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Abstrakt

Kwas rozmarynowy (KR) jest naturalnym polifenolem obecnym w wielu roślinach z rodziny jasnotowatych 
(Lamiaceae), takich jak rozmaryn, szałwia, melisa czy mięta. Dzięki swojej złożonej strukturze chemicznej 
wykazuje szerokie spektrum działania biologicznego. W artykule przedstawiono przegląd literatury dotyczą-
cej zastosowań KR w medycynie, kosmetyce oraz innych dziedzinach, w tym przemysłowych. Szczególną 
uwagę poświęcono jego właściwościom przeciwzapalnym, przeciwutleniającym, neuroprotekcyjnym, prze-
ciwnowotworowym, przeciwbakteryjnym i immunomodulującym. Pokazano potencjalne zastosowanie KR 
w medycynie (terapie wielu chorób), w kosmetologii (zastosowanie w pielęgnacji skóry oraz w ochronie 
przeciwsłonecznej), w przemyśle spożywczym (naturalny konserwant) i w rolnictwie (biopestycyd i biosty-
mulator). Artykuł omawia również nowoczesne metody biotechnologicznej produkcji KR, w tym kultury ko-
mórkowe, korzenie transformowane oraz biosyntezę mikrobiologiczną. Wyniki badań przedklinicznych są 
bardzo obiecujące, jednak potrzeba dalszych badań nad skutecznością i bezpieczeństwem stosowania KR 
u ludzi. Związek ten ma potencjał, by stać się ważnym składnikiem terapii wspomagających, suplementów 
diety, kosmetyków i ekologicznych środków ochrony roślin. 

Słowa kluczowe: kultury roślinne in vitro, kwas rozmarynowy, medycyna, polifenole, przemysł spożywczy, 
rolnictwo
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WPROWADZENIE

Kwas rozmarynowy (KR) jest jednym z naj-
ważniejszych i  najlepiej poznanych związków 
fenolowych, występujących przede wszystkim 
w roślinach z  rodziny Lamiaceae. Związek ten 
został po raz pierwszy wyizolowany w  1958 
roku przez Scarpatiego i Oriente z liści rozmary-
nu (Scarpati i Oriente 1958, za Petersen i Sim-
monds 2003). Ze względu na obecność dwóch 
układów katecholowych KR wykazuje silne wła-
ściwości antyoksydacyjne, przewyższające inne 
popularne związki fenolowe, jak kwas ferulowy 
czy kwas chlorogenowy (Sevgi i in., 2015).

KR pełni wiele funkcji biologicznych w rośli-
nach, m.in. chroni przed stresem oksydacyjnym, 
promieniowaniem UV i  infekcjami patogenów. 
Wiele z właściwości kwasu rozmarynowego przy-
ciąga coraz większe zainteresowanie ze strony 
lekarzy oraz przemysłu farmaceutycznego i  ko-
smetycznego, ponieważ w  licznych badaniach 
wykazano działanie przeciwzapalne, przeciwu-
tleniające, neuroprotekcyjne, przeciwnowotwo-
rowe, przeciwdrobnoustrojowe, przeciwwiruso-
we, immunomodulujące oraz hepatoprotekcyjne.

Obecnie KR jest przedmiotem intensywnych 
badań medycznych w kontekście jego potencjal-
nych zastosowań w leczeniu chorób przewlekłych 
i cywilizacyjnych, takich jak choroba Alzheimera, 
Parkinsona, cukrzyca typu 2, czy choroby ukła-
du sercowo-naczyniowego. KR znajduje również 
szerokie zastosowanie w  kosmetologii  – jako 

składnik produktów anti-aging, preparatów prze-
ciwtrądzikowych i środków łagodzących podraż-
nienia skóry. Ze względu na swoje właściwości 
przeciwdrobnoustrojowe oraz zdolność do ha-
mowania oksydacji lipidów, kwas rozmarynowy 
jest również wykorzystywany w przemyśle spo-
żywczym jako naturalny konserwant.

W  przedstawianej pracy omówiono aktual-
ny stan wiedzy na temat działania biologicznego 
i  potencjalnych zastosowań KR w  medycynie, 
kosmetyce, rolnictwie oraz technologii biomate-
riałów. Wspomniano również o biotechnologicz-
nych metodach produkcji tego związku.

BUDOWA CHEMICZNA, WYSTĘPOWANIE 
I MECHANIZM DZIAŁANIA KWASU 
ROZMARYNOWEGO

Budowa chemiczna i właściwości  
fizykochemiczne

Kwas rozmarynowy to ester kwasu kawowe-
go i 3,4-dihydroksyfenylopirogronowego (Rys. 1). 
Związek ten jest łatwo rozpuszczalny w metano-
lu, etanolu i DMSO, natomiast słabo w wodzie. 
Występuje w  postaci żółtawego proszku o  cha-
rakterystycznym aromacie. W  warunkach fizjo-
logicznych jest stosunkowo stabilny, ale może 
ulegać degradacji pod wpływem światła UV, wy-
sokiej temperatury i ekstremalnych wartości pH.

Struktura KR zawiera dwie grupy katecho-
lowe (Rys.  2), które odpowiadają za jego wy-
soką aktywność przeciwutleniającą  – mogą 

Abstract

Rosmarinic acid (KR) is a polyphenol present in many plants of the light family (Lamiaceae), such as rose-
mary, sage, lemon balm and mint. Due to its chemical structure, it exhibits a wide spectrum of biological 
activities. The article presents a literature review of its applications in medicine, cosmetics and other fields, 
including industrial. Special attention was paid to its anti-inflammatory, antioxidant, neuroprotective, anti-
cancer, antimicrobial and immunomodulatory properties. The potential use of KR in the treatment of many 
diseases, in cosmetology (use in skin care and sun protection), in the food industry (natural preservative), 
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biotechnological production of KR, including cultures in vitro. The results of preclinical studies are very 
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potential to become an important ingredient in adjunctive therapies, dietary supplements, cosmetics and 
organic plant protection products.
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one neutralizować wolne rodniki poprzez od-
danie atomów wodoru lub poprzez chelatowa-
nie jonów metali przejściowych, takich jak Fe²⁺ 
i Cu²⁺. Całkowita aktywność przeciwutleniająca 
KR, zmierzona przy użyciu testu odbarwiania 
β-karotenu, wykazała, że kwas rozmarynowy 
ma najwyższą aktywność przeciwutleniającą – 
98,92%, spośród badanych kwasów fenolo-
wych (Sevgi i  in., 2015). Ponadto KR wykazał 
maksymalny potencjał wśród innych badanych 
kwasów fenolowych w  testach działania che-
latującego i  wychwytywania wolnych rodni-
ków 2,2-difenylo-1-pikrylohydrazylowych (test 
DPPH, Sevgi i in., 2015).

Występowanie w roślinach
Kwas rozmarynowy odkryto w  ponad 160 

gatunkach roślin, przede wszystkim w  rośli-
nach z rodzin Lamiaceae i Boraginaceae (Guan 
i in., 2022), jednak jego wysokie stężenia znale-
ziono jedynie w kilku powszechnie stosowanych 
w lecznictwie surowcach roślinnych (Tab. 1). 

Zawartość KR może się różnić w zależności 
od gatunku, fazy rozwojowej rośliny, warunków 
środowiskowych oraz metody ekstrakcji (Flet-
cher i in., 2010; Lešnik i in., 2021; Yeddes i in., 
2019). Dlatego coraz częściej do produkcji KR 
wykorzystuje się hodowle in vitro. Te metody 
stanowią bardzo dobrą alternatywę dla ekstrak-
cji z materiału roślinnego lub syntezy chemicz-
nej KR, która ze względu na swoją złożoność 
nie jest w stanie odpowiedzieć na rosnący popyt 
rynkowy (Zhuang i in., 2016). Jest to związane 
z bardzo zróżnicowaną aktywnością biologicz-
ną kwasu rozmarynowego, zarówno w  tkan-

kach roślinnych, jak i organizmach zwierzęcych 
(Tab. 2).

Biodostępność kwasu rozmarynowego
Wyniki badań wskazują, że podawanie czy-

stego KR nie jest, z  terapeutycznego punktu 
widzenia, najlepszą metodą, ponieważ w prze-
ciwieństwie do diterpenów syntetyzowanych 
w rozmarynie, kwas rozmarynowy ma niską bio-
dostępność po podaniu doustnym (np. u szczu-
rów ok. 1%, Wang i in., 2017). Jednak podawanie 
KR na przykład w połączeniu z luteoliną i apige-
niną (rośliny rozmarynu zawierają wysokie stę-
żenia wszystkich trzech związków) lub z innymi 
składnikami zwiększało biodostępność do 90% 
(Guncheva i in., 2020).

Właśnie ze względu na tak niską biodostęp-
ność czystego kwasu rozmarynowego (KR), 
opracowywane są systemy wiązania i  kontro-
lowanego uwalniania jego cząsteczek w  orga-
nizmach zwierzęcych (Coiai i in., 2021). Więk-
szość przykładów w  literaturze opiera się na 
zastosowaniu mikro- lub nanoukładów bazu-
jących na naturalnych, biodegradowalnych po-
limerach (Rys. 2). Są one nietoksyczne, niere-
aktywne wobec ludzkich tkanek, a także mogą 
być rozkładane lub metabolizowane i wydalane 
z organizmu w naturalnych procesach metabo-
licznych (Casanova i in., 2016).

Spośród naturalnych polimerów najczęściej 
badanym materiałem kapsułkującym jest biode-
gradowalny i hydrofilowy chitozan (CS). Zapew-
nia ochronę substancji aktywnych a mikropereł-
ki chitozanowe pozostają stabilne w  kontakcie 
z płynami fizjologicznymi. KR był również wią-
zany w  nanocząstkach chitozanowych, wyko-
rzystywanych do dostarczania substancji aktyw-
nych na poziomie błon śluzowych. Nanonośniki 
wykazały brak cytotoksyczności i  dobrą aktyw-
ność przeciwutleniającą. Wykazano ich skutecz-
ność m.in. w terapii chorób oczu związanych ze 
stresem oksydacyjnym (da Silva i in., 2016) oraz 
jako systemy dostarczania KR do nabłonka jeli-
towego w celu zwalczania patogenów (Madure-
ira i  in., 2015). KR był łączony także z chitoza-
nem i grafenem (Chhabra i in., 2020). Kolejnym 
ważnym nośnikiem są cyklodekstryny (CD), cy-
kliczne oligosacharydy o  hydrofobowym wnę-

Ryc. 1. Struktura chemiczna kwasu rozmaryno-
wego. Źródło: Wikipedia, domena publiczna



Ryc. 2. Przykłady systemów nośnikowych kwasu rozmarynowego

Tab. 1. Zawartości kwasu rozmarynowego w wybranych surowcach leczniczych (za Fecka i in., 2002, 
zmienione)

Gatunek Surowiec Zawartość [%]

Karbieniec pospolity (Lycopus europaeus L.)

Melisa lekarska (Melissa officinalis L.)  

Mięta pieprzowa (Mentha piperita L.)  

Pachnotka zwyczajna (Perilla frutescens L.)  

Głowienka pospolita (Prunella vulgaris L.) 

Lebiodka pospolita (Origanum vulgare L.)  Rozmaryn 

lekarski (Rosmarinus officinalis L.)  

Szałwia lekarska (Salvia officinalis L.)  

Tymianek pospolity (Thymus vulgaris L.)  

Macierzanka piaskowa (Thymus serpyllum L.)

ziele  

liście  

liście  

liście  

ziele  

ziele

liście 

liście  

ziele

ziele

3,7 – 4,2  

0,12 – 6,5  

0,31  

0,1 – 7,8  

6,1 – 7,4  

0,12 – 6,8  

0,2 – 4,3  

0,2 – 4,2  

0,43  

0,11 – 0,45

Tab. 2. Mechanizmy biologicznego działania kwasu rozmarynowego

Typ działania Mechanizm

Antyoksydacyjne Neutralizacja ROS, aktywacja SOD, GPx, katalazy, hamowanie peroksydacji lipidów 
(↓ MDA)

Przeciwzapalne Hamowanie NF-κB, redukcja TNF-α, IL-1β, IL-6, blokada COX-2 i LOX

Neuroprotekcyjne Ochrona przed stresem oksydacyjnym, aktywacja BDNF/CREB,

Przeciwdrobnoustrojowe Uszkodzenie błon bakterii i grzybów, hamowanie biofilmu i adhezji

Metaboliczne Poprawa wrażliwości na insulinę, aktywacja AMPK, obniżenie glikemii i lipidów

Epigenetyczne Modulacja mikroRNA, metylacja DNA w komórkach nowotworowych
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trzu i  hydrofilowej powłoce, zdolne do tworze-
nia kompleksów z  KR. Badania wykazały, że 
cząsteczki KR umieszczone wewnątrz CD mają 
większą rozpuszczalność, stabilność i  aktyw-
ność przeciwutleniającą (Celik i  in., 2011; Fa-
teminasab i in., 2020). Także kulki alginianowe 
były wykorzystywane jako nośniki KR, zwłasz-
cza do enkapsulacji ekstraktów roślinnych (Co-
iai i in., 2021). Ciekawe zastosowanie zapropo-
nowali Ge i in., (2018), którzy stworzyli jadalne 
folie żelatynowe, do których kowalencyjnie przy-
łączono KR. Folie te wykazywały wysoką odpor-
ność na UV, trwałość mechaniczną i aktywność 
antybakteryjną utrzymującą się przez 3 miesiące.

Spośród syntetycznych polimerów stoso-
wanych jako nanonośniki KR, Kim i  in., (2010) 
opracowali mikrosfery polikaprolaktonu (PCL) 
zawierające KR. Kremy zawierające te mikrosfe-
ry zapewniały lepszą trwałość KR w porównaniu 
do kremów zawierających wyłącznie wolny KR.

Etosomy to układy pęcherzykowe złożone 
z fosfolipidów, etanolu oraz dużej ilości wody. Są 
one bardzo elastyczne i  mogą łatwo przenikać 
do głębszych warstw skóry. Zarówno etosomy, 
jak i liposomy zachowały właściwości antyoksy-
dacyjne i hamowały aktywność kolagenaz i ela-
staz. Oba systemy istotnie zwiększały przenika-
nie KR przez skórę, jednak etosomy okazały się 
znacznie skuteczniejsze w dostarczaniu związku 
do głębokich warstw skóry (Yücel i in., 2019). 

Kolejną odmianą nośników są elastyczne 
liposomy (ultra-deformable liposomes, ULs), 
uzyskiwane przez dodanie aktywatorów brze-
gowych. Te zawierające kwasy tłuszczowe wy-
kazują wysoką skuteczność penetracji skóry. 
Wykazano, że ULs wiązały się z powierzchnią 
skóry, po czym następowało uwolnienie leku 
i  jego dalsze przenikanie do wnętrza skóry 
(Subongkot i in., 2021).

Stałe nanocząstki lipidowe (SLNs), zbudo-
wane z  lipidów stałych w  temperaturze ciała 
i pokojowej, stanowią inną formę enkapsulacji 
KR. Ich skład i  właściwości czynią je idealny-
mi nośnikami dla wrażliwych związków bioak-
tywnych – chronią przed degradacją chemiczną 
i ułatwiają ich stosowanie różnymi drogami po-
dania (Coiai i in., 2021). KR został umieszczony 
w SLNs zbudowanych z witepsolu (mieszanina 

mono-, di- i  triglicerydów pochodzenia natural-
nego) oraz wosku karnauba. W warunkach sy-
mulowanego przewodu pokarmowego uwolnio-
no 40–60% KR, przy zachowanej aktywności 
antyoksydacyjnej (Coiai i in., 2021). SLNs zwią-
zane z KR znalazły również zastosowanie w te-
rapii chorób neurodegeneracyjnych. KR, poza 
działaniem przeciwzapalnym i  antyoksydacyj-
nym, ma także właściwości neuroprotekcyj-
ne. Donosowe podanie tych cząstek pokazało, 
że system SLNs zawierający KR jest obiecują-
cą strategią terapeutyczną w  leczeniu choroby 
Huntingtona, dzięki możliwości nieinwazyjnego 
dostarczania leku z  nosa do mózgu (Chauhan 
i in., 2021).

Większość przykładów nośników stoso-
wanych do enkapsulacji lub unieruchamiania 
kwasu rozmarynowego (KR) dotyczy systemów 
polimerowych lub lipidowych, natomiast nośni-
ki nieorganiczne są znacznie rzadziej badane. 
Niemniej jednak, biorąc pod uwagę potencjalne 
zastosowania KR jako naturalnego przeciwutle-
niacza lub dodatku przeciwdrobnoustrojowego 
w  takich gałęziach przemysłu jak opakowania 
żywności, kosmetyki czy farmacja, bionanosys-
temy oparte na nieorganicznych nanocząstkach 
mogą oferować wiele korzyści.

Wykazano, że duża powierzchnia właściwa 
i  warstwowa struktura nanoglinek (takich jak 
montmorylonit), a  także kształt nanorurek ha-
loizytu, sprzyjają adsorpcji olejków eterycznych 
(EOs, Coiai i  in., 2021). Co istotne, nanoglina 
była szeroko stosowana jako nośnik dla olej-
ków eterycznych i polifenoli w zastosowaniach 
takich jak opakowania żywności czy rolnictwo, 
na przykład dla tworzenia systemów kontrolo-
wanego uwalniania zapachu, m.in.  w  zwalcza-
niu szkodników (Saucedo-Zuñiga i in., 2021). 

Wśród nieorganicznych materiałów o struk-
turze warstwowej szczególną uwagę zasługu-
ją warstwowe podwójne wodorotlenki (LDH), 
znane także jako hydrotalkity (lub hydrotalcyty). 
LDH są bardzo skuteczne w adsorpcji i interka-
lacji związków organicznych, a także w ich kon-
trolowanym uwalnianiu i  ochronie przed czyn-
nikami zewnętrznymi a ogranicza ich migrację 
i umożliwia zastosowanie w systemach kontro-
lowanego uwalniania. Dodatkowo, modyfika-
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cja LDH związkami organicznymi poprawia ich 
kompatybilność z matrycami polimerowymi, co 
czyni je interesującymi dodatkami do kompozy-
tów polimerowych (Coiai i in., 2021). Co cieka-
we, polifenole wyizolowane z resztek po produk-
cji olejów (naturalne przeciwutleniacze a także 
środki przeciwdrobnoustrojowe), mogą być wią-
zane ze zmodyfikowanym LDH i wykorzystane 
jako napełniacz do kompozytów utworzonych 
z poli(bursztynianu butylenu) (PBS), wytwarza-
nych metodą polimeryzacji in situ (Sisti i  in., 
2019). Właściwości antybakteryjne tak otrzyma-
nych materiałów oceniano wobec Staphylococ-
cus aureus i Escherichia coli – typowych bakte-
rii wywołujących zatrucia pokarmowe.

KR może być także sieciowany w  proce-
sie polimeryzacji, tworząc cząsteczki poli(KR). 
Cząstki poli(KR) mogą uwalniać KR w  środo-
wisku kwaśnym, obojętnym i  zasadowym, wy-
kazują aktywność antyoksydacyjną podobną do 
wolnego KR i są o ok. 60% mniej cytotoksyczne 
dla komórek ssaczych niż monomeryczny KR. 
Hamują także α-glukozydazę, co wskazuje na 
możliwość zastosowania ich w leczeniu cukrzy-
cy (Sahiner i in., 2019).

ZASTOSOWANIA KWASU ROZMARYNOWEGO 
W MEDYCYNIE

W  zastosowaniach medycznych stosuje się 
zwykle trzy drogi podawania kwasu rozmaryno-
wego. Po doustnym podaniu ekstraktu KR osią-
ga on maksymalne stężenie w  osoczu już po 
~0,5 godz., po czym szybko ulega metabolizmo-
wi (metylacji do metylo-KR) i  wydaleniu z  mo-
czem (Hitl i in., 2021). Po podaniu KR na skórę 
u szczurów stwierdzono ok. 60% biodostępności 
oraz dwa szczyty stężenia, co sugeruje m.in. krą-
żenie jelitowo-wątrobowe. Natomiast po podaniu 
dożylnym okres półtrwania wynosił ok. 2 godz., 
a  najwyższe stężenia KR obserwowano w  płu-
cach, śledzionie, sercu i wątrobie (Ritschel i in., 
1989). Przewaga wydalania nerkowego i udział 
aktywnej sekrecji w eliminacji KR wskazują na 
skuteczne usuwanie związku i niewielkie ryzyko 
akumulacji, co sprzyja bezpiecznemu stosowa-
niu terapeutycznemu (Tab. 3). 

Choroby neurodegeneracyjne  
i neuropsychiatryczne

Kwas rozmarynowy wykazuje silne działa-
nie neuroprotekcyjne, które wynika z jego wła-
ściwości przeciwutleniających, przeciwzapal-
nych, antyapoptotycznych oraz zdolności do 
modulowania neuroprzekaźnictwa i  neuroge-
nezy. W  ostatnich latach rośnie zainteresowa-
nie jego potencjalnym zastosowaniem w lecze-
niu chorób neurodegeneracyjnych, takich jak 
choroba Alzheimera (AD), Parkinsona (PD), 
stwardnienie zanikowe boczne (ALS), a  także 
w  zaburzeniach neuropsychiatrycznych  – de-
presji, lękach czy zaburzeniach poznawczych.

Choroba Alzheimera (AD) charakteryzuje 
się nagromadzeniem β-amyloidu, splątków neu-
rofibrylarnych, stresem oksydacyjnym i  prze-
wlekłym stanem zapalnym w  mózgu. Kwas 
rozmarynowy (KR) wykazuje wobec tych pro-
cesów obiecujące działanie neuroprotekcyjne – 
m.in. hamuje aktywność acetylocholinoesterazy 
oraz tworzenie blaszek amyloidowych. Sugeruje 
się, że za to działanie odpowiedzialna może być 
specyficzna struktura cząsteczki KR, zawierają-
ca dwa pierścienie 3,4-dihydroksyfenylowe (Hao 
i Friedman 2016). KR przejawia również działa-
nie ochronne wobec neuronów narażonych na 
stres oksydacyjny, który odgrywa istotną rolę 
w patogenezie choroby Alzheimera. W badaniu 
na myszach KR, zapobiegał m.in. uszkodzeniom 
białek i zaburzeniom pamięci wywołanym przez 
Aβ i nadtlenoazotyn (ONOO−). Warto jednak za-
znaczyć, że KR nie poprawiał funkcji poznaw-
czych u  zdrowych myszy, co sugeruje, że jego 
działanie ochronne na pamięć ogranicza się do 
sytuacji, gdy występuje stres oksydacyjny lub 
inne czynniki patologiczne związane z chorobą 
Alzheimera (Hao i Friedman 2016). Wspomaga-
jące działanie kwasu rozmarynowego może być 
także wynikiem neuroprotekcyjnego działania 
przeciwko toksyczności indukowanej przez biał-
ko amyloidu (Aβ). Stwierdzono, że takie działa-
nie KR może mieć związek z hamowaniem wy-
twarzania ROS (reaktywne formy tlenu, ang. 
reactive oxygen species), a  tym samym perok-
sydacji lipidów błon. Sugeruje to, że tradycyjne 
stosowanie tej przyprawy w leczeniu stwardnie-
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nia zanikowego bocznego może mieć podłoże 
farmakologiczne (Faridzadeh i in., 2022)

Kwas rozmarynowy, podobnie jak wiele 
związków polifenolowych, wykazuje działanie 
przeciwdepresyjne, związane ze zwiększonym 
poziomem BDNF (neurotroficzny czynnik po-
chodzenia mózgowego, ang. brain-derived neu-
rotrophic factor, stymulujący wzrost neuronów). 
Mieszanka ziół, zawierających kwas rozmaryno-
wy, tradycyjnie stosowana w chińskiej medycy-
nie ludowej w  leczeniu objawów depresyjnych, 
znacznie zwiększała ekspresję wielu genów 
w hipokampie, a także osłabiała zachowania po-
dobne do depresji w przewlekłym nieprzewidy-
walnym łagodnym stresie (CUMS) u  szczurów 
(Moosavi i in., 2015) 

KR ma również potencjał w  terapii choro-
by Parkinsona, w  której uszkodzenie neuro-
nów dopaminergicznych prowadzi do zaburzeń 
motorycznych. W badaniach wykazano, że KR 
ogranicza degenerację neuronów istoty czar-
nej, redukując poziomy α-synukleiny i  popra-
wiając koordynację ruchową (Rahbardar i Hos-
seinzadeh, 2020). Mechanizmy te związane są 

z  hamowaniem aktywacji szlaku NF-κB oraz 
zmniejszeniem produkcji NO przez mikroglej. 

Szczególnie interesujące są nowe doniesie-
nia dotyczące działania neuroprotekcyjnego KR 
w kontekście starzenia się mózgu i stresu oksy-
dacyjnego. Związek ten aktywuje endogenne 
systemy obrony antyoksydacyjnej oraz zmniej-
sza poziomy peroksydacji lipidów (Rahbardar 
i Hosseinzadeh, 2020). 

Choroby metaboliczne i układu krążenia
Kwas rozmarynowy znajduje zastosowa-

nie w terapii chorób metabolicznych, takich jak 
cukrzyca typu 1 i 2, insulinooporność, otyłość, 
a także w profilaktyce i leczeniu chorób układu 
sercowo-naczyniowego. Jego wielokierunkowe 
działanie wynika z właściwości przeciwutlenia-
jących, przeciwzapalnych oraz zdolności do mo-
dulowania sygnalizacji metabolicznej na pozio-
mie komórkowym i genowym.

KR wykazuje obiecujące działanie przeciw-
cukrzycowe, szczególnie w  odniesieniu do cu-
krzycy typu 1. Badania na modelach zwierzęcych 
dostarczają istotnych dowodów na jego skutecz-

Tab. 3: Zastosowania terapeutyczne kwasu rozmarynowego 

Obszar Przykład choroby Mechanizm działania Etap badań

Neurologia Choroba Alzheimera, 
Parkinsona, depresja

Neuroprotekcja (hamowanie Aβ, wzrost 
BDNF, redukcja stresu oksydacyjnego)

in vitro, in vivo

Metabolizm Cukrzyca typu 1 i 2, 
otyłość

Poprawa wrażliwości na insulinę, 
aktywacja AMPK, redukcja glikemii 
i lipidów

in vivo  
(modele zwierzęce)

Onkologia Rak jelita, płuca, piersi, 
czerniak

Hamowanie proliferacji, angiogenezy, 
indukcja apoptozy, działanie 
epigenetyczne

in vitro, in vivo  
(linie komórkowe 
i modele mysie)

Auto-immunologia RZS, toczeń, nieswoiste 
zapalenia jelit

Hamowanie NF-κB, MAPK, selektywna 
apoptoza limfocytów T, immunomodulacja

in vivo  
(modele zwierzęce)

Hepatologia Uszkodzenia wątroby, 
nerek, żołądka

Obniżenie transaminaz, stresu 
oksydacyjnego, stanu zapalnego 
i zwłóknienia

in vivo

Dermatologia Trądzik, fotostarzenie, 
hiperpigmentacja

Antyoksydacja, hamowanie MMP, 
tyrozynazy, zmniejszenie IL-6 i TNF-α

in vitro, kliniczne 
(kosmetyki)

Kardiologia Nadciśnienie, 
miażdżyca, zawał serca

Zwiększenie NO, hamowanie ICAM-1/
VCAM-1, redukcja przerostu mięśnia

in vivo  
(zwierzęta)
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ność w  łagodzeniu hiperglikemii i  poprawie 
wrażliwości na insulinę (Ngo i in., 2018). W ba-
daniu przeprowadzonym przez Runtuwene i in., 
(2016) wykazano, że podawanie kwasu rozma-
rynowego przez 7 dni znacząco łagodziło efekt 
hipoglikemiczny u szczurów z cukrzycą typu 1 
wywołaną streptozotocyną, w  sposób zależny 
od dawki. Ponadto, KR zwiększał wrażliwość 
na insulinę oraz wychwyt glukozy u  szczurów 
z cukrzycą typu 2 wywołaną dietą wysokotłusz-
czową. Mechanizm działania KR w  cukrzy-
cy typu 1 wydaje się wielokierunkowy. Jednym 
z kluczowych efektów jest zmniejszenie ekspre-
sji karboksykinazy fosfoenolopirogronianowej 
(PEPCK) w  wątrobie, co sugeruje hamowanie 
glukoneogenezy wątrobowej. Mechanizmy te 
związane są z aktywacją szlaku AMPK (regulu-
jącego równowagę energetyczną w komórkach) 
oraz zwiększoną ekspresją transporterów glu-
kozy GLUT-4 (Ngo i in., 2018). Ponadto, KR wy-
kazuje silne właściwości antyoksydacyjne, co 
może chronić komórki β trzustki przed stresem 
oksydacyjnym związanym z hiperglikemią (Ngo 
i in., 2018). Sugeruje to jego potencjalne zasto-
sowanie w prewencji cukrzycy.

W kontekście otyłości KR wpływa korzystnie 
na profil lipidowy – obniża stężenie cholestero-
lu całkowitego, LDL i triglicerydów, a zwiększa 
poziom HDL (Vasileva i  in., 2021). Obserwo-
wano także hamowanie ekspresji genów odpo-
wiedzialnych za lipogenezę, takich jak SREBP-
-1c i  FAS, oraz indukcję lipolizy (Wang i  in., 
2019b). W badaniach na myszach karmionych 
dietą wysokotłuszczową kwas rozmarynowy 
ograniczał przyrost masy ciała i zmniejszał roz-
miar adipocytów.

KR wykazuje również działanie kardiopro-
tekcyjne – chroni śródbłonek naczyń krwiono-
śnych przed uszkodzeniem oksydacyjnym, po-
prawia funkcję naczyń poprzez zwiększenie 
biodostępności tlenku azotu (NO) oraz hamowa-
nie ekspresji cząsteczek adhezyjnych (ICAM-1, 
VCAM-1). W modelach nadciśnienia wykazano, 
że KR obniża ciśnienie tętnicze i hamuje prze-
rost mięśnia sercowego (Murino Rafacho i in., 
2017). Dodatkowo, KR hamuje agregację pły-
tek krwi i zmniejsza ryzyko zakrzepicy, co suge-
ruje jego potencjał jako środka profilaktycznego 

w chorobie wieńcowej. W badaniach na szczu-
rach z niedokrwieniem mięśnia sercowego KR 
zmniejszał wielkość obszaru zawału, prawdo-
podobnie poprzez aktywację szlaków PI3K/Akt 
i ERK1/2 (zaangażowanych w regulację proce-
sów związanych ze wzrostem, przeżyciem i róż-
nicowaniem komórek) oraz zmniejszenie apop-
tozy (Cuevas-Durán i in., 2017). 

Podsumowując powyższe doniesienia, 
można stwierdzić, że KR działa kompleksowo 
na układ metaboliczny i  sercowo-naczyniowy, 
a  jego suplementacja może stanowić uzupeł-
nienie klasycznej terapii w cukrzycy, miażdżycy, 
nadciśnieniu i otyłości.

Choroby nowotworowe
Intensywnie badane są przeciwnowotworo-

we właściwości kwasu rozmarynowego – wyka-
zuje on działanie antyproliferacyjne, proapop-
totyczne i  przeciwmetastatyczne wobec wielu 
typów nowotworów (m.in. piersi, jelita grubego, 
płuc, skóry, trzustki i prostaty). Liczne badania 
na modelach zwierzęcych i  liniach komórko-
wych potwierdzają jego potencjał w  hamowa-
niu rozwoju i  progresji nowotworów (Nadeem 
i  in., 2019). KR hamuje także angiogenezę  – 
w komórkach śródbłonka (HUVEC) ograniczał 
tworzenie naczyń, a  także zmniejszał uwalnia-
nie interleukiny IL-8 i ekspresję czynnika VEGF 
(czynnik wzrostu śródbłonka naczyniowego, 
ang. vascular endothelial growth factor) indu-
kowaną stresem oksydacyjnym (Huang i Zheng 
2006). Dodatkowo KR wykazywał działanie pro-
apoptotyczne – np. indukował apoptozę poprzez 
zaburzenie wewnątrzkomórnej równowagi nu-
kleotydów (Nadeem i in., 2019).

KR wpływa na szlaki sygnałowe komórek 
nowotworowych – np. w komórkach raka jelita 
grubego obniżał ekspresję HIF-1α (czynnik in-
dukowany przez hipoksję, ang. hypoxia induci-
ble factor-1, uważany za jeden z najważniejszych 
czynników promujących angiogenezę nowotwo-
rową) i hamował metabolizm glukozy (Krszyna 
i Stokłosa, 2005; Xu i in., 2016). Zaobserwowa-
no też działanie przeciwprzerzutowe: w modelu 
raka płuc KR zmniejszał liczbę i  masę guzów 
poprzez hamowanie kinaz ERK (extracellular 
signal-regulated kinases, odpowiadające za na-
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mnażanie komórek, Xu i  in., 2010), a w nowo-
tworach układu pokarmowego hamował telome-
razę i szlak Wnt/β-kateniny (Wang i in., 2019a).

KR jest również silnym przeciwutlenia-
czem, co pozwala na neutralizację stresu oksy-
dacyjnego związanego z progresją nowotworów. 
Związek ten może także działać jako inhibitor 
enzymów uczestniczących w  procesach karcy-
nogenezy, takich jak COX-2 (cyklooksygenaza-2) 
i LOX (lipooksygenaza) (Rasool i in., 2015). 

Szczególnym zainteresowaniem cieszy się 
stosowanie KR w terapiach skojarzonych. W po-
łączeniu z  kurkuminą, kwercetyną lub klasycz-
nymi cytostatykami (np. cisplatyną) obserwowa-
no efekt synergistyczny, przejawiający się wyższą 
skutecznością leczenia i mniejszą toksycznością 
dla komórek prawidłowych (Huang i in., 2024). 

Podsumowując, przeciwnowotworowe dzia-
łanie KR polega m.in. na hamowaniu podziałów 
komórek (zatrzymanie cyklu komórkowego), in-
dukcji ich apoptozy, ograniczaniu angiogenezy 
i przerzutów, a także na modulowaniu ekspresji 
genów i mikroRNA związanych z nowotworze-
niem (Hussein i in., 2024).

Choroby zapalne i autoimmunologiczne
Przewlekły stan zapalny leży u podłoża wie-

lu poważnych schorzeń, zwłaszcza autoimmu-
nologicznych (Duan i in., 2019). Dzięki silnym 
właściwościom przeciwzapalnym kwas rozma-
rynowy jest obiecującym związkiem wspoma-
gającym leczenie takich chorób, jak reuma-
toidalne zapalenie stawów (RZS), łuszczyca, 
toczeń, nieswoiste zapalenia jelit czy stward-
nienie rozsiane.

W modelu RZS u myszy stwierdzono, że po-
danie KR zmniejsza obrzęk i destrukcję stawów. 
Analiza histopatologiczna wykazała, że myszy 
leczone KR zachowały prawie normalną archi-
tekturę tkanek błony maziowej, podczas gdy 
u myszy kontrolnych obserwowano ciężkie za-
palenie błony maziowej (Youn i in., 2003). W ba-
daniach in vitro wykazano, że KR selektywnie 
indukuje apoptozę aktywowanych limfocytów T 
(odpowiedzialnych za przewlekły stan zapalny) 
przy jednoczesnym oszczędzeniu nieaktywnych 
limfocytów. Taka selektywność sugeruje, że KR 
mógłby tłumić patologiczne reakcje immunolo-

giczne w RZS bez ogólnego osłabienia układu 
odpornościowego (Hur i in., 2007). W łuszczycy 
i atopowym zapaleniu skóry KR łagodzi objawy 
skórne, takie jak rumień, złuszczanie i świąd – 
częściowo poprzez redukcję aktywności masto-
cytów i eozynofilów (Ueda i in., 2002).

KR wykazuje również właściwości immu-
nomodulujące – wpływa na równowagę między 
limfocytami Th1/Th2 i  Th17/Treg, co ma klu-
czowe znaczenie w  chorobach autoimmunolo-
gicznych. W  badaniach in vivo obserwowano 
zmniejszenie nacieków limfocytarnych w wątro-
bie i  śledzionie oraz normalizację parametrów 
hematologicznych u myszy z  toczniem (Raško-
vić i in., 2014). W nieswoistych zapaleniach jelit 
KR działa ochronnie na błonę śluzową jelita, ha-
mując stres oksydacyjny, apoptozę komórek na-
błonkowych oraz poprawiając integralność ba-
riery jelitowej. Dodatkowo moduluje mikrobiotę 
jelitową, zwiększając udział bakterii o działaniu 
przeciwzapalnym (Yi i in., 2020).

W  chorobach neurozapalnych (np. stward-
nienie rozsiane) KR może hamować aktywność 
mikrogleju i  cytokin prozapalnych w  ośrodko-
wym układzie nerwowym, co przekłada się na 
poprawę funkcji motorycznych i  zmniejszenie 
demielinizacji (Ghasemzadeh Rahbardar i Hos-
seinzadeh, 2020).

Podsumowując, działanie kwasu rozmary-
nowego na choroby o podłożu zapalnym, polega 
na hamowaniu kluczowych szlaków sygnaliza-
cyjnych, odpowiedzialnych za rozwój zapalenia 
oraz obniżenie aktywacji enzymów prozapal-
nych, które prowadzą do syntezy prostaglandyn 
i  tlenku azotu. Kwas rozmarynowy wspomaga 
również dobrostan mikroflory jelitowej i komó-
rek organizmu, stabilizując ich działanie i spo-
walniając rozwój choroby. Wszystkie te cechy 
kwasu rozmarynowego sprawiają, że związek 
ten posiada duży potencjał terapeutyczny w le-
czeniu oraz wspomaganiu terapii schorzeń prze-
wlekłych o podłożu zapalnym.

Działanie przeciwdrobnoustrojowe  
i przeciwwirusowe

Kwas rozmarynowy ma szerokie spektrum 
działania przeciwdrobnoustrojowego (Alagawa-
ny i in., 2017). Mechanizmy obejmują uszkadza-
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nie błon patogenów, hamowanie ich enzymów 
metabolicznych oraz modulowanie odpowiedzi 
immunologicznej gospodarza.

Wykazano przeciwbakteryjne działanie KR – 
szczególnie silne wobec Staphylococcus aureus 
(w tym MRSA), Escherichia coli, Pseudomonas 
aeruginosa, Helicobacter pylori i  Listeria mo-
nocytogenes. KR uszkadza błonę komórkową 
bakterii, zaburza równowagę jonową i inaktywu-
je enzymy, a także hamuje tworzenie biofilmów 
(Ekambaram i in., 2016; Wang i in., 2024).

KR działa przeciwgrzybiczo głównie na 
drożdżaki Candida (np. C. albicans  – zaburza 
integralność błony, hamuje tworzenie strzępek 
i biofilmu; Swari i in., 2020) oraz wykazuje ak-
tywność wobec pleśni (Aspergillus) i dermatofi-
tów (Trichophyton; Taher i in., 2021). Obecność 
innych składników (np. karwakrol, tymol) może 
synergistycznie nasilać działanie przeciwgrzy-
bicze ekstraktów z wysoką zawartością KR, co 
wskazuje na potencjał takich ekstraktów jako 
ekologicznych fungicydów (Taher i in., 2021).

Aktywność przeciwwirusowa KR obejmuje 
zarówno wirusy RNA, jak i  DNA. Badania wy-
kazały jego działanie na przykład wobec wiru-
sa opryszczki pospolitej (HSV-1, Kumari i Vaid 
2024), wirusa grypy A  ( Jheng i  in., 2022), wi-
rusa zapalenia wątroby typu B (HBV, Burkard 
i in., 2025), wirusa Zika i Dengi (Sujitha i Muru-
gesan 2025) czy koronawirusów, w tym SARS-
-CoV-2 (Elebeedy i in., 2021). KR hamuje infek-
cje wirusowe (utrudnia fuzję wirusa z komórką 
i  replikację wirusowego genomu) oraz łagodzi 
wywołany nimi stan zapalny, co ułatwia zwalcze-
nie choroby (Guan i  in., 2022). Ponadto działa 
synergistycznie z niektórymi antybiotykami i le-
kami przeciwwirusowymi – pozwala to obniżyć 
ich dawki i  skutki uboczne. Na przykład z am-
picyliną czy wankomycyną KR skuteczniej eli-
minuje biofilmy S. aureus. Wobec narastającej 
oporności drobnoustrojów na leki, KR jest obie-
cującym kandydatem na naturalny środek prze-
ciwdrobnoustrojowy (Burkard i in., 2025).

Hepatoprotekcja i ochrona narządów  
miąższowych

Kwas rozmarynowy (KR) wykazuje silne wła-
ściwości ochronne względem narządów miąż-

szowych, ze szczególnym uwzględnieniem wą-
troby. Działanie hepatoprotekcyjne KR zostało 
potwierdzone w  wielu modelach uszkodzenia 
wątroby wywołanego przez czynniki toksyczne, 
metaboliczne oraz infekcyjne, takie jak CCl₄, 
paracetamol, etanol, dieta wysokotłuszczowa 
czy zakażenie HBV (Guan i in., 2022). W mode-
lach zwierzęcych KR redukował poziomy enzy-
mów wątrobowych (ALT, AST, ALP), ograniczał 
peroksydację lipidów oraz zwiększał poziom 
glutationu i  aktywność enzymów antyoksyda-
cyjnych (Ghasemzadeh Rahbardar i  Hossein-
zadeh, 2020, Rašković i in., 2014). Dodatkowo 
obniżał ekspresję markerów zapalnych i  prze-
ciwdziałał apoptozie hepatocytów. KR zapo-
biegał także zwłóknieniu wątroby, hamując 
aktywację komórek gwiaździstych i  ekspresję 
kolagenu typu I oraz TGF-β1 (El-Lakkany i in., 
2017). W badaniach in vivo wykazano, że długo-
trwała suplementacja KR chroni przed stłusz-
czeniem wątroby i  poprawia metabolizm lipi-
dów (Balachander i in., 2018).

Poza wątrobą, KR wykazuje właściwości ne-
froprotekcyjne – chroni nerki przed toksycznym 
działaniem cisplatyny, gentamycyny i cukrzycy. 
Mechanizmy ochronne obejmują redukcję stre-
su oksydacyjnego, hamowanie stanu zapalnego 
oraz ograniczenie martwicy cewek nerkowych 
(Xiang i in., 2022). W układzie pokarmowym KR 
chroni błonę śluzową żołądka przed uszkodze-
niami wywołanymi przez etanol, leki przeciwbó-
lowe (NLPZ) czy stres. Zmniejsza wydzielanie 
kwasu solnego, wzmacnia barierę śluzówkową 
oraz zwiększa aktywność enzymów ochronnych 
(Wang i  in., 2021, Czerwińska i Radziejewska 
2024). W sercu KR ogranicza rozległość uszko-
dzeń niedokrwienno-reperfuzyjnych, zmniejsza 
stres oksydacyjny i  poprawia funkcję skurczo-
wą mięśnia sercowego (Han i in., 2017). Zwią-
zek ten wpływa również ochronnie na komórki 
siatkówki (Sen i Kasikci 2023) i układ oddecho-
wy (Luo i  in., 2022), co sugeruje jego szeroki 
potencjał cytoprotekcyjny.

Ze względu na te właściwości, KR jest rozpa-
trywany jako składnik terapii wspomagających 
lub osłonowych, w procesach uszkadzających na-
rządy wewnętrzne, jak choroby autoimmunolo-
giczne, działanie alkoholu czy stosowanie leków.
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Działanie adaptogenne i przeciwstarzeniowe
Kwas rozmarynowy działa jako adaptogen – 

ułatwia przystosowanie organizmu do stresu 
fizycznego, psychicznego i  środowiskowego. 
Dzięki właściwościom antyoksydacyjnym, prze-
ciwzapalnym i neuroprotekcyjnym zwiększa od-
porność organizmu na czynniki szkodliwe i spo-
walnia procesy starzenia (Kurkin 2013).

KR reguluje aktywność osi podwzgórze–
przysadka–nadnercza (HPA, hypothalamic-pi-
tuitary-adrenal axis), co przekłada się na stabi-
lizację poziomu kortyzolu i poprawę reakcji na 
stres. W modelach zwierzęcych stwierdzono, że 
KR zmniejsza objawy stresu przewlekłego, po-
prawia pamięć operacyjną i  zdolność uczenia 
się oraz ogranicza bezsenność i niepokój (Kim 
i in.,, 2022; Priya i in., 2025).

Przeciwstarzeniowe działanie KR obejmu-
je redukcję stresu oksydacyjnego (neutralizacja 
ROS i ochrona DNA, lipidów oraz białek przed 
uszkodzeniem), ochronę telomerów i  wspo-
maganie naprawy DNA, a  także spowalnianie 
starzenia komórek poprzez obniżenie marke-
rów starzenia i pobudzanie autofagii (usuwanie 
uszkodzonych organelli i białek). W badaniach 
na fibroblastach ludzkich KR przedłużał ich ży-
wotność, opóźniał pojawienie się morfologicz-
nych cech starzenia i zwiększał aktywność enzy-
mów antyoksydacyjnych. W skórze wpływał na 
zwiększenie syntezy kolagenu, elastyny i  kwa-
su hialuronowego, co przekłada się na działa-
nie odmładzające i regeneracyjne (Nadeem i in., 
2019; Sutkowska i  in., 2021). Ponadto KR po-
prawiał funkcje mitochondriów, redukował pro-
dukcję ROS i uszkodzenia białek oraz zapobie-
gał spadkowi potencjału błony mitochondrialnej 
(Cai i in., 2022; Kalvala i in., 2021). Dzięki temu 
wspomagał energetykę komórek i ich zdolność 
do regeneracji. 

W kontekście zapobiegania chorobom wie-
ku starczego, takim jak neurodegeneracje, 
miażdżyca, cukrzyca typu 2 czy zwyrodnienie 
plamki żółtej, KR może odgrywać istotną rolę 
jako składnik profilaktyki prozdrowotnej i  su-
plementów anti-aging (Ghasemzadeh Rahbar-
dar i Hosseinzadeh 2020; Liu i  in., 2022; Sen 
i Kasikci 2023).

ZASTOSOWANIA KWASU ROZMARYNOWEGO 
W KOSMETOLOGII

Kwas rozmarynowy (KR) zyskał duże zainte-
resowanie w  kosmetologii ze względu na swo-
je właściwości przeciwutleniające, przeciwza-
palne, przeciwbakteryjne, fotoprotekcyjne oraz 
wpływ na starzenie się skóry. Jako składnik 
preparatów do pielęgnacji skóry i  włosów wy-
korzystywany jest w produktach przeciwstarze-
niowych, przeciwtrądzikowych, ochronnych i ła-
godzących.

Działanie przeciwstarzeniowe i antyoksydacyjne
KR chroni komórki skóry przed stresem 

oksydacyjnym indukowanym przez promie-
niowanie UV, zanieczyszczenia środowiskowe 
oraz procesy metaboliczne. Neutralizuje wolne 
rodniki (ROS), zmniejsza peroksydację lipidów 
i chroni przed degradacją kolagenu oraz elasty-
ny (Kasamatsu i in., 2024; Macedo i in., 2025; 
Sutkowska i in., 2021). 

W badaniach in vitro wykazano, że KR zwięk-
sza aktywność enzymów antyoksydacyjnych w fi-
broblastach skóry oraz hamuje ekspresję me-
taloproteinaz macierzy zewnątrzkomórkowej, 
odpowiedzialnych za rozpad białek podporowych 
skóry (Nisa i in., 2024). W efekcie KR może spo-
walniać pojawianie się zmarszczek, poprawiać 
jędrność skóry i działać przeciwstarzeniowo.

Działanie przeciwtrądzikowe  
i przeciwbakteryjne

Dzięki właściwościom przeciwdrobnoustro-
jowym, KR znalazł zastosowanie w leczeniu trą-
dziku pospolitego (Acne vulgaris), ograniczając 
rozwój bakterii takich jak Cutibacterium acnes 
i Staphylococcus epidermidis (Tsai i in., 2015). 
Dodatkowo, KR redukuje stany zapalne skóry 
towarzyszące zmianom trądzikowym, zmniej-
szając zaczerwienienie i  obrzęk (Koch i  in., 
2024). KR reguluje także wydzielanie sebum 
przez hamowanie aktywności 5-α-reduktazy 
i modulację receptorów androgenowych w ko-
mórkach łojowych (Brown 2022). Efektem jest 
zmniejszenie przetłuszczania się skóry i liczby 
zaskórników.
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Działanie fotoprotekcyjne
Kwas rozmarynowy działa jako naturalny 

filtr przeciwsłoneczny  – pochłania promienio-
wanie UV, zwłaszcza w  zakresie UVB i  czę-
ściowo UVA, oraz chroni DNA komórek skóry 
przed uszkodzeniami wywołanymi przez pro-
mieniowanie ultrafioletowe. W  badaniach na 
modelach skórnych KR zmniejszał rumień po-
słoneczny i  zapobiegał powstawaniu przebar-
wień (Mahendra i in., 2019). Dlatego KR może 
być dodawany do kremów i emulsji przeciwsło-
necznych jako składnik wzmacniający ochronę 
UV (Przybylska-Balcerek i  Stuper-Szablewska 
2019). Ze względu na działanie przeciwzapal-
ne, znajduje również zastosowanie w  produk-
tach łagodzących po opalaniu (Huerta-Madro-
nal i in., 2021; Cândido i in., 2022). 

Działanie wybielające i depigmentacyjne
KR wykazuje działanie rozjaśniające skórę 

i redukujące przebarwienia poprzez hamowanie 
aktywności tyrozynazy  – kluczowego enzymu 
biorącego udział w syntezie melaniny (Lin i in., 
2011). Obniża również ekspresję genów syntezy 
melaniny, co zmniejsza ilość barwnika w mela-
nocytach (Ortega i in., 2023). Dlatego KR stoso-
wany miejscowo w preparatach kosmetycznych 
powoduje rozjaśnienie przebarwień posłonecz-
nych, piegów oraz zmian pozapalnych (Kłos 
i Chlubek 2022, Wawrzyńczak, 2023). 

Pielęgnacja skóry wrażliwej i naczynkowej
Kwas rozmarynowy łagodzi objawy nadre-

aktywności skóry, takie jak pieczenie, świąd, za-
czerwienienie i uczucie napięcia. Działa kojąco 
na skórę atopową i alergiczną, a także zmniej-
sza rumień w  przebiegu trądziku różowatego 
(Chajra i  in., 2015). W  badaniach klinicznych 
wykazano, że stosowanie kremu z KR przez 4 
tygodnie zmniejsza widoczność teleangiektazji 
i poprawia komfort skóry (Salazar i in., 2025). 

 KR wzmacnia ściany naczyń włosowatych, 
ogranicza ich kruchość i przepuszczalność oraz 
zmniejsza miejscowy stan zapalny. Dzięki tym 
właściwościom stosowany jest w dermokosme-
tykach dla cery naczynkowej oraz skłonnej do 
podrażnień (Contardi i  in., 2021). Jego działa-
nie przeciwutleniające dodatkowo chroni ko-

mórki skóry przed uszkodzeniami wywołanymi 
przez wolne rodniki i promieniowanie UV, któ-
re mogą nasilać objawy nadwrażliwości (Gupta 
i in., 2023).

INNE ZASTOSOWANIA KWASU 
ROZMARYNOWEGO: PRZEMYSŁ 
SPOŻYWCZY, ROLNICTWO, BIOMATERIAŁY

Oprócz zastosowań medycznych i  kosme-
tycznych, którym poświęcono większość arty-
kułu, kwas rozmarynowy (KR) znajduje szero-
kie zastosowanie w  przemyśle spożywczym, 
rolnictwie i technologii biomateriałów, głównie 
dzięki swoim właściwościom przeciwutleniają-
cym, przeciwdrobnoustrojowym i  stabilizują-
cym (Tab. 4).

Przemysł spożywczy
Kwas rozmarynowy pełni funkcję natural-

nego konserwantu  – przeciwdziała utlenianiu 
tłuszczów i psuciu się produktów spożywczych, 
szczególnie tych o wysokiej zawartości lipidów, 
takich jak oleje, wędliny czy sery dojrzewające 
(Veenstra i  Johnson 2021; Yeddes i  in., 2025). 
Może zastąpić syntetyczne przeciwutleniacze, 
takie jak BHA (butylohydroksyanizol) czy BHT 
(butylohydroksytoluen), będąc uznanym za sub-
stancję bezpieczną dla zdrowia (GRAS  – Ge-
nerally Recognized as Safe) (Fiume i in., 2018; 
Marchev i  in., 2021). KR wydłuża także trwa-
łość żywności, hamując psucie i  rozwój drob-
noustrojów (Yang i  in., 2023). Stosowany jest 
w formie ekstraktów roślinnych (np. z rozmary-
nu, melisy) w pieczywie, margarynach, produk-
tach mleczarskich i  napojach funkcjonalnych 
(Bacenetti i in., 2018). KR może również wpły-
wać korzystnie na mikrobiom jelitowy i działać 
jako składnik żywności prozdrowotnej  – tzw. 
nutraceutyków. W  suplementach diety wystę-
puje jako przeciwutleniacz wspomagający pra-
cę wątroby, układu sercowo-naczyniowego i od-
pornościowego (Sahiner i in., 2022).

Zastosowania rolnicze
Kwas rozmarynowy działa przeciwgrzybi-

czo, repelencyjnie i biostymulująco, dlatego te-
stuje się go w ekologicznych środkach ochrony 
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roślin (Melini i in., 2023). Preparaty zawierające 
KR wykazały skuteczność w ochronie różnych 
gatunków roślin uprawnych (m.in. sałaty, pomi-
dora, winorośli) przed chorobami grzybowymi 
(Dagostin i  in., 2010; Freitas 2021). Ekstrak-
ty z roślin o wysokim stężeniu KR mogą dzia-
łać jako biopestycydy lub co najmniej repelenty 
przeciw wielu szkodnikom, zastępując bardziej 
toksyczne syntetyczne preparaty (Craciunescu 
2022; Dunan i in., 2023; Jahanian i in., 2024). 
KR wpływa również na poprawę zdrowia gleby 
i aktywność mikrobiologiczną ryzosfery, wspie-
rając rozwój korzystnych bakterii i grzybów mi-
koryzowych (Zeng i in., 2013; Greff i in., 2023). 

Biomateriały i opatrunki aktywne
Dzięki działaniu przeciwdrobnoustrojowe-

mu, przeciwzapalnemu i  przeciwutleniającemu 
KR jest coraz częściej wykorzystywany w  tech-
nologii biomateriałów, zwłaszcza bioaktywnych 
opatrunków oraz hydrożeli o przedłużonym uwal-
nianiu KR. Zastosowanie hydrożelu zawierają-
cego KR, jako opatrunku do leczenia ran, przy-
spieszało ich gojenie, hamowało rozwój bakterii 
i redukowało lokalny stan zapalny (Caliari i Bur-
dick 2016; Ghobril i Grinstaff 2015; Sepe i  in., 
2025). KR stosowany jest także jako składnik po-
włok przeciwbakteryjnych w implantach ortope-
dycznych i  stomatologicznych (Bian i  in., 2023; 
Jeong i  in., 2021; Nawaz i  in., 2024;), oraz do-
datek w biodegradowalnych opakowaniach spo-
żywczych (Ordoñez i in., 2022, Zeid i in., 2019).

Ogromną zaletą kwasu rozmarynowego jest 
jego potencjał w  zastosowaniach interdyscy-
plinarnych. Połączenie właściwości biologicz-
nych z możliwością stabilnego wbudowania tego 
związku w matryce materiałowe czyni go atrak-
cyjnym składnikiem w  nowoczesnych produk-
tach spożywczych, rolniczych i medycznych.

PRODUKCJA I BIOTECHNOLOGICZNE 
POZYSKIWANIE KWASU ROZMARYNOWEGO

Produkcja kwasu rozmarynowego (KR) na 
skalę przemysłową opiera się na metodach eks-
trakcji z  surowców roślinnych, jednak coraz 
większe znaczenie zyskują innowacyjne techni-
ki biotechnologiczne pozwalające na jego pozy-
skiwanie z  kultur in vitro, korzeni transformo-
wanych i  mikroorganizmów modyfikowanych 
genetycznie (Rys. 3).

Ekstrakcja z materiału roślinnego
Najbardziej tradycyjną metodą pozyskiwa-

nia kwasu rozmarynowego jest ekstrakcja z liści 
i  pędów roślin bogatych w  ten związek, takich 
jak Rosmarinus officinalis, Melissa officinalis, 
Salvia officinalis, Mentha piperita i  inne z  ro-
dziny Lamiaceae. Do ekstrakcji stosuje się roz-
puszczalniki polarne (etanol, metanol, aceton, 
woda). Obecnie opracowano znacznie wydaj-
niejsze metody ekstrakcji, przy użyciu ultradź-
więków (UAE), mikrofal (MAE), ekstrakcji nad-
krytycznym CO2, czy przyspieszonej ekstrakcji 

Tab. 4. Pozamedyczne zastosowania kwasu rozmarynowego 

Obszar Zastosowanie Mechanizm działania

Przemysł spożywczy Naturalny konserwant przeciwdziałający 
utlenianiu tłuszczów; składnik 
nutraceutyków i suplementów diety

Działanie przeciwutleniające, 
przeciwdrobnoustrojowe; status GRAS 
(bezpieczny dla zdrowia)

Rolnictwo Biopestycyd, repelent, biostymulator – 
ochrona przed patogenami roślinnymi, 
poprawa zdrowia gleby i mikrobiomu

Hamowanie wzrostu patogenów, 
aktywność antyoksydacyjna 
i przeciwgrzybicza, stymulacja 
mikroorganizmów

Biomateriały i opatrunki Składnik bioaktywnych opatrunków, 
powłok antybakteryjnych implantów, 
biodegradowalnych opakowań 
spożywczych

Działanie przeciwbakteryjne, 
przeciwzapalne i antyoksydacyjne, 
wspomagające gojenie ran i stabilność 
materiałów
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rozpuszczalnikiem (PLE, pressurized liquid 
extraction). KR jest wrażliwy na wysoką tempe-
raturę i promieniowanie UV, dlatego istotne jest 
stosowanie odpowiednich warunków ekstrak-
cji i przechowywania ekstraktu (Del Baño i in., 
2003). Jednak, ze względu na coraz większe za-
potrzebowanie na kwas rozmarynowy, trzeba 
było opracować bardziej wydajne metody pro-
dukcji tego związku. 

Hodowle in vitro i korzenie transformowane
W  celu zwiększenia stabilności i  standa-

ryzacji produkcji KR, opracowano szereg sys-
temów kultur in vitro. Badania wykazały, że 
wszystkie typy kultur in vitro - pędy, korzenie, 
korzenie włośnikowate, kalus i  kultury zawie-
sinowe zawierają KR. Jest to bardzo korzystne, 
ponieważ bardzo często produkty wtórne, obec-
ne w uorganizowanych tkankach, są nieobecne 
w  niezróżnicowanych komórkach, takich jak 
komórki zawiesinowe i kalus (Petersen 2013). 
Obecnie stosuje się przede wszystkim kultury 
kalusa i  zawiesinowe komórek, umożliwiają-
ce szybką proliferację i produkcję metabolitów 
wtórnych w  warunkach kontrolowanych, oraz 
kultury korzeni włośnikowatych (tzw. „hairy ro-
ots”), otrzymywane z wykorzystaniem Agrobac-
terium rhizogenes, które wykazują wysoką sta-
bilność, pozwalając na osiągnięcie zawartości 
KR znacznie wyższej niż w roślinach macierzy-
stych, uprawianych w  warunkach naturalnych 
(Khoshsokhan i in., 2022; Kozłowska i in., 2024; 
Tada i in., 1996). Przy pierwszych próbach bio-
technologicznej produkcji KR przy użyciu kul-
tur zawiesiny komórek pochodzących z C. blu-
mei, otrzymano ok. 13–15% suchej masy KR 
(Zenk i in., 1977). Podejmowano również próby 
użycia kultur komórek innych roślin, takich jak 
Ocimum basilicum, Anthoceros agrestis, Salvia 
officinalis, Anchusa officinalis, Salvia miltior-
rhiza, czy Lavandula vera (Matkowski 2008). 
Najlepszy wynik uzyskano dla komórek S. offici-
nalis hodowanych w 5% sacharozie, uzyskując 
zadziwiającą wydajność, sięgającą 36% suchej 
masy komórek (Kim i in., 2015). Zastosowanie 
elicytorów (np. kwasu jasmonowego, chitozanu, 
cyklodekstryny oraz srebra koloidalnego) po-
zwala na znaczące, nawet kilkukrotne, zwięk-

szenie produkcji KR w kulturach komórkowych 
(Gonçalves i in., 2019; Grąbkowska i in., 2025; 
Kim i in., 2025; Nordine 2025).

Biosynteza i inżynieria metaboliczna
Aby jeszcze zwiększyć wydajność produkcji 

kwasu rozmarynowego, wykorzystano fakt, że 
szlak biosyntezy KR jest precyzyjnie regulowa-
ny na poziomie transkrypcyjnym i może być mo-
dyfikowany genetycznie. Biosynteza kwasu roz-
marynowego w  roślinach zachodzi na drodze 
sprzężenia dwóch szlaków fenylopropanoido-
wych  – szlaku kwasu fenylooctowego i  szlaku 
kwasu tyrozynowego. Modyfikacje szlaku bio-
syntezy KR koncentrują się na nadekspresji ge-
nów: PAL (amoniakoliaza fenyloalaniny), 4CL 
(ligaza 4-kumaroilo-CoA), TAT (aminotransfe-
raza tyrozynowa), HPPR (reduktaza p-hydrok-
syfenylo-pirogronianu) i  RAS (syntaza kwasu 
rozmarynowego) oraz ich integracji z  promo-
torami silnej ekspresji (Xiao i  in., 2011). Sys-
tem CRISPR/Cas także cieszy się rosnącą 
popularnością jako skuteczna technologia edy-
cji genomu, która może zostać zastosowana 
w przypadku biosyntezy KR. Zhou i in., (2018) 
potwierdzili kluczową rolę enzymu RAS w bio-
syntezie KR, a także przetestowali skuteczność 
systemu CRISPR/Cas do edycji genomu u Sa-
lvia miltiorrhiza. Wykorzystanie transkryptomi-
ki i metabolomiki pozwala na dokładną analizę 
odpowiedzi komórek na elicytory oraz warunki 
stresowe (Moghadam i in., 2023). W ten sposób 
można kierunkowo modyfikować ekspresję ge-
nów biosyntezy KR, uzyskując większą wydaj-
ność w krótszym czasie.

Dobre wyniki wydajności produkcji kwasu 
rozmarynowego można uzyskać również sto-
sując immobilizację komórek (np. w alginianie 
sodu). Umożliwia to wydłużenie życia komórek, 
stabilizację produkcji metabolitów oraz łatwiej-
sze oczyszczanie produktu (Chircov i in., 2022; 
Sykłowska-Baranek i  in., 2023). Dodatkowo 
systemy bioreaktorów z  recyrkulacją pożywki 
i ciągłym odbiorem metabolitu (np. KR) znaczą-
co poprawiają efektywność bioprocesu (Murthy 
i in., 2024; Verma i in., 2021).

Jeszcze innym podejściem biotechnolo-
gicznym jest wprowadzanie genów biosyntezy 
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Ryc. 3. Produkcja kwasu rozmarynowego metodami tradycyjnymi i biotechnologicznymi

kwasu rozmarynowego do mikroorganizmów, 
np. do Escherichia coli czy drożdży Saccharo-
myces cerevisiae (Wang i in., 2023; Zhou i in., 
2022; Zhuang i  in., 2016). Zastosowanie tech-
nik inżynierii genetycznej pozwala na rekon-
strukcję pełnego szlaku biosyntezy KR w  ko-
mórkach gospodarza a  wprowadzenie silnie 
ekspresyjnych promotorów, optymalizacja ko-
donów i  integracja kluczowych genów szlaku, 
pozwala na istotne zwiększenie wydajności bio-
syntezy (Liu i  in., 2025). Ponadto mikrobiolo-
giczna produkcja KR może być dostosowana 
do systemów fermentacji ciągłej lub zautoma-
tyzowanej (fed-batch), co obniża koszty i zwięk-
sza wydajność (Wang i  in., 2023). Niestety, 
projektując takie systemy biosyntezy mikrobio-
logicznej, trzeba wziąć pod uwagę optymaliza-
cję równowagi metabolitów pośrednich oraz 
stabilność plazmidów i  ekspresji genów pod-
czas długotrwałej hodowli. Także toksyczność 
KR wobec samych komórek gospodarza może 
zakłócić wydajną produkcję kwasu rozmaryno-
wego. Niezbędne może okazać się utworzenie 
np. systemu transportu KR do pożywki w celu 
zmniejszenia stężenia wewnątrzkomórkowego 
(Wang i in., 2023). 

Wyniki doświadczeń wskazują, że wdroże-
nie zaawansowanych strategii optymalizacyj-
nych pozwala zwiększyć produkcję KR nawet 
kilkunastokrotnie. Przemysłowe zastosowanie 
kultur in vitro i  mikrobiologicznych systemów 
ekspresji staje się realną alternatywą dla eks-
trakcji kwasu rozmarynowego z  materiału ro-
ślinnego.

PODSUMOWANIE

Kwas rozmarynowy (KR) jest naturalnym 
związkiem polifenolowym o  wyjątkowo szero-
kim spektrum działania biologicznego. Jego 
struktura chemiczna, zawierająca dwie grupy 
ortodihydroksyfenylowe, odpowiada za wysoką 
aktywność antyoksydacyjną i  liczne właściwo-
ści terapeutyczne. KR występuje powszechnie 
w roślinach z rodziny Lamiaceae i może być po-
zyskiwany zarówno tradycyjną metodą ekstrak-
cji, jak i nowoczesnymi technikami biotechnolo-
gicznymi, co czyni go powszechnie dostępnym 
związkiem.

W  medycynie KR wykazuje silne działanie 
neuroprotekcyjne, przeciwzapalne, hepatopro-
tekcyjne, przeciwnowotworowe, a także wspie-
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ra leczenie chorób metabolicznych i  układu 
sercowo-naczyniowego. Dzięki zdolnościom do 
hamowania szlaków zapalnych (NF-κB, MAPK), 
neutralizowania wolnych rodników oraz wpły-
wu na neuroprzekaźniki i ekspresję czynników 
troficznych, może być skutecznie wykorzysty-
wany jako wsparcie w leczeniu chorób przewle-
kłych o  podłożu zapalnym, neurodegeneracyj-
nym i autoimmunologicznym.

W kosmetologii KR znajduje zastosowanie 
jako substancja anti-aging, przeciwtrądzikowa 
i  fotoprotekcyjna. Chroni komórki skóry przed 
uszkodzeniami oksydacyjnymi, działa przeciw-
bakteryjnie oraz rozjaśnia przebarwienia, co 
czyni go cenionym składnikiem dermokosme-
tyków do pielęgnacji cery problematycznej, sta-
rzejącej się i wrażliwej. KR ma również istotne 
znaczenie w przemyśle spożywczym (jako natu-
ralny konserwant i przeciwutleniacz), w rolnic-
twie (biopestycyd i stymulator wzrostu), a także 
w technologii biomateriałów (opatrunki, hydro-
żele, powłoki antybakteryjne).

Dlatego kwas rozmarynowy wydaje się 
wszechstronnym, bezpiecznym i  efektywnym 
związkiem naturalnym o ogromnym potencjale 
aplikacyjnym. Choć większość dowodów pocho-
dzi z  badań przedklinicznych, kierunek badań 
wskazuje na duże możliwości zastosowań KR 
jako substancji czynnej w produktach farmaceu-
tycznych, kosmetycznych, spożywczych i  tech-
nologicznych przyszłości. Jednak konieczne są 
dalsze badania kliniczne oceniające biodostęp-
ność KR, optymalną dawkę terapeutyczną oraz 
możliwe interakcje z różnymi lekami. KR pozo-
staje jednak obiecującym kandydatem na przy-
kład do zastosowania jako składnik suplemen-
tów diety, wspierających terapie onkologiczne.

OŚWIADCZENIA AUTORÓW

Wszyscy autorzy deklarują wkład w powsta-
wanie artykułu, zaakceptowali kolejność auto-
rów i ostateczną wersję artykułu oraz deklarują 
brak konfliktu interesów. 
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