6≃ Sn

(2)

Is there a paradox here? The fact that near-equality is an external
relation ensures that transitivity can only be used a standard number of
times. At the same time, one can choose to (re)interpret the symbol ≃
as meaning ‘near-equal but not equal’, thus accounting for the fact that,
say the ships S0 and S1 are different but imperceptibly so. This sends us
back to Heraclitus’s view that these are and are not the same ship. Note
that if equality is used in (2) instead of near-equality, then the reasoning
is indeed paradoxical. The relation is no longer an external relation and
it is possible to use transitivity nonstandardly many times and derive
both S0 = Sn and S0 6= Sn. By distinguishing between internal and
external relations, our model allows us to explain the paradox, at the
cost of “pretending” that the ship is made of a nonstandard number of
wooden boards.
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The use of nonstandard analysis is nevertheless in line with the intu-
ition that if “few” (standardly many) changes are made then we are in
the presence of the same ship whereas if “many” (nonstandardly many)
changes occur then the ship is no longer the same. The fact that large
changes come as the result of the accumulation of small changes is then
a realization of the well known fact that an infinitely large sum of in-
finitesimals may be appreciable or even infinitely large.

It is possible to slightly modify the model so that if the number of
changes is infinitesimal, then we are talking about the same ship whereas
if the set of changes is appreciable (i.e. not infinitesimal and not infinitely
large) or even infinitely large the ships are indeed different.

Finally, let us now consider a second approach based on (external)
induction. Again, assume that the ship is composed of nonstandardly
many boards of wood. Let E(x, y) represent the relation ‘x is imper-
ceptibly different from but not equal to y’ and let sn represent the n-th
ship in Theseus’s ship paradox, i.e. the ship after n boards have been
replaced. By the assumption that replacing only one board of wood does
not produce a different ship, one has E(s0, s1) and, for all standard n,
if E(s0, sn) then E(s0, sn+1). External induction allows one to conclude
that if only a standard number of boards have been replaced, then the
ship is indeed different, but imperceptibly so. Hence, in order to ob-
tain perceptible differences one must replace a nonstandard number of
boards. The argument can then be represented as follows:

{

(E(s0, s1) ∧ ∀stn (E(s0, sn) → E(s0, sn+1))) → ∀stn E(s0, sn)

∃ω (¬E(s0, sω))

Again, the nonstandard framework is crucial here. If one were to use
(usual) induction instead of external induction, the conclusion would be
that, no matter how many boards are replaced, one could not perceive a
difference in the ship. Moreover, the reasoning would contradict the sec-
ond line of the argument, claiming the existence of a number of changes
which indeed allows us to perceive a difference in the ship(s).
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