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Informal Provability, First-Order BAT Logic

and First Steps Towards a Formal Theory

of Informal Provability

Abstract. BAT is a logic built to capture the inferential behavior of infor-
mal provability. Ultimately, the logic is meant to be used in an arithmetical
setting. To reach this stage it has to be extended to a first-order version.
In this paper we provide such an extension. We do so by constructing
non-deterministic three-valued models that interpret quantifiers as some
sorts of infinite disjunctions and conjunctions. We also elaborate on the
semantical properties of the first-order system and consider a couple of its
strengthenings. It turns out that obtaining a sensible strengthening is not
straightforward. We prove that most strategies commonly used for strength-
ening non-deterministic logics fail in our case. Nevertheless, we identify one
method of extending the system which does not.
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1. Motivations

1.1. Informal provability vs. formal provability

BAT and its extension CABAT are logics that have been developed to
model the inferential behavior of the informal notion of provability in
classical mathematics. Roughly speaking, informal provability is asso-
ciated with mathematical practice and so-called informal proofs, and
it is usually contrasted with formal proofs understood as syntactical
derivations in an axiomatic system. Informal proofs are those which are
actually used in mathematical practice. Mathematicians spell out such
proofs in a mixture of formal and natural languages. Each inference
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step in such a proof is made by means of widely accepted mathematical
means.1

On the other hand, formal proofs are always relative to a formal
system. A sentence ϕ in the language of the system is formally prov-
able iff there is a proper derivation (formal proof) in this system whose
last element is ϕ. It’s widely accepted that derivations in some formal
systems (usually, some axiomatic versions of set theory) can be taken
as informal proofs. The question whether every informal proof can be
somehow treated as a formal proof is a bit more controversial.

The proponents of the so-called standard view2 claim that, at least
in principle, every informal proof can be translated into a fully formal
proof in a preferred axiomatic theory (usually a variation of set theory).
There are good reasons to think that this claim is at least not obvious:

1. Antonutti Marfori [2010] claims that there is no clear algorithm
for converting a given informal proof into a proper proof in a relevant
axiomatic system.

2. Tanswell [2015] claims that it is not obvious how we can identify
different informal proofs with their translations.

3. Rav [1999, 2007] discusses the epistemological and explanatory
superiority of informal proofs over formal ones, arguing that this supe-

1 We are well aware of the fact that mathematics as a whole is not a unified
discipline. Different mathematical sub-disciplines may rely on specific mathematical
methods unavailable in the others. Still, we think that there is a particular commonly
accepted core of mathematical techniques. This core may change over time. Usually,
Usually, a change to the core happens through an increase in the rigor and the level
of precision in proofs, or through the addition of new mathematical axioms. In both
cases, the extension of provability is preserved, since for any mathematical claim
whose prove does not meet the current standards of precision, one can formulate a
new informal proof with a sufficient level of rigor. As for computer-assisted proofs,
we do not have a strong position. They can simply be accepted as a way of available
proving methods.

2 This view is usually shared by mathematicians. For instance Enderton [1977,
10–11] says:

It is sometimes said that “mathematics can be embedded in set theory.” This means
that mathematical objects (such as numbers and differentiable functions) can be de-
fined to be certain sets. And the theorems of mathematics (such as the fundamental
theorem of calculus) then can be viewed as statements about sets. Furthermore,
these theorems will be provable from our axioms. Hence our axioms provide a suffi-
cient collection of assumptions for the development of the whole of mathematics  a
remarkable fact. (In Chapter 5 we will consider further the procedure for embedding
mathematics in set theory.)
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riority is not convincingly explained by the proponents of the standard
view.

4. Leitgeb [2009] observed that these concepts of proofs are different.
While in formal proofs, the language is precisely defined and divided ac-
cording to logical order, informal proofs are stated in a natural language
expanded with additional mathematical vocabulary. Moreover, the con-
nection between steps in an informal proof has a different nature than
in the formal one. The former often employs steps that are supposed
to be intuitively seen as truth-preserving, without explicitly following
syntactically formulated rules of inference and the latter is based purely
on syntactical proofs forming rules.3

For our purpose the crucial difference lies within the logic of informal
provability. An important inference pattern for informal provability is
the reflection schema.4 Roughly, it says that whatever is provable, is
true. It is a well-known fact that there is no consistent formal theory ex-
tending Peano arithmetic in which all instances of the reflection schema
for its own formal provability predicate are provable [Montague, 1963;
Myhill, 1960]. So, it seems that the informal notion of provability cannot
be formally represented in the standard setting.

To be fair, some attempts to capture informal provability have been
made. They can be divided into two groups: those which treat informal
provability as a S4 modality,5 and those that treat it as a predicate [see
Horsten, 2002]. Theories of the first type severely limit the expressive
power, whereas the second type of theories starts from technical solutions
that seems to be a bit philosophically unmotivated.

The main aim of this paper is to build a first-order version of logic
BAT where informal provability is a predicate, and not an operator. This
was the main motivation behind the construction of BAT systems. In
our paper, the first-order version of BAT is in a language without the
provability operator. It is possible to add this operator, but this is not
our aim. Our aim is to have a predicate whose behavior is analogous

3 To be fair, Leitgeb’s contribution to the topic is much wider but we have only
mentioned the observation he made that is relevant for the current paper.

4 This schema was thoroughly studied in [Arai, 1998; Beklemishev, 1997, 2003].
5 See [Alexander, 2013; Antonutti Marfori and Horsten, 2016, 2018; Bellantoni

and Hofmann, 2002; Carlson, 2016, 2000; Flagg, 1985; Flagg and Friedman, 1986;
Friedman and Sheard, 1989; Goodman, 1984, 1986; Halbach and Horsten, 2000;
Heylen, 2013; Horsten, 1994, 1996, 1997, 2006; Koellner, 2016; Reinhardt, 1985, 1986;
Rin and Walsh, 2016; Shapiro, 1985].
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to the behavior of the operator on the propositional level. This is why
we start with the standard first-order language and then we introduce a
special predicate for informal provability.

The paper is structured as follows. First, in Section 2 we remind the
reader what propositional logics of provability are. Next, in Section 3,
we show how to lift BAT up to a full first-order version. In this section,
we also study and prove some theorems about BAT models and compare
them with those related to some other many-valued logics. Section 4
is devoted to various strategies for strengthening the BAT framework.
This section consists mostly of proofs of negative results. Section 5 is
devoted to using the BAT framework within the context of arithmetic.
Section 6 offers a summary of the work and spells out some ideas about
the future work related to this framework.

2. Propositional BAT and CABAT

One way to dodge the problem of the inconsistency of the principles of
informal provability is to use a non-standard setting and to see how far
we can go. Pawlowski and Urbaniak [2018] developed logics of informal
provability BAT and CABAT. The authors treat mathematical informal
provability as partially defined.6 On their view, mathematical claims
can be either informally provable, informally refutable or informally un-
decidable. So, their logics are three-valued: 1 (informally provable), 0
(informally refutable) and n (informally undecidable).7

In the standard Kripke construction one relies on the Strong Kleene
logic to deal with the partial truth predicate. However, Kleene logic
does not seem to be appropriate for modeling the notion of informal
provability. If we take a closer look at the behavior of complex sentences
and their provability status, it seems that the behavior of complex sen-
tences and their provability status is not truth-functional. Say ϕ and
ψ are informally undecidable (and therefore, so is ¬ϕ). Then, while we
might think that ϕ ∨ ψ is informally undecidable, we might be inclined
to think that ϕ∨ ¬ϕ is informally provable, despite both disjuncts being
undetermined on both occasions.

6 This idea comes from [Kripke, 1975].
7 There are some alternative approaches to construct theories of informal prov-

ability [Flagg and Friedman, 1986; Horsten, 1994, 1998; Reinhardt, 1986; Shapiro,
1985; Stern, 2015]. We will not discuss them.
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Let L be a propositional language (understood as the set of all
well-formed formulas) constructed from propositional variables W =
{p1, p2, . . .} and Boolean connectives (¬,∧,∨,→,≡) in the standard
manner. We will use Greek letters ϕ, ψ, . . . as meta-variables for for-
mulas. The language that results from extending the set of Boolean
connectives with one unary operator B will be denoted by LB. We will
use B to express provability within the object language. This operator
will allow us to express sentences containing informal provability within
the object level and not only on the meta level.

By an assignment we mean any function a : W → Val , where Val

is any set of values. By an evaluation ea built over an assignment a
we will mean a function assigning values to all well-formed formulas,
ea : L → Val , agreeing with a on W (propositional variables), and satis-
fying some additional constraints determined by a given logic.

In the case of standard classical propositional logic, evaluations are
unambiguously determined by assignments. For each assignment there
is exactly one evaluation extending it. In BAT we will use the following
deterministic and non-deterministic "truth-tables" for connectives.8

¬ ϕ

0 1

n n

1 0

∨ 0 n 1

0 0 n 1

n n n/1 1

1 1 1 1

∧ 0 n 1

0 0 0 0

n 0 0/n n

1 0 n 1

→ 0 n 1

0 1 1 1

n n n/1 1

1 0 n 1

≡ 0 n 1

0 1 n 0

n n 0/n/1 n

1 0 n 1

B ϕ

1 1

n/0 n

0 0

Consider a disjunction of two sentences whose value is n. One of
two things may happen: it may be possible to informally prove the
disjunction (for instant by reductio ad absurdum) and the disjunction
would have value 1; or it’s impossible, and the disjunction remains in-
formally undecided. For instance, consider a formula p ∨ ¬p. It seems
that even if both p and ¬p are informally undecided, the claim is infor-
mally provable in virtue of being a substitution of commonly accepted
classical tautology. For a more interesting example consider two claims:
ϕ := Con(PA) and ψ := Con(PA + G). The first one is a statement
saying that Peano arithmetic is consistent. The other one asserts that

8 The truth conditions can be immediately read-off from the "truth-tables".
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not only Peano arithmetic is consistent but Peano arithmetic together
with its own Gödelian sentence G is consistent. Assuming that Peano
arithmetic is indeed consistent, both of these claims are not decided by
Peano arithmetic. On the other hand, it’s easy to see that PA ⊢ ψ → ϕ,
which by simple propositional reasoning gives PA ⊢ ¬ψ ∨ ϕ. Thus,
both of the claims are undecided, yet their disjunction can be treated
as informally provable, since it’s provable in Peano arithmetic. So, we
cannot limit our attention to those combinations of informally undecided
sentences which are substitutions of classical tautologies. For the rest of
the cases the truth-table works as a max function defined according to
the following ordering of information: 0, n, 1.

Similar considerations apply to a conjunction of two informally unde-
cided sentences: either we can prove that they cannot hold together (re-
sulting in a conjunction having value 0) or we cannot do that (so the value
remains n). If a formula is informally provable (ea(ϕ) = 1), then giving
its own proof is also a proof of its provability (ea(Bϕ) = 1), and the other
way around. If a formula is informally refutable ea(ϕ) = 0, then giving
its own refutation is also a refutation of its provability (ea(Bϕ) = 0).

If a formula is informally undecidable (ea(ϕ) = n), then one of two
things may happen. First, it may be the case that the undecidability
of that formula is informally provable, and so its informal provability
is refutable (ea(Bϕ) = 0). Second, it may be the case that its absolute
informal undecidability is not informally provable, and so its absolute
informal provability is informally undecidable (ea(Bϕ) = n).

A BAT assignment a is a function from propositional variables W to
{0, n, 1}. A BAT evaluation over an assignment a is a function which
assigns values to all formulas of LB, agrees with a on W and obeys
the constraints we gave for the connectives. Notice that due to non-
deterministic clauses, one and the same assignment might underlie mul-
tiple evaluation functions.

By Γýϕ, where Γ is a set of formulas, we will mean that any BAT

evaluation which assigns 1 to all formulas in Γ assigns 1 to the formula
ϕ. We say that ϕ is a BAT tautology iff ∅ýϕ. We say that ϕ is a BAT

countertautology iff ∅ý¬ϕ.
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Unfortunately, BAT is a bit too weak to be treated as the logic of
informal provability.9 In order to fix that, Pawlowski and Urbaniak
[2018] introduced additional constraints.

Definition 1. Let CL be a classical propositional logic.10 We say that
a BAT evaluation e belongs to the CL-filtered set of BAT evaluations
just in case the following conditions hold:

1. For any two formulas ϕ, ψ, if |=CL ϕ ≡ ψ then e(ϕ) = e(ψ),
2. For any propositional tautology ϕ, e(ϕ) = 1,
3. For any propositional counter-tautology ϕ, e(ϕ) = 0.

By Γ |=CL ϕ we will mean that for any evaluation e in the CL-filtered
set of BAT evaluations if e(ψ) = 1 for all ψ ∈ Γ then e(ϕ) = 1. The
resulting logic is called CABAT.

An equivalent characterization of the logic CABAT can be obtained
by starting with BAT and closing it under the following condition:

Definition 2 (Closure condition). An extension of BAT (in LB) satisfies
the closure condition just in case for all LB-formulas ϕ1, ϕ2, . . . , ϕk, ψ
such that

ϕ1, ϕ2, . . . , ϕk |= ψ,

where |= is the classical consequence relation for LB, for any BAT eval-
uation e, if e(Bϕi) = 1 for any 0 < i ¬ k, then e(Bψ) = 1.

The ultimate goal of this research is to develop an arithmetical theory
based on some version of CABAT. To do this, we need to extend the
whole framework to a first-order version. In the next section we’ll see
how to do it.

9 Observe that disjunction is neither symmetric nor associative. Take the as-
signment v where all propositional variables have value n and consider two formulas:
ϕ = p ∨ q and ψ = q ∨ p. As far as ϕ and ψ are concerned, there are four possible
ways to extend this assignment:

e
1

v
(ϕ) = n = e

1

v
(ψ)

e
2

v
(ϕ) = 1, e2

v
(ψ) = n

e
3

v
(ϕ) = n, e3

v
(ψ) = 1

e
4

v
(ϕ) = 1 = e

4

v
(ψ).

BAT is too weak to eliminate extensions (e1
v
, e2

v
, e3

v
), in which ϕ and ψ obtain dif-

ferent values, and which show that neither ϕýψ, nor ψýϕ. Thus, it needs to be
strengthened.

10 In the language extended by a modal operator.
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3. First-order BAT

This section is the meat of the paper. First, we will define the notion
of a BAT model. This will be done by adapting the standard construc-
tion of three-values models. The main difference between the standard
and BAT three-valued models is that the latter does not partition the
set of all sentences according to their truth-valued. Instead, the model
interprets atomic sentences and complex sentences that are composed of
sentences whose values are classical according to the model. To obtain a
full interpretation of the language we introduce the notion of evaluation
based on a model. This results in non-deterministic setting since a single
model may have multiple evaluations based on it.

In the second part we show how those models and evaluations behave.
We prove some of the briefly-mentioned results in order to proceed to the
next subsection where we focus on the structure of the set of evaluations
based on a model. We show that they have some interesting algebraic
properties. Next, we define the validity and the consequence relation and
compare BAT with some other well-known many-valued logics. Last, we
comment on possible strategies of strengthening BAT since the system it-
self is quite weak. We show that the standard strategies for strengthening
non-deterministic logics are a bit too strong and can’t actually be used.

3.1. Three-valued non-deterministic models

In order to construct a first-order version of BAT, we need to start with a
couple of definitional and notational conventions. First, let L be a first-
order language understood as a set of formulas built in the standard
way. We use Var = {x1, x2, . . .} to denote the set of variables, Con for
constants, Term for the set of terms.11 Sometimes, we’ll be interested
in the language L+ defined as L plus constants for all elements in the
universe. Usually, to define a three-valued first-order logic, the notion of
a three-valued structure is used. This notion is pretty standard [Halbach,
2011]. In our case, we use a slight variation of this notion, since the logic
is non-deterministic.

A three-valued structure is a tuple 〈M, i〉, such that:

1. M 6= ∅ is a domain of quantification (sometimes called the universe of
the structure).

11 The set may contain function symbols.
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2. i is an interpretation of L in M:
• To every n-ary predicate P , i ascribes a triple 〈E(P ), A(P ),
F (P )〉 such that:

E(P ), A(P ), F (P ) ⊆ Mn

E(P ) ∩A(P ) = E(P ) ∩ F (P ) = A(P ) ∩ F (P ) = ∅

E(P ) ∪ F (P ) ∪A(P ) = Mn

E(P ) is called the extension of a predicate P , A(P ) stands for the
antiextension of P and F (P ) is called the fringe of P . Intuitively,
E(P ) corresponds to the things that are P , A(P ) to the things
that are not P and the fringe correspond to those elements of the
domain to which a predicate is not applicable. In the classical
context we always assume that the fringe is empty. In other
words, the interpretation of each predicate P is a partition of the
domain into the things that are P , are not P , and those for which
P doesn’t apply.

• i(c) ∈ M for every constant c.
• For any n-ary function symbol ◦, i(◦) : Mn → M.
• Identity is classical: i(=) is 〈E(=), A(=), F (=)〉 such that E(=)

is {〈x, x〉 | x ∈ M}, A(=) is M2 \E(=) and F (=) is empty.

Now, a three-valued BAT model M is a triple 〈M, i, v〉, where 〈M, i〉 is
a three-valued structure and v : Var → M is a valuation function. Relative
to a valuation we can define the interpretation of terms:

• tM(τ) = i(τ) if τ is a constant,
• tM(x) = v(x) if x ∈ V ar,
• tM(◦(τ1, . . . τn)) = (i(◦))(tM(τ1), . . . tM(τn)).

For a moment, let’s focus on atomic formulas. In the classical context,
each atomic formula P (a) is either true (if i(a) ∈ E(P )) or false (if
i(a) ∈ A(P )). In our case, since we have three values, we are not going
to use a classical satisfaction relation. Instead, we use a satisfaction
triple 〈
1,
n,
0〉 defined as:

• M 
1 P (τ1, . . . τn) iff 〈i(τ1), . . .i(τn)〉 ∈ E(P )
• M 
0 P (τ1, . . . τn) iff 〈i(τ1), . . .i(τn)〉 ∈ A(P )
• M 
n P (τ1, . . . τn) iff 〈i(τ1), . . .i(τn)〉 ∈ F (P )

Notice that the satisfaction triples essentially partition the set of atomic
sentences into three classes. At this stage, the framework is perfectly
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deterministic, but it does not tell us how to interpret complex formulas.
This is the moment when non-determinism kicks in. To provide the
interpretation of Boolean connectives, we extend, not necessarily in a
unique way, the notion of the satisfaction triple to all complex formulas.
An evaluation is a total function eM : L+ → {0, n, 1} such that for atomic
formulas ϕ we have:

• eM(ϕ) = 1 iff Mýϕ,
• eM(ϕ) = n iff M

ý

ϕ,
• eM(ϕ) = 0 iff M

ý

ϕ.

There are two reasons to introduce evaluations in this manner. First,
they relate satisfaction triples with logical values that we use in the
system. Second, they allow us to express certain things more easily (for
instance, to talk about the set of all sentences whose values are n). In
order to cope with quantifiers, we treat them as “infinite” conjunctions
and infinite disjunctions.

Definition 3 (BAT evaluation). Let M be a three-valued model. We
say that an evaluation eM is BAT evaluation iff for all formulas ϕ, ψ:

1. Negation:
(a) eM(¬ϕ) = 1 iff eM(ϕ) = 0,
(b) eM(¬ϕ) = 0 iff eM(ϕ) = 1,
(c) eM(¬ϕ) = n iff eM(ϕ) = n,

2. Disjunction:
(a) If eM(ϕ) = 1 or eM(ψ) = 1, then eM(ϕ ∨ ψ) = 1,
(b) eM(ϕ ∨ ψ) = 0 iff eM(ϕ) = 0 and eM(ψ) = 0,
(c) If eM(ϕ) = 0 and eM(ψ) = n, then eM(ϕ ∨ ψ) = n,
(d) If eM(ϕ) = n and eM(ψ) = 0, then eM(ϕ ∨ ψ) = n,
(e) If eM(ϕ) = n and eM(ψ) = n, then eM(ϕ ∨ ψ) = n or

eM(ϕ ∨ ψ) = 1,
3. The case for the remaining Boolean connectives are exactly the same

as on the propositional level.
4. Quantifiers:

(a) eM(∀xϕ(x)) = 1 iff for any constant c ∈ L+, we have
eM(ϕ(c)) = 1,

(b) If for any constant c ∈ L+, we have eM(ϕ(c)) = n, then
eM(∀xϕ(x)) = 0 or eM(∀xϕ(x)) = n,

(c) If there is a constant a ∈ L+ such that eM(ϕ(a)) = n, and for
any other constant c ∈ L+ eM(ϕ(c)) 6= 0, then eM(∀xϕ(x)) = n,
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(d) If there is a constant a ∈ L+ such that eM(ϕ(a)) = 0, then
∀xϕ(x)) = 0,

(e) eM(∃xϕ(x)) = 0 iff for all constants c ∈ L+, eM(ϕ(c)) = 0,
(f) If there is a constant c ∈ L+ such that eM(ϕ(c)) = 1, then

eM(∃xϕ(x)) = 1,
(g) If for all constants a ∈ L+ we have eM(ϕ(a)) = n or eM(ϕ(b)) =

0 (and we have at least one witness for either option), then
eM(∃xϕ(x)) = n.

(h) If for all constants c ∈ L+, we have eM(ϕ(c)) = n, then
eM(∃xϕ(x)) = n or eM(∃xϕ(x)) = 1.

Since BAT evaluations are defined relative to a model M, we call
them evaluations based on a model M. The set of all BAT triples based
on M is denoted as StrM.

It is quite easy to see that in general M does not decide the logical
values of all complex formulas. For instance, consider a disjunction of two
atoms whose value is n. Then, there is an evaluation for which the dis-
junction’s value is 1 and a different one, where the value remains n. Com-
plex formulas whose all sub-formulas have classical values (so either 1 or
0) have the same values in all BAT evaluations based on a single model.

3.2. Properties of non-deterministic models

Let’s start with the definitions of satisfaction, dissatisfaction, and neutral
set.

Definition 4 (Satisfaction, dissatisfaction, neutral set). Let M be a
BAT model and let 〈
1,
n,
0〉 a BAT triple based on it. We will use
the following abbreviations: S = {ϕ | M 
1 ϕ}, D = {ϕ | M 
0

ϕ}, N = {ϕ | M 
n ϕ}. We will refer to these sets respectively as
satisfaction, dissatisfaction and neutral sets corresponding to a given
BAT triple. Those sets give a partition of the set of all sentences.

Fact 1. Let 〈
1,
n,
0〉 be a BAT triple based on M. If either S or D
is empty, then N contains all the formulas of the language.

Proof. Suppose that S is empty and that there is a formula ϕ 6∈ N .
Then, since S ∪N ∪D exhaust all the formulas of the language, ϕ ∈ D.
From this follows that ¬ϕ ∈ S, which contradicts the assumption. The
case for D is symmetric.

Fact 2. If N does not contain atoms, then N is empty.
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Proof. Suppose N does not contain atoms. It means that all the atoms
are either in S or D. Let’s focus on quantifier-free formulas. It is easy
to see, that if all sub-formulas of a given formula have classical values
only, the whole formula has to have a classical value. This means that
N cannot contain a quantifier-free formula.

For quantifiers, suppose that ∃xϕ(x) ∈ N , where ϕ(x) is a quantifier-
free formula. By the satisfaction clauses for the existential quantifier
we have to consider two cases. The first one, where for some constant
c ∈ L+ we have ϕ(c) ∈ N , which implies that at least one atom has a
non-classical value, which contradicts the assumption. The second case
is where for all constants c ∈ L+ either ϕ(c) ∈ D or ϕ(c) ∈ N and
both options have witnesses. This means that for some a ∈ L+, we
have ϕ(a) ∈ N , which again is impossible. Analogous reasoning can be
applied to the universal quantifier.

Theorem 1 (Identity criterion 1). Let 〈
1
1,


1
n,


1
0〉, 〈
2

1,

2
n,


2
0〉 be BAT

triples based on M. If either S1 = S2 or D1 = D2, then the triples are

identical.

Proof. Suppose that S1 = S2. We will show that from this it follows
that D1 = D2. From this we may infer that N1 = N2, since the sum of
S,D,N exhaust all the formulas. Next, we assume D1 = D2 and argue
that then S1 = S2.

Let’s start with the first case, and assume for contradiction that
D1 6= D2. This means that there is a formula ϕ ∈ D1 and ϕ 6∈ D2.
It follows that ¬ϕ ∈ S1. We assumed that S1 = S2 so ¬ϕ ∈ S2, thus
¬¬ϕ ∈ D2 and ϕ ∈ D2— contradiction.

In the second case, D1 = D2 and S1 6= S2. Again, there is a formula
ϕ ∈ S1, ϕ 6∈ S2. So by the conditions for negation ¬ϕ ∈ D1, so ¬ϕ ∈ D2.
By the conditions for negation, ϕ ∈ S2 resulting in a contradiction.

Theorem 2 (Satisfaction inclusion). Let 〈
1
1,


1
n,


1
0〉, 〈
2

1,

2
n,


2
0〉 be

BAT triples based on M. D1 ⊆ D2 iff S1 ⊆ S2.

Proof. Left to right: assume S1 ⊆ S2. Take any ϕ ∈ D1, it follows that
¬ϕ ∈ S1. From the assumption, ¬ϕ ∈ S2, and from satisfaction clauses
for negation ϕ ∈ D2. For the implication in the other direction assume
D1 ⊆ D2. Take any ϕ ∈ S1, it follows that ¬ϕ ∈ D1. By the assumption
¬ϕ ∈ D2, giving by satisfaction clauses for negation ϕ ∈ S2.

Theorem 3 (Identity criterion 2). Let 〈
1
1,


1
n,


1
0〉, 〈
2

1,

2
n,


2
0〉 be BAT

triples based on M. If N1 = N2 then the triples are identical.
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Proof. Take two BAT triples 〈
1
1,


1
n,


1
0〉, 〈
2

1,

2
n,


2
0〉 based on M.

Assume that N1 = N2. By induction on the complexity of ϕ we show
that ϕ ∈ S1 iff ϕ ∈ S2 which, by Theorem 1, implies 〈
1

1,

1
n,


1
0〉 = 〈
2

1

,
2
n,


2
0〉.

For atomic formulas the claim holds by the fact that both triples are
based on the same model. Assume that the claim holds for χ, ψ. We will
show that it works for all formulas.

¬: Assume ϕ = ¬ψ and ϕ ∈ S1. It follows that ψ ∈ D1 and by
the induction hypothesis ψ /∈ S2. Thus, either ψ ∈ N2 or D2. The first
option is not possible, so ψ ∈ D2, resulting in ϕ ∈ S2.

∨: Let ϕ = ψ ∨ χ, and assume ϕ ∈ S1. We have three options
to consider: either ψ ∈ S1, or χ ∈ S1, or ψ, χ ∈ N1. For the first two
options, by the induction hypothesis we have ψ ∈ S2 or χ ∈ S2, resulting
in both cases in ϕ ∈ S2.

For the third option, we have χ, ψ ∈ N1. By the initial assumption
χ, ψ ∈ N2. Assume for contradiction that the claim fails, so ϕ /∈ S2.
Now, this splits our case in two: either ϕ ∈ N2, or ϕ ∈ D2. For the
former, since N1 = N2 and so ϕ /∈ S1, which contradicts the assumption.
So it has to be the case that ϕ ∈ D2. By conditions for disjunction we
have ψ, χ ∈ D2 which together with our assumption that χ, ψ ∈ N1 and
N1 = N2 results again in contradiction.

∧: Let ϕ = (ψ ∧ χ) and ϕ ∈ S1. It follows ψ ∈ S1, χ ∈ S1 so by the
induction hypothesis, ψ, χ ∈ S2 resulting in ϕ ∈ S2.12

∃: Let ϕ = ∃xψ(x) and ϕ ∈ S1. We have two cases. The first
one, there is an element a ∈ L+ such that ψ(a) ∈ S1. By the induc-
tion hypothesis ψ(a) ∈ S2 and by satisfaction clauses for quantifiers,
∃xψ(x) ∈ S2.

For the second case, for all constants a ∈ L+, we have ψ(a) ∈ N1.
By the initial assumption, this means that for any constant a ∈ L+, we
have ψ(a) ∈ N2. By the semantics for the (existential) quantifier, either
∃xψ(x) ∈ N2 or ∃xψ(x) ∈ S2. Since ∃xψ(x) ∈ S1 and N1 = N2 the
first option is impossible so the second option has to be the case.

∀: Let ϕ = ∀xψ(x) and ϕ ∈ S1. This means that for any constant
a ∈ L+, ψ(a) ∈ S1. By the induction hypothesis, for any a, ψ(a) ∈ S2

so ∀xψ(x) ∈ S2.

12 Notice that here we do not use the main assumption that N1 = N2.
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Definition 5 (Classical formula). Let M be a model. We say that a
formula ϕ is classical in M iff the fringes of all predicates used in ϕ are
empty.

Theorem 4 (Model and classical formulas). Let M be a model and ϕ
a formula that is either classical in M or has the form ¬ · · · ¬ψ for some

atomic ψ. Then all BAT triples based on M agree on ϕ, i.e. in all of

them, either ϕ ∈ S, or ϕ ∈ D, or ϕ ∈ N .

Proof. Let’s start with atomic formulas. It’s quite easy to see that
by the definition of an evaluation, evaluations have to agree with the
model on atomic formulas. Notice that the matrix for negation in BAT

is deterministic, the value of a formula of the form ¬ · · · ¬ψ for some
atomic ψ is uniquely determined by the model itself. For the classical
formulas it is a bit more tricky. First, recall that evaluations on classical
predicates work classically. It follows that these evaluations uniquely
determine the value of all such formulas, so it’s impossible that some
BAT triples disagree with them.

As already mentioned, the next section aims at structuring the set
of evaluations based on a single model. The main motivation here is
to allow us to mimic the move from propositional BAT to CABAT. In
order to do so, one has to have a good procedure for narrowing down
evaluations. One way of doing this is to consider only evaluations which
maximize their own satisfaction.

3.3. The structure of BAT evaluations

Up till now the picture has been quite clear. We have BAT models that
assign values to some formulas of the language and we extend them with
BAT triples to obtain the satisfaction relation for the complex formulas
of the language. One of the problems with this approach is a feature of
propositional BAT. On the propositional level the logic is too weak (for
instance, BAT disjunction is not symmetric).

This is also the case for the first-order version. In other words, we
have too many extensions based on a single model and not all of them
are interesting. The idea now is to provide some philosophically justified
criteria to single out a class of interesting evaluations based on a given
model. To do that, one has to know what relations between different
triples based on the same model are, and this is the topic of current
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section. We’ll prove that the set of all triples indeed has an interesting
structure and a natural ordering between triples can be defined.

Naturally, in our case, we will be mostly interested in sentences whose
value, is 1  those in the satisfaction set. They can be used to define an
ordering on the triples. So the ordering ≤ on StrM is given by

〈
1
1,


1
n,


1
0〉 ≤ 〈
2

1,

2
n,


2
0〉 iff S1 ⊆ S2,

(we define < in the usual way). Equivalently, we can phrase the ordering
directly by using evaluations. Let e1, e2 be two evaluations. We say that
e1 ≤ e2 iff Se1

⊆ Se2
.

First, notice that the relation is indeed an ordering relation.

Fact 3 (< is a strict partial order). Let M be a model. The relations ≤
and < partially and strictly partially order the set StrM, respectively.

Definition 6 (Evaluations product). Let M be a model and let e1 and
e2 be an evaluations based on it. By e1 ⊗ e2 : L → {0, n, 1} we mean the
following function:

e1 ⊗ e2(ϕ) =















1, e1(ϕ) = e2(ϕ) = 1

0, e1(ϕ) = e2(ϕ) = 0

n, otherwise

Theorem 5 (Triple product is BAT triple). If if e1 and e2 are evaluations

so is e1 ⊗ e2.

Proof. We need to show that ⊗ respects all 27 conditions put on being
a BAT evaluation. This proof is straightforward.

We have a way of comparing BAT evaluations over a given model.
We have also defined one way of combining evaluations to the effect that
the combined evaluation is “smaller” than both evaluations used in the
combination. This ordering can be used for further study of the algebraic
properties of triples. Note that for any sentence ϕ that is not decided
by the model,13 there is an evaluation based on that model which puts
ϕ in N . This follows directly from the way we have defined tables for
connectives and quantifiers. So, there is a BAT evaluation that puts all
formulas undecided by the model into N . Such a triple will be called

13 A formula is decided by the model iff it has the same value in all evaluations
based on this model.
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a Fully non-deterministic triple (FND triple). Equivalently we can talk
about FND-evaluation. Algebraically speaking, this triple is important
because it is one of the minimal triples over a given model. Even more,
if the model is fully classical,14 this triple together with the model gives
the model of classical logic.

Theorem 6. There is no evaluation e such that e < eFND.

Proof. Suppose for a contradiction that the theorem does not hold, so
e < eFND. So there is ϕ such that e(ϕ) = 1 and eFND ∈ {0, n}. By
table for negation we have e(¬ϕ) = 0, and so eFND(¬ϕ) = n. Now, since
FND-evaluation puts as many formulas as possible into N , we know
that eFND(ϕ) = n, which again leads to inconsistency with the main
assumption.

So a formula is true in a model iff it is true in all possible evaluations
based on this model. Equivalently we may think of it as being true in
the smallest evaluation, namely the FND triple. Now we know what it
means for a formula to be true, let’s define the notion of BAT tautology:

Definition 7 (BAT tautology). We say that ϕ is a BAT tautology,
|=B ϕ, iff for every model M, and every evaluation based on it we have
M 
1 ϕ.

Definition 8 (Local consequence relation). Let Γ be a finite set of
formulas, we say that ϕ is a local BAT semantic consequence of Γ ,
Γ |=B ϕ, iff for any model M and for any evaluation e based on this
model, if for all ψ ∈ Γ we have ψ ∈ S, then ϕ ∈ S.

Before delving into extensions of BAT, let’s see how it compares
against other well known three-valued logics.

3.4. BAT vs. Kleene and Łukasiewicz three-valued logics

Since non-deterministic logics have not been adequately studied up to
now, we will consider only well-known deterministic many-valued logics.
The main aim is to show that for any BAT model there is a triple that
gives a model of the desired three-valued logics. We will take a look at
the familiar candidates:

14 All predicates have a classical value 0 or 1.
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Definition 9 (Strong Kleene-valuation schema). Let M be a model.
By a Kleene-evaluation we mean the following evaluation eM given by
the tables:

¬ ϕ

0 1

n n

1 0

∨ 0 n 1

0 0 n 1

n n n 1

1 1 1 1

∧ 0 n 1

0 0 0 0

n 0 n n

1 0 n 1

→ 0 n 1

0 1 1 1

n n n 1

1 0 n 1

and for quantifiers:

v(∀xϕ(x)) =















1, if for all a ∈ M, v(ϕ(a)) = 1

0, if there is a ∈ M, v(ϕ(a)) = 0

n, otherwise

v(∃xϕ(x)) =















1, if there is a ∈ M, v(ϕ(a)) = 1

0, if for all a ∈ M, v(ϕ(a)) = 0

n, otherwise

Quite expectedly, the consequence relation is defined as usual as
preservation of the value 1, Γ |=K ϕ iff for any model M and for any for-
mula ψ ∈ Γ , e(ψ) = 1 implies e(ϕ) = 1, where e is the Kleene valuation
based on the model M.

Now we proceed to the other well-known three-valued logic, Łukasie-
wicz’s three-valued logic. The difference between Kleene’s and this logic
is the truth-table for the material conditional:

→ 0 n 1

0 1 1 1

n n 1 1

1 0 n 1

The rest of the Boolean connectives and quantifiers are defined as in
Kleene’s logic. Similarly, the consequence relation Γ |=L ϕ is defined as
the preservation of the value 1.

The first thing to notice is that Kleene’s and Łukasiewicz’s valu-
ation schemata agree with BAT on every deterministic case. For the
non-deterministic case, quite easily one can find an evaluation that cor-
responds to either Kleene’s or Łukasiewicz’s schema. So for any BAT

model, it’s possible to find an evaluation whose behavior is exactly as
those of Kleene or Łukasiewicz valuations schemata. This means that
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if an inference is locally valid in BAT it is valid in both Kleene’s and
Łukasiewicz’s logics:

Theorem 7. If Γ |=B ϕ then Γ |=K ϕ and Γ |=L ϕ.

4. Strengthening BAT

Consider a BAT model M. Intuitively, the maximal evaluation based on
this model would be one that contains the most information. This mean
that this evaluation is supposed to minimize the number of sentences
whose values are n (equivalently they belong to N). So in principle,
one would want to consider only the maximal valuations and see how
strong the resulting logic is. This can be achieved by the following
straightforward procedure. Let’s start with a model M and take the set
of all evaluations StrM. Consider the following procedure of filtration:
for any ϕ:

• If there are two evaluations e1, e2 such that e1(ϕ) = 1, and e2(ϕ) 6= 1,
delete the evaluation.

• If there are two evaluations e1, e2 such that e1(ϕ) = 0, and e2(ϕ) 6= 0,
delete the second extension.

Although the filtration seems like a plausible strengthening, for some
model the set of extensions after the filtration has been applied is empty.

Fact 4. For any model M that is not fully classical, its filtrated set of

extensions is empty.

Proof. If the model is not classical then there is an atomic formula P (a)
such that P (a) ∈ N . Now, consider the formula ψ = P (a) → P (a) ∧
P (a). By truth-tables, all extensions have to put the formula either in N
or in S. According to the filtration procedure, extensions where ψ ∈ N
are filtered out. This means that P (a)∧P (a) ∈ N , so ¬(P (a)∧P (a)) ∈ N
for all filtrated extensions. On the other, there is an extension of the
model where ¬(P (a) ∧ P (a))¬S. This implies that the extension where
ψ ∈ S is also filtered out, leaving us with the empty set of extensions.

The other filtration procedure that immediately comes to mind is to
remove only those valuations which gives the least amount of informa-
tion: for any ϕ, if there is an extension where ϕ ∈ N and there is an
extension where ϕ /∈ N , remove the former extension. The idea here is
analogous to super-valuation. Call this procedure an s-filtration. The
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set of all valuations based on M after s-filtration is FM. Unfortunately,
the trick will not work.

Fact 5. There is a model M whose FM is empty.

Proof. Take a model M that is not purely classical i.e. there is an
atomic sentence P (a) ∈ N . Consider two formulas ϕ = ¬P (a) ∨ P (a) ∧
P (a) and ψ = ¬(P (a) ∧ P (a)). Notice, that for any extension, if ϕ ∈ S,
then ¬(P (a) ∧ P (a)) ∈ N . But on the other hand, there is an extension
where ¬(P (a) ∧P (a)) ∈ S. So, after s-filtration both types of extensions
have to be removed, leaving us with the empty set of extensions.

Yet another procedure is to consider a procedure that associates sets
of classical models with each particular extension. Take a model M
and an extension E, by a classical extension Mc of M, E we mean any
classical model for which we have:

1. For any atomic ϕ, if ϕ ∈ SE , then Mc |= ϕ.
2. For any atomic ϕ, if ϕ ∈ DE, then Mc |= ¬ϕ.

The idea here is quite simple. With each non-deterministic model we
associate a set of classical models, where each classical model in the set is
one particular way of deciding all formulas that belong to N , according
to the non-deterministic model. Yet again, the process will not help
here. This is because some extensions of non-classical models are not
classical. Consider an extension where P (a) ∈ N , P (a) ∨ ¬P (a) ∈ N ,
¬P (a)∨P (a) ∈ N , and (¬P (a)∨P (a))∧(P (a)∨¬P (a)) ∈ D. Clearly this
extension does not have any classical models associated with it, since in
any classical model Mc we have Mc |= (¬P (a)∨P (a))∧(P (a)∨¬P (a)).

The moral is quite straightforward. The usual method of strengthen-
ing a non-deterministic logic is not the way to go for BAT. These types of
filtration won’t work because the interaction between non-deterministic
functors is a bit more complex.15

We conclude with a proof of a negative result, that most of those
strategies that are usually used to strengthen a non-deterministic logic
fail in this context. This happens because the interplay between non-
deterministic first-order operators in BAT is a bit more complex than in
the rest of well-studied non-deterministic logics.16 The negative result

15 This is probably why in non-deterministic logics, usually we want to have only
one purely non-deterministic functor.

16 Mostly, because some non-deterministic cases combine designated values with
non-designated values. This seems to generate technical problems.
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is quite important because it shows that in order to move from BAT to
some stronger system at the first-level one needs to come up with new
ways of strengthening. We solve this issue by using the same formal
trick that, on the propositional level, gives CABAT. The main drawback
of this solution is that it does not give easy access to the models. This
makes the theory quite unpleasant to work with.

The other strategy is to use the same move that on the propositional
level allowed us to move from BAT to CABAT. This move is based on
two assumptions.17

The first one says that classically equivalent formulas should have the
same provability status. It is quite obvious that if a mathematical claim
is informally provable or refutable all its logically equivalent formulations
are as well. A similar argument holds for sentences that are neither. In
more abstract setting this condition goes as follow:

Definition 10 (L-Equivalence condition). Let L be a logic. We say
that a given BAT triple respects the L-equivalence condition iff for all
formulas ϕ, ψ if the formulas are L-equivalent then either both formulas
belong to the satisfaction set, or both are in dissatisfaction set, or both
are in non-satisfaction set of the triple.

So this condition enables one not to take into account those tricky
extensions where trivially equivalent formulas are put in different sets.
Does this solve all the problems with BAT validity? It helps, but it is
not sufficient. The reason is as follows. Sane mathematicians do not
question inference steps in an informal proof that are correct form the
point of view of classical logic. They believe that axioms of classical
logic are true and that the rules are truth-preserving. So far, even with
L-equivalence with respect to classical logic, we do not do justice to this
postulate. Still, some classically valid inferential moves are not valid
according to this condition. In order to preserve the intuitive validity of
classical inference steps we introduce an additional condition:

Definition 11 (L-respect). If L is a logic, then we say that a BAT triple
satisfies the L-respect condition iff any formula ϕ that is L-tautology
belongs to the satisfaction set of this triple.

17 Similar moves have been done in the context of non-deterministic semantics
[Kearns, 1981; Omori and Skurt, 2016].
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The above conditions are justified and do the job that they were
supposed to do. We restrict our attention to the case where L is classical
logic. Then, we can define fully-fledged first-order CABAT:

Definition 12 (CABAT triple). Let M be a BAT model. CABAT sat-
isfaction triple is any triple 〈ý ,

ý

,

ý

〉 that satisfies both L-equivalence
and L-respect, for classical logic. We use Γ |=C ϕ to denote the CABAT

local consequence relation.

First, notice that CABAT triples are not uniquely determined by
the model. Consider a model M and assume that P (a), P (b) both have
value n. Consider P (a)∨P (b) and P (b)∨P (a). By CL-equivalence, both
of them have to be either in S, or in N , so there are two CABAT triples
one which puts both formulas in S and one which puts them in N .

Fact 6. Classical contradictions are refutable according to CABAT

triples.

Proof. First, any classical tautology ϕ is informally provable due to the
respect condition. This means that they belong to the satisfaction set.
Any negation of classical contradiction is a classical tautology, so it has
to belong to the satisfaction set as well. Which means, by the clauses for
negation, that the negation of negation of classical contradiction belongs
to the satisfaction set, so the contradiction is in the dissatisfaction.

Fact 7. For any sentence ϕ, |=C ϕ iff |= ϕ.

Proof. ⇒: If 6|= ϕ, then there is a classical model M such that M 6|= ϕ.
This model can be seen as BAT model where all predicates are classical,
which shows that 6|=C ϕ, since the classical model preserves both CL-
equivalence and CL-respect.

⇐: If |= ϕ, then we know that ϕ is a classical tautology and as such
has to have value 1 in every BAT model in every CABAT triple.

This can be quite easily extended to a stronger result.

Fact 8. For any finite set of sentences Γ , and a sentence ϕ, Γ |=C ϕ iff

Γ |= ϕ.

Proof. ⇒: by contraposition, suppose Γ 6|= ϕ. This means that there
is a classical model M, where all elements of Γ have a designated value
and M 6|= ϕ. Quite trivially, this is also a BAT model with a CABAT

triple, and so it means that there is a CABAT triple which shows that
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the whole inference is not valid. ⇐: since Γ is finite and Γ |= ϕ, by the
deduction theorem we know that |=

∧

ϕi
→ ϕ, where ϕi ∈ Γ . By the L-

respect condition, we have |=C
∧

ϕi
→ ϕ. This implies that Γ |=C ϕ.

5. How to get arithmetical models?

So far, we have extended the BAT setting to the first-order level. The
next step is to actually show how to use the logic within an arithmetical
setting. One straightforward solution is to relativize the construction to
a particular basic theory T, whose inferences we intuitively perceive as
valid. This assumption is not controversial as it simply says that certain
basic facts are informally provable. So, we will start with an arithmetical
theory that extends theory Q, which is an arithmetical theory without
the schema of induction.18

The next question is how to extend the language with a provability
predicate B whose behavior is similar to the behavior of the provability
operator in the propositional case. After all, this is the main task that
we want to accomplish. As is usual, first we extend the language of arith-
metic with a unary predicate B and we provide an interpretation of it.
This means that we are interested in tuples (M, A), where M is a BAT

model in the arithmetical language extended with B and A = (E,A, F )
is an interpretation of B.19 Next we put some additional conditions on
the sets of admissible evaluations. The straightforward condition is the
following:

Definition 13 (Provability BAT evaluations). Let T be a consistent
arithmetical theory extending Q such that N |= T20. We say that an
evaluation e based on a model M is faithful with respect to T, if the
following conditions are satisfied:

1. All ϕ that are theorems of T, we have e(ϕ) = 1.
2. If T ⊢ ϕ, then pϕq ∈ E.
3. If T ⊢ ¬ϕ, then pϕq ∈ A.

18 So, there are axioms governing the multiplication, addition and the successor
functions [see Halbach, 2011].

19 So the triple satisfies the usual conditions put on the interpretation: sets are
disjoint and mutually exhaust the domain.

20
N is the standard model of natural numbers.
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where pϕq is the arithmetical code of the sentence ϕ. We will use
M |=i ϕ to mean that any provability extension of model M assigns i
to ϕ, where i ∈ {0, n, 1}.

This is still too weak to actually be used as a theory of informal prov-
ability. For instance, it does not validate the iterations of the provability
predicate. There are at least three ways of solving this problem. We will
go through all of them in the next subsection.

Here we present a way of strengthening the logic. This is done by
adapting the technique developed by Kripke to handle the partial truth
predicate. The idea is to have an infinite sequence of models in which at
any given stage the extension and anti-extension of provability predicate
is enlarged. We start with the empty sets and at each subsequent level
we put into the extension of B codes of formulas valid at the previous
level, and into the anti-extension those whose value was 0 at the previous
level and into F codes of formulas whose values were n.

Definition 14 (Recursive strengthening). Let M0 be an arithmetical
BAT model and let e be a provability evaluation. Consider the following
procedure:

• Mn+1 = 〈M, 〈E = {ϕ | M |=1 ϕ}, A = {ϕ | MB
n |=0 ϕ}, F = {ϕ |

M |=n ϕ}〉〉.
• If λ is a limit ordinal, then Mλ = 〈M, 〈E = {ϕ |

⋃

κ<λ Mκ |=1

ϕ}, A = {ϕ |
⋃

κ<λ Mκn+1 |=0 ϕ}, F = {ϕ |
⋃

κ<λ MB
κ |=n ϕ}〉〉.

The last part is to take a look at the fixed point of this construction.
As soon as we have an interesting arithmetical theory we can use the
following procedure to get to the fixed-point models.

Unfortunately, this is not enough. There are a few problems still to
be solved. The first problem is with sentences that are not decided by
a model. They do not behave nicely in the provability models, which
results in the external logic not being classical. The second problem
is caused by the first one. BAT, as already noted, is a bit too weak
to offer an interesting theory of informal provability. This is why on
the propositional level BAT it is strengthened to CABAT. In the next
section, we consider a couple of ways of strengthening first-order BAT.
One of them is similar to the strengthening used on the propositional
level to get CABAT.
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6. Comments and future work

The main aim of the paper was to construct the first-order BAT logic.
We achieved this by distinguishing between a model and its extensions.
The intuition was that a model interprets only some formulas of the
language, and extensions were responsible for providing an interpreta-
tion of sentences of the full language. The non-deterministic nature of
the semantics then made it possible for a single model to have multiple
extensions. Next, we sketched how one can adapt BAT to an arith-
metical setting. The construction was a variation of Kripke’s fixed-point
construction and as such is quite general and can be used for other non-
deterministic logics. The construction started with an arbitrary BAT

model and by the construction we ended up in a unique fixed point. The
other option would have been to start with an arbitrary model supple-
mented by the evaluation and then to apply the fixed-point construction.
By doing so, we would have ended up in a model where the fixed-point
construction would have been total in the sense that the interpretation
of B would have exhausted the whole domain.
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