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Abstrakt

Biologiczne skorupy glebowe (bioskorupy) to asocjacje sinic (cyjanobakterii), glonów, porostów, mszaków 
i mikroorganizmów heterotroficznych ściśle związanych z cząstkami gleby i tworzących miniaturowy eko-
system na jej powierzchni. Rozwijają się w szerokim spektrum warunków klimatycznych, ale najpowszech-
niej występują w klimatach suchych i półsuchych, pokrywając około 12% powierzchni lądowych Ziemi. 
Wraz z postępem sukcesji bioskorupy stają się bardziej złożone pod względem struktury i funkcji, co wiąże 
się ze wzrostem ich różnorodności biologicznej oraz zdolności do pełnienia kluczowych ról w ekosyste-
mie. Bioskorupy stabilizują powierzchnię gleby, ograniczają erozję, wspomagają retencję wody, uczestni-
czą w obiegu kluczowych pierwiastków oraz tworzą warunki sprzyjające kolonizacji przez inne organizmy, 
wspierając w ten sposób regenerację i funkcjonowanie całych ekosystemów. Jednocześnie są one bardzo 
wrażliwe na zaburzenia środowiskowe, zarówno naturalne, jak i spowodowane działalnością człowieka. 
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WPROWADZENIE

Na pierwszy rzut oka wyglądają jak niepo-
zorna, ledwo widoczna gołym okiem warstwa 
na powierzchni suchej gleby. A jednak biologicz-
ne skorupy glebowe (bioskorupy) to niezwykle 
ważne złożone mikroekosystemy, zbudowane 
z różnorodnych grup organizmów, które pełnią 
kluczowe funkcje ekologiczne w suchych i półsu-
chych środowiskach na całym świecie. Według 
ostatnich szacunków, bioskorupy pokrywają 
około 12% powierzchni lądowych Ziemi i około 
30% gleb w rejonach suchych (Rodriguez-Cabal-
lero i in., 2018). Bioskorupy składają się z wyso-
ce wyspecjalizowanych zespołów organizmów, 
wśród których znajdują się zarówno organizmy 
autotroficzne, takie jak sinice (cyjanobakterie), 
glony, porosty i  mszaki, jak i  heterotroficzne, 
m.in.  grzyby oraz bakterie, które wchodzą ze 
sobą w  interakcje i  są ściśle związane z  cząst-
kami gleby (Weber i  in., 2022). Jayne Belnap, 
ekspertka zajmująca się bioskorupami, nazywa 

je „żywą skórą” na powierzchni gleby i  trudno 
o  trafniejsze porównanie (Belnap i  in., 2003). 
Występują w miejscach, gdzie wzrost roślin jest 
ograniczony przez czynniki środowiskowe, ta-
kie jak niedobór wody, temperaturę, krótki se-
zon wegetacyjny czy specyficzne właściwości 
chemiczne gleby (Antoninka i  in., 2020). Choć 
są najbardziej charakterystyczne dla obszarów 
suchych, można je spotkać również w  bardziej 
wilgotnych środowiskach, gdzie często stano-
wią wczesny etap sukcesji poprzedzający poja-
wienie się roślin naczyniowych (Corbin i Thiet, 
2020). Organizmy tworzące bioskorupy, choć 
są różnorodne, mają kilka wspólnych cech, 
które umożliwiają im przetrwanie w  wymaga-
jących warunkach środowiska. Wszystkie są 
poikilohydryczne, tzn.  zawartość wody w  ich 
komórkach ma tendencję do równoważenia się 
z zawartością wody w ich bezpośrednim otocze-
niu. Pomimo zmniejszenia ilości wody w komór-
kach podczas suszy, nie dochodzi jednak do ich 
uszkodzeń, a po ponownym dostępie do wody są 

W świetle rosnących zagrożeń związanych z pustynnieniem i degradacją gleb, dalsze badania nad biosko-
rupami oraz rozwój metod ich ochrony i wykorzystania w rekultywacji terenów zdegradowanych, zwłaszcza 
w suchych regionach, mogą znacząco przyczynić się do zrównoważonego zarządzania zasobami naturalnymi 
i tworzenia praktycznych rozwiązań wspierających ochronę środowiska.

Słowa kluczowe: biologiczne skorupy glebowe, obszary suche, gleba, sukcesja ekologiczna, wskaźniki funk-
cjonalne 

Abstract

Biological soil crusts (biocrusts) are associations of cyanobacteria, algae, lichens, mosses and heterotrophic 
microorganisms closely associated with soil particles and creating a miniature ecosystem on the soil sur-
face. They develop across a wide range of climatic conditions but are most prevalent in arid and semi-arid 
regions, where they cover approximately 12% of the Earth’s land surface. As succession progresses, bi-
ocrusts become increasingly complex in both structure and function, accompanied by greater biodiversity 
and an enhanced capacity to perform key ecological roles. Biocrusts stabilize the soil surface, reduce ero-
sion, enhance water retention, contribute to the cycling of key elements, and create conditions favorable for 
the colonization by other organisms, thereby supporting the regeneration and functioning of entire ecosys-
tems. At the same time, they are very sensitive to environmental disturbances, both natural and caused by 
human activity. In light of the growing threats of desertification and soil degradation, further research on 
biocrusts as well as the development of methods for their conservation and use in restoring degraded lands, 
especially in arid regions, can make a significant contribution to the sustainable management of natural 
resources and the development of practical solutions for environmental protection.

Keywords: biological soil crust, arid areas, soil, ecological succession, functional indicators
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w stanie powtórnie uruchomić wszystkie proce-
sy metaboliczne. Co więcej, autotroficzne organi-
zmy obecne w bioskorupach są zdolne do bardzo 
szybkiej reaktywacji fotosyntezy niemal natych-
miast po nawodnieniu, dzięki czemu błyska-
wicznie rozpoczynają produkcję związków orga-
nicznych, dostarczających energii i budulca dla 
całej wspólnoty mikroorganizmów (Tamm i in., 
2018). Dziś wiadomo, że bioskorupy mają realny 
wpływ na środowisko, w którym występują. Dla-
tego coraz częściej określa się je jako inżynierów 
ekosystemów, a zainteresowanie nimi znacząco 
wzrosło w ciągu ostatnich dwóch dekad. 

WSKAŹNIKI FUNKCJONALNE BIOLOGICZ-
NYCH SKORUP GLEBOWYCH – KLUCZ DO 
ZROZUMIENIA ICH ROLI W EKOSYSTEMIE

Bioskorupy uznawane są za kluczowy ele-
ment ekosystemów, ponieważ stabilizują po-
wierzchnię gleby, ograniczają erozję, wspo-
magają retencję wody, uczestniczą w  obiegu 
kluczowych pierwiastków (w tym azotu i węgla) 
oraz tworzą warunki sprzyjające kolonizacji 
przez inne organizmy, wspierając w ten sposób 
regenerację i  funkcjonowanie całych ekosyste-
mów (Belnap i  in., 2016) (Ryc. 1). Organizmy  

Ryc. 1. Schemat obrazujący model komponentów biologicznej skorupy glebowej, czynników abio-
tycznych wpływających na funkcjonowanie bioskorup, wskaźników funkcjonalnych oraz funkcji eko-
logicznych bioskorup i ich wzajemne powiązania. Opracowanie własne

autotroficzne obecne w  bioskorupach biorą 
udział w obiegu węgla, wychwytując dwutlenek 
węgla z powietrza i przekształcając go w związ-
ki organiczne w procesie fotosyntezy (Housman 
i in., 2006). Wchodzące w ich skład niektóre ga-
tunki sinic (np. z rodzaju Nostoc) są w stanie wią-

zać azot atmosferyczny z powietrza i przekształ-
cać go w formy użyteczne dla roślin (Yeager i in., 
2007). W ten sposób przyczyniają się do popra-
wy żyzności gleby, tworząc korzystne warunki 
dla wzrostu roślin naczyniowych oraz wspierając 
bioróżnorodność mikroorganizmów glebowych. 
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Biologiczne skorupy glebowe to nie tylko róż-
norodne mikroorganizmy, ale przede wszystkim 
aktywne elementy ekosystemów, które wpływają 
na kluczowe procesy zachodzące w glebie. Aby 
lepiej zrozumieć ich ekologiczne znaczenie, co-
raz częściej analizuje się tzw. wskaźniki funkcjo-
nalne (ang. functional indicators) (Ryc. 1). Dzięki 
tym wskaźnikom możemy ocenić, w jaki sposób 
bioskorupy chronią glebę, gromadzą składniki 
odżywcze, wpływają na produkcję biomasy, bi-
lans energetyczny i  właściwości hydrologiczne 
gleby (Mallen-Cooper i in., 2020). 

Odporność gleby na erozję można ocenić 
przez zbadanie stabilności agregatów biosko-
rupy (ang. stability of biocrust aggregates) oraz 
poprzez pomiar oporu przy nacisku (ang. pene-
tration resistance). Agregaty powstają w wyni-
ku scalenia cząstek gleby w  procesach fizycz-
nych, chemicznych oraz biologicznych. Ważną 
rolę w spajaniu cząstek gleby pełnią związki or-
ganiczne wydzielane przez organizmy tworzące 
bioskorupy. Wysoki stopień stabilności agrega-
tów glebowych zwiększa ich odporność na de-
strukcyjne działanie czynników erozyjnych, ta-
kich jak wiatr i woda. Jednocześnie strukturalna 
integralność gleby sprzyja zdolności do retencji 
wody, co ma szczególne znaczenie w środowi-
skach charakteryzujących się niskimi opada-
mi deszczu i  ograniczoną wilgotnością gleby 
(Herrick i in., 2001). Opór przy nacisku stanowi 
istotny wskaźnik mechanicznej wytrzymałości 
bioskorup, pozwalający na ocenę ich zdolności 
do przenoszenia obciążeń bez naruszenia cią-
głości strukturalnej. Wysokie wartości tego pa-
rametru wskazują na dobrze rozwiniętą, zwar-
tą strukturę bioskorupy, co przekłada się na 
jej zwiększoną odporność mechaniczną i  tym 
samym skuteczność w  ochronie powierzchni 
gleby przed degradacją i  erozją (Mallen- Co-
oper i  in., 2020). Liczne badania pokazują, że 
wysokie wartości wymienionych powyżej para-
metrów fizykomechanicznych bioskorup przy-
czyniają się do skutecznego ograniczenia pro-
cesów erozyjnych oraz zachowania korzystnych 
właściwości gleby. Efekty te są obserwowane 
niezależnie od typu środowiska, co podkreśla 
uniwersalne znaczenie bioskorup w  ochronie 
powierzchni glebowej i utrzymaniu jej funkcjo-

nalności w  różnych warunkach siedliskowych 
(Riveras-Muñoz i in., 2022). 

Zdolność do akumulowania składników 
odżywczych oraz wpływ na produkcję bioma-
sy można ocenić przy użyciu kilku wskaźników 
funkcjonalnych. Pierwszym z nich jest zawar-
tość chlorofilu w bioskorupach. Chlorofil jest 
barwnikiem występującym powszechnie w orga-
nizmach autotroficznych, który umożliwia orga-
nizmom wykorzystanie światła słonecznego jako 
energii do budowy węglowodanów z dwutlenku 
węgla i  wody, przyczyniając się tym samym do 
wiązania węgla i  przekształcania go w  węgiel 
organiczny. Stężenie chlorofilu jest powszechnie 
stosowanym wskaźnikiem do ilościowej oceny 
biomasy organizmów autotroficznych w biosko-
rupie (Lange, 2003). Oprócz barwników fotosyn-
tetycznych bioskorupy wytwarzają również inne 
pigmenty ochronne, które pochłaniają promie-
niowanie UV, umożliwiając przetrwanie w  wa-
runkach intensywnego promieniowania słonecz-
nego (Lan i  in., 2021). Jednym z przykładów 
takich pigmentów jest scytonemina, która silnie 
pochłania promieniowanie UV, tym samym peł-
niąc ważną funkcję fotoprotekcyjną (Garcia-Pi-
chel i Castenholz, 1991). Scytonemina jest wy-
twarzana przez wiele gatunków sinic, zwłaszcza 
tych żyjących w warunkach intensywnego nasło-
necznienia. Gromadzi się w pozakomórkowych 
śluzowatych osłonkach komórkowych i chroni je 
przed stresem oksydacyjnym wywołanym przez 
promieniowanie UV, bez jednoczesnego zakłó-
cania procesów fotosyntezy (Rastogi i in., 2015). 
Określenie stężenia scytoneminy może służyć 
jako dobry wskaźnik do oszacowania względnej 
liczebności sinic produkujących ten pigment, 
a tym samym potencjału fotoprotekcyjnego bio-
skorupy oraz jej zdolności do funkcjonowania 
w warunkach silnego nasłonecznienia..

Aktywność enzymatyczna mikroorgani-
zmów tworzących bioskorupy odgrywa kluczo-
wą rolę w cyklach biogeochemicznych, szcze-
gólnie poprzez udział w obiegu pierwiastków 
w środowisku glebowym. Jednym z  istotnych 
wskaźników tej aktywności jest aktywność de-
hydrogenaz – enzymów odgrywających kluczo-
wą rolę w  oddychaniu komórkowym mikroor-
ganizmów (Wolińska i Stępniewska, 2012). Ich 
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działanie odzwierciedla ogólny poziom aktyw-
ności metabolicznej mikroorganizmów i stano-
wi podstawę wielu fundamentalnych przemian 
biochemicznych w  glebie (Kaur i  Kaur, 2021). 
Co istotne aktywność dehydrogenazy wskazuje 
zarówno na liczebność, jak i aktywność metabo-
liczną mikroorganizmów (Quilchano i Marañon, 
2002), gdyż dehydrogenazy jako enzymy we-
wnątrzkomórkowe działają tylko w  żywych, 
metabolicznie aktywnych komórkach (Furtak 
i  Gajda, 2017). Wysoka aktywność dehydroge-
naz w  bioskorupach będzie zatem świadczyć 
o  wysokiej aktywności mikroorganizmów i  in-
tensywnym rozkładzie materii organicznej, co 
ma bezpośredni wpływ na żyzność gleby oraz jej 
zdolność do wspierania procesów ekosystemo-
wych. Bioskorupy pełnią istotną funkcję w stabi-
lizacji powierzchni gleby, ograniczając jej podat-
ność na erozję wodną i wietrzną. Kluczową rolę 
w  fizycznej stabilizacji gleby pełnią nitkowate 
sinice oraz glony a także strzępki grzybów, które 
tworzą gęste, splecione sieci oplatające cząstki 
mineralne gleby, mechanicznie je wiążąc i two-
rząc zwartą, stabilną warstwę na powierzchni 
podłoża (Ryc. 2). 

Kolejnym bardzo ważnym elementem odpo-
wiedzialnym za właściwości bioskorup są egzo-
polisacharydy (EPS)  – wielocukrowe polimery 
wydzielane głównie przez sinice i  mikroskopij-
ne glony. Substancje te tworzą lepką, ochronną 
matrycę, która spaja cząstki gleby, zwiększa jej 
kohezję i  sprzyja tworzeniu trwałych agrega-
tów glebowych, poprawiając tym samym struk-
turę gleby (Ryc. 3). Ponadto EPS mogą wchła-
niać i zatrzymywać duże ilości wody, co sprzyja 
jej zatrzymaniu w  wierzchniej warstwie gleby 
(Adessi i in., 2018). Dzięki swojej polianionowej 
naturze EPS wykazują zdolność do wiązania 
kationów, co nadaje im istotną funkcję magazy-
nującą. Właściwość ta umożliwia akumulację 
niezbędnych makro- i  mikroelementów w  bez-
pośrednim otoczeniu mikroorganizmów (Rossi 
i De Philippis, 2015), sprzyjając ich dostępności 
biologicznej oraz wspierając procesy metabo-
liczne w obrębie bioskorupy. Dodatkowo EPS są 
ważnym źródłem węgla dla mikroorganizmów 
i  roślin, co jest ważnym procesem fizjologicz-
nym w  czasie rozwoju bioskorup (Chowaniec 

i  in., 2025). Chociaż powszechnie wiadomo, że 
bioskorupy stanowią istotne źródło węgla orga-
nicznego w glebie w ekosystemach suchych (Be-
raldi-Campesi i  in., 2009), szczegółowa wiedza 
dotycząca dominujących form jego akumulacji 
w  strukturze bioskorup pozostaje ograniczona. 
W  warunkach klimatu suchego to właśnie bio-
skorupy zdominowane przez sinice są uznawane 
za kluczowy komponent odpowiedzialny za aku-
mulację węgla organicznego, głównie w postaci 
polimerów węglowodanowych. Badania Magera 
(2010) wykazały, że w bioskorupach sinicowych 
w  południowo-zachodniej części Kalahari, poli-
sacharydy mogą stanowić nawet 75% całkowitej 
zawartości węgla organicznego, co podkreśla 
ich fundamentalne znaczenie dla utrzymania ży-
zności gleby w tego typu ekosystemach. Podsu-
mowując, wydzielanie EPS jest związane z naj-
ważniejszymi funkcjami ekologicznymi, takimi 
jak produktywność, gromadzenie składników 
odżywczych, odporność gleby na erozję i właści-
wości hydrologiczne gleb (Rossi i in., 2018).

Ryc. 2. Nitkowate glony Klebsormidium sp. opla-
tające luźne ziarna piasku (fot. K. Skubała)
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Ryc. 3. Biologiczna skorupa glebowa z domina-
cją sinic występująca na zboczach byłej kopalni 
piasku Szczakowa w  Bukownie. Bioskorupa ta 
wytwarza duże ilości egzopolisacharydów (EPS), 
które łączą cząstki mineralne gleby z komórkami 
sinic, prowadząc do powstania zwartej i stabilnej 
warstwy na powierzchni podłoża (fot. K. Skubała) 

Bilans energetyczny można ocenić przez 
pomiar albedo oraz oszacowanie stopnia roz-
woju bioskorupy (ang. level of development in-
dex). Albedo to miara zdolności powierzchni 
do odbijania światła, w  przypadku bioskorup 
jest to światło słoneczne (Hansen i Nazarenko, 
2004). Zmiany w składzie gatunkowym biosko-
rup mogą modyfikować albedo powierzchni, 
ponieważ różne organizmy i stadia sukcesyjne 
różnią się kolorem, szorstkością oraz strukturą, 
wpływając w ten sposób na współczynnik odbi-
cia światła (Xiao i Bowker, 2020). Metoda opra-
cowana przez Belnap i  in. (2008), umożliwia 
łatwą, wizualną ocenę stopnia zaawansowania 
rozwoju bioskorup i jednocześnie stanowi pro-
sty wskaźnik albedo. Stopień rozwoju bioskorup 
dobrze koreluje z biomasą fotosyntetyczną oraz 
stabilnością agregatów glebowych, i w związku 
z tym metoda pomiaru albedo może być stoso-
wana również jako sposób oceny wielofunkcyj-
ności bioskorup (Belnap i in., 2008).

Właściwości hydrologiczne bioskorup sta-
nowią istotny element badań nad ich funkcją 
ekosystemową, szczególnie w środowiskach su-
chych i półsuchych. Można je oceniać za pomocą 
różnych metod, które pozwalają określić wpływ 
bioskorup na cyrkulację wody w  ekosystemie. 

Bioskorupy wpływają na obieg wody w  glebie, 
m.in. poprzez modyfikację infiltracji, retencji czy 
parowania wody. Jednym z podstawowych para-
metrów służących do oceny właściwości hydro-
logicznych jest tempo infiltracji wody do gleby. 
Pozwala ono określić jak szybko woda opadowa 
przenika przez powierzchnię gleby pokrytą bio-
skorupą w porównaniu do gleby jej pozbawionej 
(Mallen-Cooper i in., 2020). Ponadto ważne jest 
określenie zdolności bioskorup do magazyno-
wania wody – tzw. pojemności wodnej. Można ją 
określić poprzez obliczenie różnicy wagi między 
całkowicie uwodnioną oraz całkowicie wysuszo-
ną próbką bioskorupy. Tym samym otrzymuje-
my informacje o tym, ile wody dana skorupa jest 
w stanie zatrzymać. Większa pojemność wodna 
bioskorup skutkuje tym, że mniejsza ilość wody 
będzie mogła spływać lub wsiąkać w  głębsze 
warstwy gleby (Qiu i  in., 2023). Zatrzymanie 
wody opadowej na powierzchni gleby i  opóź-
nienie jej spływu powoduje, że mikroorganizmy 
oraz rośliny o  płytkim systemie korzeniowym 
mogą skutecznie z niej korzystać. Wszystko to 
przekłada się na większą retencję wody w eko-
systemie oraz wspiera stabilność biologiczną 
i odporność na ekstremalne warunki pogodowe. 
Oprócz zdolności do retencji i  przepuszczania 
wody, istotne jest także określenie tempa jej 
utraty poprzez parowanie (Sun i in., 2024). Po-
miary takie przeprowadza się poprzez śledzenie 
masy próbki bioskorupy w czasie jej wysychania, 
co pozwala ocenić, w jakim stopniu bioskorupa 
ogranicza utratę wody i wpływa na mikroklimat 
glebowy.

PIONIERZY ŻYCIA GLEBOWEGO:  
SUKCESJA BIOLOGICZNYCH SKORUP  
JAKO FUNDAMENT EKOSYSTEMÓW

Biologiczne skorupy glebowe podlegają pro-
cesom sukcesji ekologicznej, czyli uporządkowa-
nym zmianom w ich składzie gatunkowym oraz 
strukturze w czasie, prowadzącym do coraz bar-
dziej złożonych i stabilnych form (Ryc. 4). Prze-
bieg sukcesji ekologicznej w  siedliskach, gdzie 
dominują bioskorupy, zależy od warunków klima-
tycznych w danym regionie i zazwyczaj przebiega 
w czterech głównych etapach, które są związane 
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z poszczególnymi typami bioskorup (Belnap i El-
dridge, 2001). Rodzaje bioskorup wyróżnia się na 
podstawie przeważającej grupy autotrofów – si-
nic, glonów, porostów lub mszaków – które deter-
minują ich morfologię i właściwości ekologiczne 
(Garcia-Pichel, 2023). Kolejne stadia sukcesji 
prowadzą do wzrostu zarówno różnorodności 
biologicznej, jak i  funkcjonalnej bioskorup, co 
przekłada się na coraz większe znaczenie ich roli 
w funkcjonowaniu ekosystemu.

Ryc. 4. Początkowe stadia rozwoju biologicz-
nych skorup glebowych na terenie Pustyni Błę-
dowskiej (fot. K. Skubała)

W początkowych stadiach sukcesji dominu-
jącą grupą organizmów autotroficznych są si-
nice (Ryc. 5). Bioskorupy te charakteryzują się 
niską biomasą, niewielką zdolnością ograni-
czania erozji oraz zatrzymywania wody i skład-
ników odżywczych (Lan i  in., 2012). Składają 
się głównie z  ruchliwych, nitkowatych sinic 
(Garcia-Pichel, 2023), które stabilizują luźną 
glebę poprzez samoagregację i  wiązanie czą-
stek mineralnych z EPS (Garcia-Pichel i Woj-
ciechowski, 2009), inicjując proces formowa-
nia bioskorupy. 

W miarę stabilizacji podłoża bioskorupa zo-
staje skolonizowana przez nieruchome sinice, 
które wytwarzają ciemne pigmenty ekranujące 
promieniowanie UV, tworząc ciemną powierzch-
nię (Garcia-Pichel, 2023). W wilgotniejszych re-
gionach klimatu umiarkowanego, gdzie gleby są 
kwaśne, w procesie sukcesji zamiast dominacji 
sinic obserwuje się kolonizację gleby głównie 
przez glony (Belnap i in., 2003) (Ryc. 6, Ryc. 7).

Ryc. 5. Biologiczna skorupa glebowa tworząca 
formy z wyraźnymi pionowymi strukturami przy-
pominających kolumienki występująca na zbo-
czach byłej kopalni piasku Szczakowa w Bukow-
nie (fot. K. Skubała)

Ryc. 6. Biologiczna skorupa glebowa z domina-
cją nitkowatych glonów Zygogonium sp., wystę-
pująca na płaskim terenie dawnej kopalni piasku 
Szczakowa w Bukownie (fot. K. Skubała)

Po ustabilizowaniu się podłoża bioskorupy 
mogą szybko się rozwijać, co wynika z  popra-
wy warunków glebowych, w  tym zwiększonej 
dostępności składników odżywczych oraz ko-
rzystniejszych parametrów fizykochemicznych 
gleby (Li i in., 2007). W miarę postępu sukcesji 
bioskorupy przekształcają się w  zbiorowiska 
zdominowane przez porosty i  mchy, stają się 
grubsze oraz wykazują większą wydajność me-
taboliczną (Lan i in., 2012).
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Ryc. 7. Biologiczne skorupy glebowe o dużej bio-
masie fotosyntetycznej i aktywności mikrobiolo-
gicznej rozwijające się w misach deflacyjnych na 
obszarach wydm śródlądowych (ang. dune blo-
wouts) (fot. K. Skubała)

W  późniejszych stadiach sukcesji bioskorupy 
są zwykle bardziej zwarte i  odporne na czyn-
niki zewnętrzne, takie jak erozja czy zmiany 
temperatury. Sukcesja bioskorup może trwać 
od kilku do kilkudziesięciu lat, w zależności od 
warunków klimatycznych, dostępności składni-
ków odżywczych oraz skali zaburzeń środowi-
skowych (Thomas i Dougill, 2006). Bioskorupy 
mają niezwykle istotne znaczenie w  kontek-
ście przeciwdziałania pustynnieniu – jednemu 
z  najpoważniejszych globalnych problemów 
środowiskowych. W  suchych i  półsuchych re-
gionach, gdzie gleby są szczególnie narażone 
na erozję pod wpływem wiatru i wody, rozwój 
bioskorup wspiera stabilizację powierzchni 
gleby, akumulację materii organicznej oraz ma-
kro- i  mikroelementów, jak również znacząco 
poprawia retencję wody. Dzięki temu bioskoru-
py przyspieszają regenerację zdegradowanych 
ekosystemów i  zwiększają ich odporność na 
kolejne zaburzenia. W ten sposób rozwój bio-
skorup przyczynia się do odbudowy podstawo-
wych funkcji ekosystemowych i pełni kluczową 
rolę w przeciwdziałaniu pustynnieniu, zwłasz-
cza w rejonach zagrożonych klimatycznie i an-
tropogenicznie.

BIOSKORUPY POD PRESJĄ –  
REAKCJE WOBEC WYZWAŃ ŚRODOWISKA 

Bioskorupy, mimo istotnej roli, jaką peł-
nią w ekosystemie, są wyjątkowo wrażliwe na 
zaburzenia zarówno te naturalne, jak i  wyni-
kające z  działalności człowieka. Przykładami 
zaburzeń pochodzenia naturalnego są poża-
ry, silny wiatr czy też zasypywanie przez pia-
sek. Z  kolei ingerencje człowieka obejmują 
m.in. zabiegi rolnicze, przekształcanie terenów 
pod zabudowę, odprowadzanie zanieczyszczeń 
komunalnych i  przemysłowych, użytkowanie 
niszczących zbiorowiska naturalne pojazdów, 
a także działania militarne (Zaady i in., 2016). 
Zaburzenia te mogą wpłynąć na bioskorupy na 
wiele sposobów, od zmiany ich struktury oraz 
składu gatunkowego organizmów je tworzą-
cych, aż po efektywność ich funkcji, które peł-
nią w  ekosystemie np. tempa wiązania węgla 
i azotu ( Jech i in., 2023). To, jak silnie zaburze-
nia wpływają na bioskorupy, zależy od ich ro-
dzaju, intensywności, częstotliwości, momentu 
wystąpienia, jak również warunków klimatycz-
nych panujących w czasie i po zaburzeniu (Bel-
nap i  Eldridge, 2001). Warto podkreślić, że 
bioskorupy nie są narażone na wszystkie moż-
liwe rodzaje zaburzeń w  każdym środowisku. 
Na przykład w strefie klimatu umiarkowanego 
rzadko obserwuje się stosowanie herbicydów 
w miejscach występowania bioskorup, podob-
nie wypas zwierząt gospodarskich jest tam zja-
wiskiem marginalnym lub nieobecnym. Z tego 
względu ważne jest, by analizując wpływ zabu-
rzeń, brać pod uwagę warunki panujące w da-
nym regionie. Regeneracja po zaburzeniach 
przebiega naturalnie najczęściej z  typowym 
schematem sukcesji bioskorup od dominacji 
sinic do pojawienia się mszaków i  porostów 
(Langhans i in., 2009). Sukcesja może przebie-
gać w bardzo różnym tempie, trwając od kilku 
do setek lat, a jej dynamika uzależniona jest od 
właściwości gleby, warunków klimatycznych 
oraz charakteru wcześniejszych zaburzeń (Bel-
nap i Eldrige, 2001). 
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JAKIE ZABURZENIA NAJCZĘŚCIEJ STANOWIĄ 
ZAGROŻENIA DLA BIOSKORUP? 

Niezwykle niszczącym zaburzeniem dla bio-
skorup są pożary, które mogą oddziaływać na 
wiele sposobów, często niszcząc je bezpośred-
nio przez spalenie lub wysoką temperaturę. 
Intensywne pożary mogą znacznie zmniejszyć 
powierzchnię pokrycia przez bioskorupy i  do-
prowadzić do zamiany składu gatunkowego 
tworzących je organizmów po zakończeniu za-
burzenia (Zaady i in., 2016). Pożar wpływa rów-
nież na funkcje, jakie bioskorupy pełnią w eko-
systemie, m.in. zmniejszając stabilność gleby 
wynikającą ze spadku liczebności produkują-
cych EPS nitkowatych sinic (Root i in., 2017). 
Dodatkowo pożar, eliminując określone gatun-
ki organizmów, upośledza proces obiegu azotu 
oraz węgla poprzez zmniejszenie zawartości 
enzymów wiążących azot cząsteczkowy i  pro-
duktów fotosyntezy w  bioskorupach (Bowker 
i  in., 2004). Innym zaburzeniem, które może 
upośledzać funkcjonowanie bioskorup, jest aku-
mulacja piasku przenoszonego przez wiatr lub 
wodę bezpośrednio na powierzchnię biosko-
rup, co ma miejsce w siedliskach z aktywnymi 
procesami eolicznymi. Badania terenowe prze-
prowadzone przez Rao i in. (2012) w chińskiej 
części pustyni Hopq pokazały, że nawet stosun-
kowo niewielka ilość piasku, która przykrywa 
bioskorupę, może wywołać silny stres u organi-
zmów ją tworzących. W skorupach zdominowa-
nych przez sinice zaobserwowano spadek ilości 
chlorofilu, zaburzenia w  funkcjonowaniu apa-
ratu fotosyntetycznego, ograniczenie produkcji 
scytoneminy oraz EPS.

Oprócz naturalnych zjawisk negatywnie 
wpływających na bioskorupy są one narażone 
na szereg zaburzeń związanych z  działalno-
ścią człowieka. Chociaż ich natężenie zależy 
od regionu, do najczęściej opisywanych w  lite-
raturze należą te powodujące wielokrotnie po-
wtarzany skoncentrowany nacisk wynikający 
m.in.  z  wypasu zwierząt, ruchu pojazdów oraz 
intensywnego wydeptywania (Ryc. 8). Prowadzi 
to do uszkodzenia struktury bioskorupy i  tym 
samym pozbawienia gleby ,,tarczy”, która chro-
ni ją przed erozją wietrzną lub wodną (Gall i in., 

2022). Dochodzi również do powstawania za-
głębień utrudniających wsiąkanie wody w glebę. 
Dochodzi wówczas do powierzchniowego spły-
wu, skutkującego erozją (Eldridge i in., 2010). 
Efekty oddziaływania uszkodzeń mechanicz-
nych bioskorup są tożsame z tymi, opisywanymi 
np. dla zaburzeń wynikających z wpływu wyso-
kiej temperatury (Zaady i in., 2016). 

Coraz więcej badań pokazuje, że biosko-
rupy są wyjątkowo wrażliwe na czynniki abio-
tyczne, co budzi uzasadniony niepokój w  kon-
tekście postępujących zmian klimatycznych, 
charakteryzujących się wzrostem temperatur 
i  aberracjami w  rozkładzie opadów (IPCC, 
2023). Wykazano, że podwyższone temperatu-
ry zmniejszają pokrycie porostów (Maestre i in., 
2013), a  zmienione wzorce opadów sprzyjają 
obumieraniu mchów (Reed i in., 2012) i zmniej-
szeniu liczebności sinic ( Johnson i  in., 2012). 
Wyniki badań sugerują, że skutki zmian klima-
tycznych mogą być dla tych zbiorowisk równie 
destrukcyjne jak zaburzenia mechaniczne (Fer-
renberg i  in., 2015). Pomimo różnej wrażliwo-
ści mchów i  porostów na wzrost temperatury, 
często obserwuje się spadek ich biomasy i krót-
szy czas aktywności metabolicznej, co prowadzi 
do obniżenia zdolności bioskorup do asymilacji 
pierwiastków biogennych, aktywności enzy-
matycznej oraz retencji wody w glebie (Belnap 
i  in., 2004). Intensywne zmiany parametrów 
abiotycznych oddziaływujących na bioskorupy 
powodują zaburzenie bilansu wodnego, skutku-
jącego ograniczeniem ich funkcji hydrologicz-
nych i biogeochemicznych (Li i in., 2021).

PODSUMOWANIE

W  ostatnich latach bioskorupy ze względu 
na pełnione kluczowe funkcje dla ekosystemów, 
stanowią obiekt zainteresowania wielu grup 
badawczych. Ich funkcje wynikają ze złożonego 
składu organizmów autotroficznych i  hetero-
troficznych, które je tworzą. Bioskorupy przy-
czyniają się do stabilizacji i ograniczenia erozji 
gleby, wspomagania retencji wody, obiegu klu-
czowych pierwiastków oraz tworzenia warun-
ków sprzyjających kolonizacji przez inne orga-
nizmy. Funkcje, jakie w  ekosystemach pełnią 
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bioskorupy można skutecznie oceniać za pomo-
cą wskaźników funkcjonalnych, które obejmują 
mierzalne parametry fizyczne, biochemiczne 
i fizjologiczne. Bioskorupy podlegają procesowi 
sukcesji ekologicznej, który wpływa na ich roz-
wój oraz różnorodność. W miarę postępowania 
sukcesji funkcje ekologiczne bioskorup stają się 
coraz bardziej złożone. Choć bioskorupy są nie-
zwykle istotne dla zachowania stabilności eko-
systemów, ich struktura jest bardzo podatna na 
zaburzenia spowodowane przez człowieka i/lub 
czynniki naturalne.

Z  praktycznego punktu widzenia wiedza 
o  bioskorupach może zostać wykorzystana 
w  rekultywacji terenów zdegradowanych, 
szczególnie w  regionach suchych, gdzie od-
tworzenie pokrywy glebowej i  zahamowanie 
erozji jest kluczowe dla przywrócenia funkcji 
ekosystemu. Mikroorganizmy wyizolowane 
z bioskorup lub inokulum z  całych bioskorup 

pobranych ze środowiska mogą być stosowa-
ne w  celu przyspieszenia naturalnych proce-
sów sukcesji i stabilizacji gleby. W rolnictwie, 
zwłaszcza w  rejonach o  ograniczonych zaso-
bach wodnych, właściwości bioskorup, takie 
jak zdolność do magazynowania wody i popra-
wy struktury gleby, mogą stanowić cenny ele-
ment strategii zrównoważonego zarządzania 
glebami. W kontekście narastających zagrożeń 
związanych z  pustynnieniem, rozwój metod 
wspierających formowanie się bioskorup lub 
ich ochrona, może stanowić skuteczne narzę-
dzie walki z degradacją siedlisk. W świetle tych 
możliwości dalsze badania nad bioskorupami 
mają ogromny potencjał nie tylko dla lepsze-
go zrozumienia funkcjonowania ekosystemów 
suchych, ale także dla tworzenia praktycznych 
rozwiązań wspierających ochronę środowiska, 
inżynierię ekologiczną i zrównoważone gospo-
darowanie zasobami naturalnymi.

Ryc. 8. Różne typy bioskorup w dawnej kopalni piasku Szczakowa w Bukownie oraz ślady działalno-
ści pojazdów mechanicznych. Sinice i glony mogą szybko kolonizować świeżo odsłoniętą glebę mi-
neralną wzdłuż śladów pozostawionych przez opony pojazdów (fot. K. Skubała)
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