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A Formal Analysis of the Concept

of Behavioral Individuation of Mental States

in the Functionalist Framework

Abstract. The functionalist theory of mind proposes to analyze mental
states in terms of internal states of Turing machine, and states of the ma-
chine’s tape and head. In the paper, I perform a formal analysis of this
approach. I define the concepts of behavioral equivalence of Turing ma-
chines, and of behavioral individuation of internal states. I prove a theorem
saying that for every Turing machine T there exists a Turing machine T

′

which is behaviorally equivalent to T , and all of whose internal states of
T

′ can be behaviorally individuated. Finally, I discuss some applications of
this theorem to computational theories of mind.
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1. Introduction

By functionalism, I mean a general view, still very prominent in philoso-
phy, psychology, and cognitive science, that mind is, essentially, a compu-
tational device, and therefore theories of computation should be used in
explaining its nature and workings. One of the first formulations of this
stance, commonly called machine state functionalism, was presented by
Hilary Putnam in his now classic paper [8]. Putnam proposed identifying
the mind with the central unit of a Turing machine, and mental states of
the mind with internal states of the machine’s central unit in connection
with certain states of the machine’s tape and head. Thus, for example,
pain, understood as a specific mental state related to particular types of
stimulus and particular reactions to it, is supposed to be identified with
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some state of the central unit, given that the content of the tape, and
the symbols written on it by the head, fit some prescribed pattern.

According to Putnam, the crucial advantage of this model is that
it introduces a new level of explanation, which, at least hypothetically,
could offer a way out of the vicious circle of reductionist approaches to
mental states. This has to do with an old Brentano’s thesis which says
that intentionality is a fundamentally irreducible phenomenon: every
reasonable attempt at explaining (referring to, identifying, etc.) inten-
tional mental states, i.e., states such as believing, expecting, hoping
etc., must necessarily involve other mental states. In particular, Roder-
ick M. Chisholm [see 2] and, independently, Peter Geach formulated an
argument along these lines in the context of behaviorism, showing that
mental states cannot be reduced to behavioral dispositions. Meanwhile,
the functionalist model potentially allows for talking about mental states
in a consistent, mathematically formalizable manner without reducing
them  in terms of inputs, outputs and other functional states.

Putnam himself admitted that the idea of using the Turing machine
model to explain the nature of mental states was rather vague. He wrote
that this “hypothesis schema” should be verified by further theoretical
and empirical studies. And in the course of numerous debates on various
forms of functionalism that followed, many arguments for and against
it were brought forward  for example, the Chinese room argument, the
Twin Earth argument (in connection with internalism), etc. In fact, in
a later book [9], Hilary Putnam also formulated a critique of his own
functionalist program.

However, and rather surprisingly, it seems that so far no one has tried
to perform a formal analysis of the hope that modeling the mind as a
Turing machine leads to a genuinely non-reductionist perspective. The
main goal of this paper is to provide a way of filling up this serious gap.
I propose a formalization of the concepts of behavioral equivalence and
behavioral individuation of functional states1. To be more specific, I de-
fine the behavioral disposition of an internal state of a Turing machine as
the collection of all possible behavioral configurations, i.e., sequences of

1 After completing this paper, I found out that a similar approach was proposed
in the context of finite automata by E. F. Moore in a seminal paper [5]  see his
definition of distinguishable states and Theorem 4. Although Moore’s paper was
utilized in some discussions related to behaviorism, to the best of my knowledge, no
applications of the the concept of distinguishable states have ever been considered in
the philosophy of mind.
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contents of the tape, and positions of the head that result from a run of
the machine starting from this state. This approach seems reasonable 
the tape models the environment, i.e., stimulus, and the machine’s reac-
tions to it, while the position of the head would represent the localization
of the machine in the environment. One could perhaps argue that, in
fact, the position of the head should be regarded as part of the machine’s
internal state of affairs, and its behavior should be restricted only to the
content of the tape. This, however, would not affect my conclusions.

In the next step, I define what it means to say that two internal
states q and q′ of machines T and T ′ are behaviorally equivalent. This
definition captures a rather natural idea that q and q′ are identical from
the behavioral point of view when they have the same behavioral dis-
positions, i.e., given any input (and any position of the head), it is not
possible to say whether the operating machine is T , starting from the
state q, or it is T ′, starting the from the state q′, only by observing
the tape and the position of the head. Analogously, the machines T

and T ′ are behaviorally equivalent if their initial states are behaviorally
equivalent. And having the notion of behavioral equivalence at hand, it
is straightforward to formalize the notion of a behaviorally individuated
internal state. Namely, it is a state whose behavioral disposition differs
from behavioral dispositions of all other states of the machine, i.e., it
can be distinguished from other states just by observing the machine’s
behavior.

A formalization can be only as good as the insight it gives into the
concepts it tries to capture. The one proposed in this paper provides a
way for expressing relationships between the mental and the behavioral
sides in precise functional terms. For example, Brentano’s thesis can
be rephrased as follows: internal states are not behaviorally individu-
ated. However, I will try to convince the reader that this framework 
especially the notion of a behaviorally individuated state  also supplies
effective tools for investigating such relationships. To this end, I will
verify the hope that functional descriptions may give a genuinely new
level of explanation of mental states. It turns out that a bare functional
setup is not enough. This is because  as Theorem 2, stated and proved
in the next section shows  for every Turing machine T there exists a
Turing machine T ′ which is behaviorally equivalent to T , and all of
whose internal states are behaviorally individuated. Thus, every Turing
machine model can be replaced with an equivalent one that is completely
describable in a purely behavioral manner.
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Obviously, Theorem 2 is a statement about certain formal properties
of Turing machines, and not about any particular functionalist theory
of mind (be it analytical functionalism saying that mental states, terms,
and concepts should be translated into the language of Turing machines,
metaphysical functionalism saying that the ontological status of mental
states is functional, etc.; see [1] or [7] for a detailed discussion.) Nev-
ertheless, it sheds light on the ingredient of the Turing machine model
that seems to play a role whenever  loosely speaking  the internal-
external opposition comes up. In order to illustrate it, let me briefly
discuss two classical functionalist stances: machine functionalism, and
representational theories of mind in the vein of Jerry Fodor.

What are the consequences of Theorem 2 for machine functionalism,
i.e., the claim that mental states can be identified with internal states
of a Turing machine? Suppose that this hypothesis is correct for some
entity E, i.e., there exists a Turing machine T describing the behavior
of E, and whose internal states correspond to mental states of E. Now,
by the theorem, there also exists a machine T ′ explaining the behavior
of E, and whose internal states are behaviorally individuated. Perhaps
it is T , and not T ′, that is the correct model of E’s mind. However, this
will not be known until some additional arguments are provided: if there
is no independent theory of mind, machines with the same behavioral
dispositions cannot be distinguished from one another. In other words,
Theorem 2 implies that, in the sole framework of machine functionalism,
mental states can be reduced to behavioral states.

Theorem 2 can be also applied to more refined theories of mind.
One of the most obvious disadvantages of machine state functionalism
is that it does not allow for analyzing and identifying mental states in
terms of their content. The so-called representational theories of mind
[see Von Eckardt 10] postulate that an (intentional) mental state should
not be simply understood as an overall state of the mind but rather
as a relation between the mind and a mental representation that forms
its (propositional) content: if Jones expects to meet Cecil at the railway
station (to consider the example analyzed by Chisholm [2, p. 183]), Jones’
mind is in the relation of expecting to the representation ‘meet Cecil at
the railway station’. In other words, thinking, as well as other mental
processes are, in principle, operations performed by the mind on mental
representations.

In the computational version of this view, the whole Turing machine,
together with its tape, becomes a model of the mind  the central unit
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models the operations (computations) that can be realized, and the tape
is the space, where mental representations are manipulated and stored.
Hence, mental processes turn into runs of a Turing machine, and a sin-
gle mental state is an internal state of the machine, together with an
appropriate sequence of symbols that codes the mental representation
constituting its content. For instance, Jones expects to meet Cecil at
the railway station, when the central unit of Jones’ mind is in the inter-
nal state ‘I expect to . . . ’, and the corresponding sequence of symbols
on the tape codes the representation ‘meet Cecil at the railway station’.

Here, the word “corresponding” is crucial as the tape may contain
multiple representations stored by the mind. At this level of generality
(which is, obviously, a far-fetched idealization) one can reasonably posit
that it is the head of the machine that plays the role of a pointer directing
towards appropriate representations. Hence, the position of the head
belongs to representation’s content.

Now, again as it was the case with machine functionalism, it turns
out that it is possible to individuate mental states without referring to
internal states of the central unit. Going back to my example, Jones’
state of expecting to meet Cecil at the railway station is singled out
by the state of the central unit ‘I expect to . . . ’, and the appropriate
part of the tape containing the representation ‘meet Cecil at the railway
station’. But Theorem 2 says that it cannot be excluded that internal
states are identifiable only by their behavioral dispositions (which, this
time, should rather be called representational dispositions.) On purely
computational grounds, expecting (believing, hoping, etc.) is explica-
ble without necessarily being “led back to the intentional language” [2,
p. 185].

Finally, let me comment on the general idea of a realization of a
Turing machine that  as one might hope  could help decide which of
the machines T and T ′, given by Theorem 2, is the right candidate for
a model of the mind. Even though it is generally recognized that some
ingredients of the definition of Turing machine, such as one-dimensional
tape, the head that moves only left or right, etc., are not essential to
it, still, many scholars maintain that this abstract, mathematical model
puts some significant restrictions on its possible (or intended) realiza-
tions. Thus, a Turing machine is supposedly ‘something like a computer’,
‘a device performing formal operations on syntactically structured ob-
jects’, etc. For instance, Jerry Fodor talks about a “classical Turing
architecture” [3, p. 31] of the mind, by which he means that the mind
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is “interestingly like a Turing machine”. On the other hand, Steven
Pinker [6, p. 3] explains that Turing machines encompass “a variety of
systems that we might call ‘computational’, including ones that perform
parallel computation, analogue computation (as in slide rules and adding
machines), and fuzzy computation”. He is definitely right but still far
too modest in his descriptions of what a Turing machine may look like.

In fact, every deterministic, and finitary model of mind can be re-
garded as a realization of a Turing machine, and this is essentially all
the insight that can be obtained in this fashion. In particular, simply
requiring that internal states of the machine should correspond in some
(say, causal) manner to physical states of mind does not even sound like
a reasonable starting point for a more detailed analysis. This “technical
problem”, as Jaegwon Kim [4, p. 88] put it, “something that we will as-
sume can be remedied with a finer-grained notion of an internal state”,
still forms a fundamental obstacle in developing any mature form of a
functionalist theory of mind. Despite many efforts undertaken during
the last 50 years, so far there are no convincing candidates for a formal
notion of internal structure of the Turing machine.

2. The formalization

According to the definition stated in the Stanford Encyclopedia of Philos-
ophy, a Turing machine is a quadruple T = (Q, Σ, q0, δ), where Q and Σ

are finite sets, q0 is a fixed element of Q, and δ : Q×Σ → Σ ×{L, R}×Q

is a function.
The set Q collects internal states of the machine T , i.e., states of the

central unit, and q0 denotes the initial state, i.e., the state from which
T starts its operation (unless otherwise specified.) The set Σ is the
alphabet of possible symbols that can appear on the tape on which T

operates, while δ is a transition function, which specifies how T operates
at every state. I refer to values of δ by

δ(q, s) = (δΣ(q, s), δM(x, a), δQ(q, s)).

Thus, if the present internal state of the machine is q, and the symbol
on the tape at the present position of the head (referred to as the head
value) is s, then δΣ(q, s) is the new symbol written on the tape while
the machine proceeds from the state q to the state δQ(p, a), and moves
the head to the left, if δM (q, a) = L (here, M stands for ‘Move’), or to
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the right, if δM (q, a) = R. As usual, it is also assumed that the tape
is blank except for some finite portion of it. This can be formalized by
choosing a blank symbol b ∈ Σ, which is the only symbol that appears
infinitely many times on the tape.

For a given Turing machine T , a configuration is a finite sequence
of the form α q β, where α and β are finite words in the alphabet Σ,
and q ∈ Q. A configuration α q β encodes a state of the entire machine
according to the following conventions. First, the non-blank symbols on
the tape are αβ. In other words, if α = α0 . . . αm, β = β0 . . . βn, the tape
consists of the following series of symbols: . . . bbbα0 . . . αmβ0 . . . βnbbb . . ..
Second, the central unit is in the state q, and the position of q in the
sequence indicates the position of the head on the tape: it reads the
symbol β0. For example, the configuration q02100 (here, the alphabet
consists of symbols 0, 1 and 2) describes the situation that the central
unit is in the initial state q0, the sequence of non-blank symbols of the
tape is 2100, and the head value is 2  the first non-blank symbol on the
tape. Similarly, the configuration 2q0100 indicates that the head value
is 1.

Let q ∈ Q be a fixed internal state. A sequence c0, c1, . . . of con-
figurations is called a q-trajectory if q appears in the first configuration
c0, and each configuration cn+1 is obtained from the configuration cn by
applying the transition function δ to the internal state and head value
coded by cn. In this way, a q-trajectory codes a complete run of the
machine starting from the state q. Note that it is not assumed that q is
the initial state. This is because the main rationale behind this notion
is to capture also operations of the machine that has already started
running, and is presently in some internal state  not necessarily the
initial one. The collection of all q-trajectories of T is denoted by the
symbol T T

q , and referred to as the q-disposition of T .
Now we introduce the behavioral counterparts of the above notions.

For a given configuration α q β, the sequence α ∗ β, where ∗ is just the
star symbol replacing the state q, is called a behavioral configuration.
The idea is to ‘forget’ about the internal state of the machine (its ‘mental
state’), and record only the state of the tape (its ‘environment’), and the
position of the head (the location of the machine in the environment), as
indicated by the position of the symbol ∗ in the sequence. For example,
the behavioral configuration 2 ∗ 100 means that the sequence of non-
blank symbols on the tape is 2100, and the head value is 1  however,
nothing is known about the internal state of the central unit.
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A sequence of behavioral configurations obtained from a q-trajectory
is called a q-behavior. In other words, a q-behavior is the part of a
run of the machine that can be observed ‘from the outside’: consecutive
contents of the tape, and positions of the head  but not its internal
states. Also, the collection of all q-behaviors of T is denoted by the
symbol BT

q , and referred to as the q-behavioral disposition of T .
Let q be an internal state of a machine T , and let q′ be an internal

state of a possibly distinct machine T ′. The states q and q′ are called
behaviorally equivalent if BT

q = BT ′

q′ . This definition formalizes a natural
idea that two internal states q and q′ are identical from the behavioral
point of view if, given the same input at the beginning (and the same
position of the head), it is not possible to say whether the operating
machine is T , starting from the state q, or it is T ′, starting the from
the state q′, only by observing the behavior of the machine. Similarly T

and T ′ are called behaviorally equivalent if the initial states q0 and q′

0 of
T and T ′, respectively, are behaviorally equivalent. Note that in order
to meaningfully define the notion of behaviorally equivalent machines,
it is necessary to refer only to their initial states. Otherwise, it could
(and would often) happen that a machine was not even behaviorally
equivalent to itself.

The above definitions naturally lead to a formalization of the con-
cept of behavioral individuation of internal states. A state q of T is
behaviorally individuated if no other state of T is behaviorally equivalent
to it, i.e., BT

q 6= BT
q′ for any q′ ∈ Q with q 6= q′. In particular, this

definition implies (and, in fact, is equivalent to) the statement that for
any other state q′, there is an input (and a position of the head) such
that the machine’s behavior starting from q will, at some point, reveal
a difference as compared to its behavior starting from q. Finally, T

has behaviorally individuated (internal) states if all the states of T are
behaviorally individuated.

Now the main technical result of the paper can be stated and proved.

Theorem A. For every Turing machine T there exists at least one Tur-

ing machine T ′ which is behaviorally equivalent to T , and has behav-

iorally individuated internal states.

Before proceeding to the formal proof, let me comment on the strat-
egy its employs. The main idea is quite simple  the rest is technical
machinery required to formally argue that it actually works. I would
like to construct a sequence of machines T0, T1, . . ., starting with T0 = T ,



Formal analysis of the concept of behavioral . . . 169

that are behaviorally equivalent to one another, and each machine Tk+1 is
in some sense closer to having behaviorally individuated internal states.
I will argue that such a sequence, if appropriately constructed, must
terminate, and its last element has behaviorally individuated internal
states. This is the machine T ′ that the theorem postulates.

To be more specific, suppose that I have already constructed such
machines T0, . . . , Tk but Tk does not yet have behaviorally individuated
internal states. I select a state q of Tk such that some other state q′ is
behaviorally equivalent to it. The first case to be considered is that the
machine Tk has actually never transitioned to q, i.e., there is no ‘link’
(specified by the transition function of Tk) from any state r to q. Then,
obviously, q can be removed without changing the machine’s behavior,
so the machine obtained by eliminating q from Tk will be chosen as the
new element Tk+1 of the sequence. Otherwise, there exists a state r

such that whenever the machine Tk is in r, and it reads a symbol s

from the tape, it is transitioned to q. Now, I can ‘rewire’ Tk so that,
instead of moving from r to q, it moves to q′. As q and q′ initially were
behaviorally equivalent, it can be shown that such a modification will
not alter the machine’s behavior. This machine will be the new element
Tk+1. A crucial feature of the construction is that a single ‘link’ from
the state r to the state q gets removed, a single ‘link’ from r to q′ is
added, and, provided that q and q′ are selected in a sufficiently careful
manner, the sequence must terminate at some point, yielding a machine
with behaviorally individuated internal states.

Proof. For a Turing machine T = (Q, Σ, q0, δ), and a state q ∈ Q, the
indegree of q is the size of the set

{(r, s) ∈ Q × Σ : δQ(r, s) = q for some s ∈ Σ}.

The indegree of q informs about the number of ‘links’ from other states
to q.

In the first step of the proof, for a given Turing machine S = (Q, Σ,

q0, δ) and internal states q, q′ ∈ Q, a new machine S′ will be constructed,
behaviorally equivalent to S, and obtained from S by removing q, or
‘rewiring’ it, as informally described above. This construction will be
later used to find a sequence T0, . . . , TK of behaviorally equivalent ma-
chines such that TK has behaviorally individuated internal states.

Let S = (Q, Σ, q0, δ) be a Turing machine, and let q ∈ Q be a state
distinct from the initial state q0. Suppose that q′ ∈ Q is distinct from
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q, and is behaviorally equivalent to it. The new Turing machine S′ will
be defined by specifying a transition function δ′, defined over a set of
states Q′ ⊆ Q, and the same alphabet Σ, so that S′ = (Q′, Σ, q0, δ′)
is behaviorally equivalent to S, and either q 6∈ Q′ or the indegree of q

calculated in S′ is strictly smaller than the indegree of q calculated in S.
Moreover, the only state whose indegree can increase in S′, as compared
to S, is q′.

Suppose that S is never transitioned to q from any state r. In other
words, there is no r ∈ Q and s ∈ Σ such that δQ(r, s) = q. Then simply
remove q from S, i.e., Q′ = Q \ {q}, and define δ′ to be δ restricted to
the set in Q′ × Σ.

Otherwise, select some r ∈ Q and s ∈ Σ such that δQ(r, s) = q.
Then ‘rewire’ the machine by setting δ′′(r, s) = (δΣ(r, s), δM(r, s), q′)
(i.e., δ′′

Q(r, s) = q′), and δ′′ : Q × Σ → Σ × {L, R} × Q to be equal
to δ for all other arguments. If it so happens that after rewiring, the
indegree of q (with respect to δ′′) is 0, i.e., the resulting machine is never
transitioned to the state q, remove this state, i.e., put Q′ = Q \ {q}.
Otherwise, put Q′ = Q. Finally, define δ′ to be the restriction of δ′′ to
Q′ × Σ.

The machine S′ = (Q′, Σ, q0, δ′) is as required. Clearly, the indegree
of q is strictly smaller in S′ than it is in S (because a ‘link’ from r to
q has been removed), and the only state whose indegree increased is q′.
Moreover, it is claimed that the machines S and S′ are behaviorally
equivalent.

In order to prove this claim, it will be shown that if the behaviors of
S and S′ (starting from a given configuration) are the same as long as
the state r has been involved at most n times, they will stay the same as
long as r is involved at most n + 1 times. From this, it will follows that
the behaviors of S and S′ are always the same. Select a q-configuration
c, and a natural number n.

Let c0 = c, c1, c2, . . . be a sequence of configurations obtained by
applying the machines S′ or S to ck, for k ≥ 0, in the following way.
As long as the state r with the head value s appears in c0, . . . , ck+1 not
more than n times, the machine S′ is applied; otherwise S is applied.
Let Bc,n be the sequence of behavioral configurations obtained from the
sequence c0, c1, . . .. It is easy to observe that Bc,0 is just a q-behavior of
S: if n = 0, the machine S′ is never used.

Now it will be shown that Bc,n = Bc,n+1 for every natural n. Select
some n. Let c0, c1, . . . be the sequence Bc,n, and let d0, d1, . . . be the
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sequence Bc,n+1. Clearly, if the state r with the head value s is used in
constructing Bc,n+1 at most n times, then Bc,n = Bc,n+1. Otherwise,
for some k, the state r with the head value s is used in constructing
ck+1  and so dk+1  for the (n + 1)-th time. Since ci = di for i ≤ k, the
position of the head is the same for ck and dk. Then the internal state of
S corresponding to ck+1 is q, and the internal state of S′ corresponding
to dk+1 is q′. Moreover, by the definition of δ′, it holds that ck+1 = dk+1.
As q and q′ are behaviorally equivalent, and the machine S is used to
construct ck+l as well as dk+l for any l > 1, it follows that ck+l = dk+l

for any l > 0. Thus, Bc,n = Bc,n+1.
In order to finish the proof of the claim, suppose that S and S′ are

not behaviorally equivalent. Then there exists a q-configuration c such
that the q-behavior c0, c1, . . . of S, starting operation from c, differs from
the q-behavior c′

0, c′

1, . . . of S′, starting from the same configuration. But
this must be witnessed by some behavioral configurations ck and c′

k (i.e.,
ck 6= c′

k.) Obviously, the state r was used only finitely many times to
construct c′

0, c′

1, . . . , c′

k, so there exists a natural number n such that
Bc,0 6= Bc,n. However, in view of the above considerations, this is never
the case.

In the second step of the proof, for a given machine T , a machine T ′

postulated by the theorem will be found, i.e., T ′ which is behaviorally
equivalent to T , and with behaviorally individuated states. Fix a Turing
machine T = (Q, Σ, q0, δ), and fix a linear ordering ≺ of internal states
of T such that the initial state q0 is the largest element in this ordering.
Put T0 = T , and start building a sequence T0, T1, . . . of Turing ma-
chines in the following way. Suppose that T0, . . . , Tk have been already
constructed. Then select (if possible) distinct behaviorally equivalent
internal states q, q′ of Tk with the additional requirement that q ≺ q′

(note that q 6= q0 because q0 is the largest state.) By applying the
above construction to S = Tk, q and q′, a new machine Tk+1 = S′ is
obtained. Continue this procedure as long as possible, i.e., until there
are no distinct behaviorally equivalent internal states q, q′ to be selected.

Clearly, if the procedure stops, the last machine in the sequence, say
TK , is the machine the theorem postulates: it is behaviorally equivalent
to T = T0, and it has no distinct behaviorally equivalent internal states.
Therefore in order to finish the proof of the theorem, it needs to be
shown that the sequence does terminate at some point.

Suppose it does not, i.e., it is infinite. As there are only finitely
many internal states in T0, by the pigeon-hole principle, there is a state



172 Maciej Malicki

p and infinitely many numbers k such that p has been selected as q in
the construction of Tk. Let p0 be the smallest such state with respect
to the ordering ≺. Observe that in this situation, there can be only
finitely many k such that p0 has been chosen as q′ in the construction of
Tk: otherwise, there would be another state p1 such that infinitely many
times p1 was chosen as q, and p0 was chosen as q′. But then p1 ≺ p0,
which contradicts the fact that p0 is the smallest state with respect to
≺ chosen infinitely many times as q. However, this implies that, during
the construction, the indegree of p0 was decreased infinitely many times
(every time p0 was chosen as q), while it was increased only finitely many
times (every time p0 was chosen as q′). This is clearly impossible, so the
sequence T0, T1, . . . must indeed terminate.
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