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Abstrakt 

W pracy przedstawiono problem tolerancyjności ziemniaka na suszę glebową. Omówiono zapotrzebowa-
nia wodne w różnych fazach rozwoju rośliny z uwzględnieniem okresów krytycznych. Zwrócono uwagę na 
zróżnicowanie odmianowe w reakcji na suszę i różnorodność strategii w utrzymaniu plonu. Podkreślono 
rolę systemu korzeniowego w walce z suszą glebową. Nakreślono potrzebę dalszych badań fizjologicznych 
i  biochemicznych w  celu zrozumienia mechanizmów warunkujących tolerancyjność ziemniaka na suszę 
glebową.
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Abstract 

This paper presents the problem of potato tolerance to soil drought. Water requirements at various stages 
of plant development are discussed, including critical periods. Varietal variation in drought response and 
the diversity of yield-maintenance strategies is highlighted. The role of the root system in combating soil 
drought is emphasized. The need for further physiological and biochemical research is outlined to under-
stand the mechanisms underlying potato tolerance to soil drought.
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WPROWADZENIE

Ziemniak (Solanum tuberosum L.) nale-
ży do czterech najważniejszych dla global-
nego bezpieczeństwa żywnościowego roślin 
uprawnych z  globalną produkcją 370 mln ton 
bulw. Uprawiany jest w ponad 100 krajach na 
powierzchni 17 mln ha i  konsumowany przez 
ponad bilion ludzi na świecie. Wzrost global-
nej produkcji na przestrzeni lat wynika przede 
wszystkim ze stałego wzrostu potencjału plono-
wania odmian ziemniaka. Europa jest drugim 
co do wielkości regionem produkcji ziemnia-
ków (125,43 mln ton) po Azji (140,6 mln ton). 
Chiny, Indie, Ukraina, Rosja, USA to najwięksi 
producenci ziemniaków, a  następnie, Niemcy, 
Francja, Holandia, Bangladesz i  Polska (Alva-
rez-Morezuelas i in., 2022; Nasir i Toth, 2022).

Połączenie wysokiej wartości energetycz-
nej z  dużą zawartością białka i  witamin spra-
wia, że bulwy ziemniaka są cennym źródłem 
pożywienia. Ziemniak posiada dużą wartość 
energetyczną w  porównaniu z  innymi roślina-
mi uprawnymi, dostarczając 5600 kcal energii 
na każdy m3 wody zużytej przez plantację, wię-
cej niż kukurydza (3860 kcal/m3), zboża (2300 
kcal/m3), czy ryż o  wartości energetycznej 
2000 kcal/m3 (Scott i in., 2000). Oprócz celów 
konsumpcyjnych ziemniak wykorzystywany jest 
m.in. w przemyśle skrobiowym, tekstylnym, pa-
pierniczym oraz jako biopaliwo. Ze względu na 
wszechstronne użytkowanie jest cenną rośliną 
uprawną zarówno w  krajach rozwiniętych jak 
i rozwijających się.

Gatunek ten pochodzi z Ameryki Południo-
wej, z terenów obecnego Chile, Peru i Boliwii, 
gdzie ślady jego uprawy sięgają 4 tysięcy lat 
p.n.e. Dwa podgatunki S. tuberosum: andigena 
i tuberosum, sprowadzone do Europy w drugiej 
połowie XVI w., uważa się za przodków współ-
czesnego ziemniaka uprawnego.

Nasilające się, nieprzewidywalne zjawiska 
atmosferyczne, wzrost kosztów produkcji zbóż 
oraz zainteresowanie biopaliwami podnoszą 
znaczenie jego uprawy (Sprenger i in., 2016).

Susza stanowi poważne wyzwanie dla pro-
dukcji ziemniaków na całym świecie. Przewidu-
je się, że zmiana klimatu jeszcze bardziej pogłę-

bi to wyzwanie, zwiększając narażenie upraw 
ziemniaków na suszę o różnym nasileniu i czę-
stotliwości. Hodowlę odmian odpornych na su-
szę można rozpocząć poprzez identyfikację 
cech fizjologicznych i  biochemicznych związa-
nych z suszą oraz ich wykorzystanie w nowych 
odmianach ziemniaka. Susza wywołuje szeroki 
zakres reakcji u ziemniaków, od zmian fizjolo-
gicznych aż po wahania tempa wzrostu i plono-
wania. Wiedza na temat tych reakcji jest nie-
zbędna do pełnego zrozumienia mechanizmu 
tolerancji ziemniaków na suszę, co pomoże 
w identyfikacji odmian odpornych na suszę.

WYMAGANIA WODNE I TEMPERATUROWE

Ziemniak jest typową rośliną klimatu 
umiarkowanego z  występującą dobową ampli-
tudą temperatury (chłodniejsze noce, cieplejszy 
dzień), rośnie i  rozwija się najlepiej w  tempe-
raturze ok. 20oC. Inne są jednak wartości gra-
niczne dla rozwoju części nadziemnej i inne dla 
bulw. Część nadziemna rośliny ziemniaka roz-
wija się najlepiej w temperaturze ok. 20–25oC,  
a optymalna temperatura dla tuberyzacji i wzro-
stu bulw wynosi 15–20oC. W temperaturze wyż-
szej od optymalnej dochodzi do zahamowania 
tuberyzacji i intensywnego wzrostu części nad-
ziemnej (Hancock i in., 2014).

Jednym z  głównych czynników ogranicza-
jących produktywność ziemniaka są jego duże 
potrzeby wodne. Zapotrzebowanie na wodę ro-
ślin ziemniaka wynosi od 400 do 600 litrów 
potrzebnych do wyprodukowania 1 kg suchej 
masy bulw. W  warunkach polowych wymaga-
nia wodne wahają się między 350 a  500 mm 
w sezonie wegetacyjnym, w zależności od okre-
su uprawy, warunków środowiskowych oraz ro-
dzaju gleby, a także od odmiany. Ziemniak wy-
maga zróżnicowanych w  czasie wegetacji, ale 
równomiernie rozłożonych opadów w poszcze-
gólnych fazach rozwojowych roślin. W  przy-
padku polskiego klimatu, ryzykiem są zarów-
no deficyt opadów jak i występujące ekstrema. 
W  ostatnich 10 latach średnia ilość opadów 
w  okresie wegetacji zmniejszyła się a  równo-
cześnie wzrosła temperatura powietrza, co do-
datkowo pogarsza warunki dla wzrostu i  roz-
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woju ziemniaka. Potrzeby wodne ziemniaka 
zmieniają się w  ciągu okresu wegetacji wraz 
z rozwojem roślin i są zróżnicowane w różnych 
fazach rozwojowych, które przedstawia tabe-
la 1 (Głuska 2004, Nowacki 2016). W okresie 
od początku kwitnienia do żółknięcia roślin po-
żądane jest utrzymanie wilgotności gleby na 
poziomie około 70% polowej pojemności wod-
nej. Potrzeby wodne roślin są wtedy najwięk-
sze i największa jest wrażliwość roślin na su-
szę, a zapotrzebowanie dzienne roślin wynosi 
ponad 3 mm opadu (Nowacki 2018).

Tab. 1. Wymagania wodne w poszczególnych fa-
zach rozwojowych roślin ziemniaka

Faza  
rozwojowa 

roślin

Okres 
kalendarzowy 

dek. m-ce

Optymalne 
opady

(mm/dekadę) 

Sadzenie I. 04 – I. 05 < 10

Od posadzenia 
do końca 
wschodów

I. 04 – III. 05 15

Od zakończenia 
wschodów do 
zawiązania 
pąków 
kwiatowych

II. 05 – III. 06 15–25

Okres kwitnienia II. 06 – III. 07 25–30

Kumulacja 
plonu bulw

III. 06 – III. 08 30–35

Dojrzewanie 
(żółknięcie) 
roślin

I. 08 – III. 09 ok. 15–20

Zbiór I. 09 – I. 10 ok. 10–15

JAK ROŚLINA ZIEMNIAKA  
REAGUJE NA SUSZĘ 

Ziemniak jest uznawany za roślinę wrażliwą 
na niedobory wody w glebie, praktycznie w każ-
dej fazie rozwojowej (Schafleitner i  in., 2007, 
Monneveux i in., 2013), chociaż obserwuje się 
zróżnicowanie odmianowe w  reakcji na stres 
(Stark i  in., 2013; Boguszewska-Mankowska 
i in., 2022). 

Wpływ suszy na wzrost i rozwój roślin ziem-
niaka był podejmowany przez wielu autorów, 
a  podsumowanie ich prac przedstawia tabe-
la 2 z uwzględnieniem obserwacji cechy zebra-
nych przez Obidiegwu i  in. (2015), Dahal i  in. 
(2019) oraz Nasir i  Toth (2022). Chociaż ba-
dania te często przynoszą pozornie sprzeczne 
wyniki, należy uwzględnić długość trwania su-
szy, częstotliwość i  natężenie. We wczesnych 
etapach rozwoju susza powoduje zmniejszenie 
powierzchni asymilacyjnej liści, obniżenie ak-
tywności fotosyntezy, zmniejszenie przenikania 
asymilatów do bulwy, a  w  konsekwencji zabu-
rzenie procesu formowania bulw.

Tab. 2. Wpływ stresu suszy na różne cechy mor-
fologiczne ziemniaka w świetle doniesień róż-
nych badań (Obidiegwu i in. 2015; Dahal i in. 
2019; Nasir i Toth 2022)

Obserwacja Cecha morfologiczna

Obniżenie liczba łodyg, pokrycie łanu, grubość 
łodygi, świeża i sucha masa roślin, po-
wierzchnia roślin, rozmiar liścia, czas 
występowania liści, potencjał wodny li-
ścia, liczba liści, wskaźnik uwodnienia 
RWC, wysokość roślin, plon bulw, su-
cha masa bulw, liczba bulw, liczba sto-
lonów, długość korzeni, liczba korzeni, 
średnica i biomasa korzeni, potencjał 
wodny korzeni, sucha masa korzeni, 
zawartość chlorofilu w liściach, foto-
synteza, zawartość karetonoidów

Wzrost liczba bulw, liczba stolonów, długość 
korzeni, sucha masa korzeni, 
zawartość chlorofilu, temperatura 
liścia, zawartość antyoksydantów

KIEDY SUSZA NAJBARDZIEJ DOKUCZA – 
OKRESY KRYTYCZNE

W  każdej fazie wegetacji susza powoduje 
inne zmiany (ryc. 1). Niemniej jednak, badania 
wskazują się, że okres tuberyzacji i formowanie 
plonu bulw to najbardziej krytyczne etapy stre-
su suszy (Aliche i in., 2018). Susza występująca 
podczas wschodów, opóźnia je, hamuje wzrost 
roślin oraz opóźnia zwarcie rzędów. W fazie za-
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wiązywania stolonów susza zmniejsza ich ilość 
i  ogranicza prawidłowy wzrost korzeni. Nie-
dobory wody występujące na początku okre-
su tuberyzacji powodują wiązanie mniejszej 
liczby bulw. Najbardziej krytycznym okresem 
pod względem zaopatrzenia roślin ziemniaka 
w wodę jest faza gromadzenia plonu. Wówczas 
obserwowane są największe straty plonu i po-
gorszenie się jego jakości. Przesuszenie redlin 
po wcześniejszym dużym uwilgotnieniu gleby 
powodować może ich spękanie i  zielenienie 
bulw. Okresy suszy i duże wahania zaopatrze-
nia w  wodę są główną przyczyną pogorszenia 
jakości plonu w  wyniku tworzenia bulw lalko-
watych, spękanych, a  także wtórnego wiąza-
nia bulw, pustowatości, rdzawej plamistości 
miąższu (ryc. 2) i występowania tzw. technolo-
gicznych wad bulw objawiających się nierów-
nomiernym rozkładem cukrów w  miąższu, co 
powoduje nieprawidłowe wybarwienie frytek 
i chipsów (George i in., 2017; Dahal i in., 2019). 
Większość sacharozy produkowanej w liściach 
jest przemieszczana do rozwijających się bulw, 
gdzie przekształcana w  skrobię, a  pozostała 
sacharoza jest wykorzystywana do oddycha-
nia. Po okresie suszy bulwy mają więcej suchej 

masy, mniej skrobi, a więcej cukrów redukują-
cych. Skrobia zostaje zhydrolizowana do cu-
krów prostych, które są potrzebne roślinie do 
zintensyfikowania wzrostu. Następstwem tego 
zjawiska jest wzrost zawartości cukrów. Wyż-
sza koncentracja cukrów redukujących (gluko-
zy i fruktozy) wpływa na intensywność przebie-
gu reakcji Maillarda i  powoduje brązowienie 
produktów (Zgórska i Grudzińska, 2012).

Zmiany te w konsekwencji obniżają jakość 
plonu, zmniejszają plon handlowy czy też dys-
kwalifikują towar z obrotu rynkowego.

WAŻNA ROLA SYSTEMU KORZENIOWEGO – 
CAŁA NADZIEJA W KORZENIACH

Ziemniak należy do roślin o  płytkim sys-
temie korzeniowym i  małej jego powierzchni, 
a  główna masa korzeni skoncentrowana jest 
w warstwie gleby 30–40 cm, co również przy-
czynia się do wrażliwości tej rośliny na suszę 
glebową (Zarzyńska i in. 2017; Zinta i in.2022).

Różnice w wielkości systemu korzeniowego 
ziemniaka zarysowują się najbardziej w począt-
kowej fazie kwitnienia roślin, czyli wcześniej 
niż różnice dotyczące części nadziemnej rośli-

Ryc. 1. Reakcja ziemniaka na suszę glebową w kolejnych fazach rozwojowych ziemniaka
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ny. Większy system korzeniowy w genotypach 
ziemniaka, szczególnie korzeni związanych ze 
stolonami (tzw. korzenie stolonowe), zwiększa 
zdolność roślin do tolerowania suszy i pozwa-
la na utrzymanie stabilnego plonu. Genotypy te 
osiągają również szybsze zwarcie łanu, co wy-
dłuża czas trwania maksymalnej aktywności 
fotosyntetycznej i  zmniejsza ilość wody traco-
nej z  gleby przez parowanie. Przyjmując jako 
kryterium odporności na suszę masę korzeni 
w warstwie ornej i plon bulw w Japonii wyhodo-
wano odmiany Konyu, które charakteryzowa-
ły się znacznie większą odpornością na suszę 
niż odmiany komercyjne. Odmiany ziemniaka 
o  większych systemach korzeniowych z  więk-
szym prawdopodobieństwem są w  stanie po-
bierać wodę i składniki odżywcze z gleby (Iwa-
ma 2008). 

W  IHAR-PIB w  Oddziale w  Jadwisinie 
prowadzono badania systemu korzeniowego 
w specjalnie skonstruowanych wazonach o wy-
sokości 1 m i średnicy 40 cm umożliwiających 
prawidłowy rozwój systemu korzeniowego. 
Wazony te były otwierane wzdłuż, co stwarza-

ło techniczną możliwość wydobycia bez uszko-
dzeń całego systemu korzeniowego (ryc.  3). 
Konstrukcja wazonu umożliwiała również wy-
odrębnienie korzeni z  pięciu warstw (podłoże 
przedzielone siatką co 20 cm). Oceniano cał-
kowitą długość systemu korzeniowego, a  na-
stępnie oceniono tolerancyjność tych odmian 
na stres suszy mierzoną względnym spadkiem 
plonu. Spadek plonu ocenianych odmian kształ-
tował się od 18% do 39% w badanych latach. 
Odmiany uszeregowano od najmniejszego do 
największego spadku plonu: Tajfun, Gawin, Bo-
gatka, Satina, Cekin. Największym systemem 
korzeniowym charakteryzowała się odmiana 
Gawin, najmniejszym zaś odmiana Satina (Wi-
shart i in., 2014; Zarzyńska i in. 2017).

Susza glebowa zmniejsza masę systemu ko-
rzeniowego, a ekstremalnie wysoka temperatu-
ra prowadzi do zahamowania wzrostu korzeni. 
Susza zmienia również morfologię systemu ko-
rzeniowego ziemniaka powodując zwiększoną 
boczną penetrację korzeni i  wytwarzanie wło-
śników korzeniowych, które utrzymują kontakt 
korzeń-gleba w  glebie kurczącej się podczas 

Ryc. 2. Wady bulw spowodowane nierównomiernym zaopatrzeniem w wodę
A–B – Odrosty wtórne; C – Spękania bulw; D – Rdzawa plamistość miąższu, E- Brunatna pusto-
wotośc bulw, F – Parch zwykły
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suszy. Genotypy o  dłuższym okresie wegetacji 
wytwarzają większy system korzeniowy, jednak 
występują też różnice w zasięgu i wielkości sys-
temu korzeniowego pomiędzy genotypami w tej 
samej grupie wczesności (Wishart i  in., 2014; 
Zinta i in., 2022). 

Odporność roślin ziemniaka na suszę zwią-
zana jest również ze zróżnicowaną reakcją sys-
temu korzeniowego (wydłużanie się korzeni 
i mniejsze zmiany ich średnicy). Według badań 
Boguszewskiej-Mańkowskiej (2020) odmiana 
odporna reagowała na suszę wydłużaniem ko-
rzeni, natomiast ich długość u  odmiany wraż-
liwej nie zmieniała się. Jednocześnie odnoto-
wano, że zmniejszenie średnicy korzeni było 
mniejsze u odmiany odpornej na suszę niż u od-
miany wrażliwej.

A CO NA TO GENY?

Zróżnicowana odpowiedź odmian ziem-
niaka na deficyt wody odzwierciedlona spad-
kiem plonowania wskazuje, że istnieje gene-
tyczna zmienność tolerancji na suszę odmian 
ziemniaka, która może być wykorzystana przez 
hodowców w  celu poprawy tej cechy (Harris, 
1978). Jednak wybór genotypów pod kątem 
odporności na suszę, przy zachowaniu maksy-
malnej wydajności w optymalnych warunkach, 

jest trudny przede wszystkim ze względu na 
wiele cech zaangażowanych w mechanizmy to-
lerancji na suszę. Wyboru tego nie ułatwia rów-
nież fakt, iż susza zmienia się w czasie i inten-
sywności, a deficytowi wody mogą towarzyszyć 
inne stresy abiotyczne takie jak: wysoka tem-
peratura czy zasolenie, rozumiane także jako 
susza fizjologiczna. Ponadto sukces hodowla-
ny wymaga dokładnej informacji na temat sku-
tecznych cech tolerancji, ich odziedziczalności 
i interakcji genotypu ze środowiskiem, jak rów-
nież odpowiednich narzędzi selekcji do intere-
sujących cech. 

Warto wspomnieć, że próby poprawienia 
tolerancyjności ziemniaka na suszę glebową 
podejmowali Fan i  in., (2012) wykazując, że 
nadekspresja genu SoBADH (kodującego de-
hydrogenazę aldehydu betainy) w  roślinach 
transgenicznych Ipomoes batatas zwiększyła 
ich odporność na stres oksydacyjny, zasolenie 
oraz chłód. Natomiast zmniejszona ekspresja 
MSP (33kDa białko wchodzące w skład PSII) 
skutkowała większą tolerancyjnością transge-
nicznych roślin ziemniaka na stres osmotyczny, 
zasolenia oraz zanieczyszczenia metalami (Gu-
rurani i in., 2012), a nadekspresja genu GalUR 
(kodującego reduktazę kwasu D-galakturono-
wego) skutkowała większą odpornością ziem-
niaka na stresy abiotyczne w warunkach in vi-

Ryc. 3. Badania systemu korzeniowego roślin ziemniaka – doświadczenia
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tro (Hemavathi i  in., 2011). Bardziej odporne 
na suszę, zasolenie i stres oksydacyjny są rów-
nież transgeniczne rośliny z  genem codA (ko-
dującym oksydazę choliny), wykazujące zwięk-
szoną aktywność enzymów antyoksydacyjnych 
(Ahmad i  in., 2008). Zdolność roślin ziemnia-
ka do tolerowania stresu suszy jest regulowa-
na przez zwiększoną ekspresję genu DREB1A 
(Schafleitner i in., 2007, Watanabe i in., 2011). 
Pino i  in. (2013) porównali transgenicznego 
ziemniaka ScCBFI z  liniami nietransgenicz-
nymi. Ich badanie sugerowało lepszą toleran-
cję na suszę u  transgenicznych linii ScCBFI, 
na co wskazywała poprawa ogólnej wydajno-
ści roślin i intensywny rozwój korzeni po stre-
sie suszy (Pino i in., 2013). Uważa się, że geny 
związane z suszą są regulowane zarówno po-
przez mechanizmy zależne, jak i  niezależne 
od ABA (Takahashi i  in., 2018). Pieczyński 
i  in. (2018) zidentyfikowali 23 geny związane 
z suszą w S. tuberosum, których homologi zi-
dentyfikowali również w  Arabidopsis thaliana 
i Oryza sativa. (Pieczyński i in., 2013) wskazał 
gen CBP80 odpowiedzialny za tolerowanie su-
szy w  ziemniaku. Celik (2024) wskazał geny: 
StRD22, MYB, StERD7, syntaza sacharozy 
(SuSy) i StDHN1 związane z tolerancyjnością 
na suszę. Natomiast Zhao i  in., (2025) wyka-
zali, że sieć regulacyjna obejmująca auksynę, 
StDRO2, PmiREN024536 i  PmiREN024486 
może kontrolować architekturę systemu korze-
niowego w warunkach niedoboru wody.

W  ostatnich latach zidentyfikowano liczne 
geny związane ze stresem suszy, jednak wciąż 
jesteśmy daleko od opracowania genotypów 
ziemniaka odpornych na suszę.

WIELE ODMIAN – RÓŻNE STRATEGIE

Susza jest czynnikiem stresowym o  cha-
rakterze abiotycznym i może być zróżnicowana 
pod względem natężenia, czasu trwania, czę-
stotliwości oraz oddziaływania z innymi stresa-
mi w tym samym czasie, co może dotyczyć ko-
mórek organów lub całych roślin (Gaspar i in., 
2002). Reakcja na suszę zależy od fazy rozwo-
jowe i aktywności fizjologicznej rośliny. Na każ-
dy niekorzystny czynnik środowiska roślina re-

aguje najsilniej w tzw. krytycznym okresie, czyli 
w okresie największej wrażliwości.

Aby poradzić sobie ze skutkami suszy gle-
bowej rośliny ziemniaka rozwinęły różnorodne 
strategie na poziomie molekularnym, bioche-
micznym i  fizjologicznym (Dahal i  in., 2019; 
Hil i  in., 2021). Wśród nich wyróżniamy dwie 
podstawowe: unikania i  tolerowania suszy. 
Unikanie suszy to zdolność roślin do prze-
trwania suszy poprzez zmiany morfologiczne, 
w tym zwiększony wzrost korzeni, zamykanie 
aparatów szparkowych i zwiększony stosunek 
korzeni do pędów. Tolerancja na suszę to zdol-
ność roślin do przetrwania okresów stresu su-
szy poprzez zmiany fizjologiczne, w tym zwięk-
szoną produkcję osmoprotektantów, regulację 
osmotyczną i  akumulację cukrów (Kooyers, 
2015). Oba te zjawiska wiążą się ze wzrostem 
efektywności wykorzystania wody (WUE). 
Różnicę między tolerancją na suszę a  jej uni-
kaniem można rozpatrywać raczej jako kwe-
stię skali niż rodzaju. Obie strategie mogą się 
wzajemnie uzupełniać. Strategia tolerowania 
suszy wydaje się być mniej ważna dla roślin 
użytkowanych rolniczo w przypadku niedobo-
ru wody (Blum, 2011).

Z perspektywy agronomicznej rośliny odpor-
ne na suszę to takie, które utrzymują stabilny 
plon w warunkach niedoboru wody. Priorytetem 
w badaniach hodowlanych ukierunkowanych na 
poprawę odporności na suszę jest uzyskanie ta-
kich genotypów, które poradzą sobie ze stresem 
suszy bez hamowania wzrostu i spadku plonów 
(Monneveux i in., 2013; George i in.2017; Dahal 
i in., 2019; Hill i in.2021).

Przykładem wykorzystywania różnych strate-
gii odmian ziemniaka w walce z suszą mogą być 
dwie pary polskich odmian ziemniaka Gwiaz-
da/Oberon oraz Tajfun/Owacja, które wykazały 
skrajne różnice w tolerancji na suszę ocenioną 
na podstawie utraty plonu bulw (Boguszewska-
-Mańkowska i  in., 2018). Zdolność do tolero-
wania odwodnienia poprzez znaczący wzrost 
efektywności wykorzystania wody odmiana 
Gwiazda osiągnęła w wyniku wczesnego zamy-
kania aparatów szparkowych, a  wrażliwość na 
ABA znacznie zmniejszyła intensywność trans-
piracji. Strategia ta została niedawno opisana 
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dla wrażliwych na suszę odmian soi (Fenta i in., 
2012) i kukurydzy (Benesova i  in., 2012). Inną 
strategię przeciwdziałania skutkom suszy wy-
kazała unikająca odwodnienia odmiana Tajfun, 
która utrzymywała aparaty szparkowe częścio-
wo otwarte. W ten sposób rośliny były w stanie 
zachować stosunkowo wysoki stosunek fotosyn-
tezy do transpiracji. Tej ryzykownej strategii to-
warzyszyło około 15% niższe, choć nieistotne 
statystycznie, plonowanie bulw w  porównaniu 
z  około 8% ubytkiem masy bulw w  odmianie 
Gwiazda.

Kolejnym ważnym aspektem jest charakte-
rystyka odmiany w warunkach niedoboru wody 
oraz dobór odpowiednich odmian do warun-
ków środowiska. W produkcji ziemniaka cenio-
ne są odmiany, które w warunkach gorszego za-
opatrzenia w wodę są zdolne wytworzyć dobry 
plon, a  więc istnieje potrzeba oceny tej cechy 
u  poszczególnych odmian. Na wrażliwość od-
miany w stosunku do suszy wpływa wiele cech 
m.in.: budowa systemu korzeniowego, funkcjo-
nowanie aparatów szparkowych, które tworzą 
złożony układ, grubość kutykuli liści, wystę-
powanie trichomów. U  różnych odmian inna 
cecha odpowiedzialna za gospodarkę wodną 
jest bardziej dominująca. Jedna odmiana może 
mieć np. mniej rozbudowany system korzenio-
wy a  większą efektywność aparatów szparko-
wych lub odwrotnie. Reakcją odmiany na stres 
suszy będzie bilans, czyli wypadkowa cech wza-
jemnie na siebie oddziałujących. Badanie poje-
dynczej cechy może być tylko jednym ze wskaź-
ników, natomiast ocena reakcji odmiany może 
zapewnić ocenę całościową. Jedną z  możliwo-
ści jest określenie wrażliwości poszczególnych 
odmian na niedobory wody po ok. 3 tygodniach 
od momentu rozpoczęcia tuberyzacji, czyli w fa-
zie największego zapotrzebowania na wodę. 
W tym czasie na dwa tygodnie wstrzymuje się 
podlewanie roślin, podczas gdy rośliny kontro-
lne podlewane są regularnie. Po zakończeniu 
okresu suszy aż do końca okresu wegetacji ro-
śliny są ponownie podlewane taką dawką wody, 
która zapewnia im utrzymanie optymalnej wil-
gotności gleby. Rycina 4 przedstawia zróżnico-
waną reakcję 50 odmian ziemniaka na suszę 
glebową. Względny spadek plonu wynosi od 4% 

u  do 53%. (Boguszewska-Mańkowska 2016; 
Boguszewska-Mańkowska i in. 2022). Odmiany 
o mniejszym względnym spadku plonu wykazu-
ją większą tolerancyjność na suszę glebową.

W związku ze zmieniającym się modelem 
rozwoju rolnictwa z intensywnego na zrówno-
ważony oraz coraz większego znaczenia rol-
nictwa ekologicznego, co wiąże się między in-
nymi z  ograniczeniem stosowania nawozów, 
pestycydów i wody, istotne jest znalezienie ge-
notypów odporniejszych na stresy, co umożli-
wi zwiększenie plonów w różnych warunkach 
środowiskowych. Z  praktycznego punktu wi-
dzenia poznanie reakcji na suszę glebową kon-
kretnej odmiany oraz wielu odmian pozwoli na 
identyfikację wymagań wodnych poszczegól-
nych genotypów oraz ich rejonizację w zależ-
ności od warunków klimatycznych (Nowacki 
2018.

JAK PRZECIWDZIAŁAĆ SKUTKOM SUSZY

Kluczowym aspektem jest dobór odmian, 
które w  warunkach niedoboru wody potrafią 
wytworzyć stabilny i dobrej jakości plon.

Rozwiązaniem na niedobory i  nierówno-
mierny rozkład opadów jest nawadnianie plan-
tacji. Jednak w Polsce nawadnianie prowadzone 
jest na ok. 20% powierzchni upraw ziemniaka 
w latach, w których występują niedobory wody 
i głównie plantacji dla przetwórstwa spożywcze-
go i ziemniaka jadalnego do konfekcjonowania. 
Przy tym, najpopularniejszą metodą nawadnia-
nia jest deszczowanie plantacji przy pomocy 
deszczowni szpulowych (Nowacki 2018).

Innowacyjnym elementem agrotechniki 
może być stosowanie dolistnych preparatów za-
wierających związki bioaktywne (biostymulato-
ry), jako alternatywnego środka w  warunkach 
niekorzystnego oddziaływania czynnika pogo-
dowego podczas wegetacji ziemniaka. Biosty-
mulatory wspomagają proces fotosyntezy i me-
tabolizmu, zwiększają odporność na choroby 
grzybowe, umożliwiają lepsze wykorzystanie 
składników pokarmowych z  gleby, co popra-
wia kondycję roślin w niekorzystnych okresach 
wzrostu, zwłaszcza podczas suszy (Trawczyń-
ski 2020).
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PODSUMOWANIE

Celem hodowców i  genetyków molekular-
nych jest poprawienie wartości cech użytko-
wych roślin rolniczych i  lepsze „dopasowanie” 
roślin do warunków środowiska, z uwzględnie-
niem poziomu i jakości plonu. Strategie, który-
mi się posługują, są zbliżone i polegają na po-
szukiwaniu i  przeniesieniu wyróżniających się 
alleli, kontrolujących cechy użytkowe. Badania 
nad hodowlą ziemniaka koncentrują się przede 
wszystkim na selekcji odmian odpornych na su-
szę poprzez uwzględnienie wskaźników na po-
ziomie całej rośliny i  liści, takich jak: plon, fe-
notyp rośliny, zawartość wody w  liściach, przy 
mniejszym zainteresowaniu na poziomie ana-
tomicznym, fizjologicznym i  biochemicznym. 
(Monneveux i  in., 2013; Hill i  in., 2021) Prze-
badanie funkcji genów i ich produktów warun-
kujących nabywanie i  kontrolowanie odporno-
ści roślin na niekorzystne warunki środowiska 
może przyspieszyć zrozumienie tych procesów 
i przyczyni się do powstania ideotypu ziemnia-
ka odpornego na suszę glebową. 
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