
2025
(346)

219–239

Tom 74
Numer 2

Strony

ARTYKUŁY

DA N UTA SOLECK A

e-mail: d.solecka@uw.edu.pl

Zakład Ekofizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej i Biotechnologii Roślin,  
Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska

Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, 
Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Kultury roślinne in vitro – od produkcji leków  
do ochrony bioróżnorodności

Plant cultures in vitro – from medicine production to biodiversity 
conservation

DOI: https://doi.org/10.12775/KOSMOS.2025.016

Abstrakt

Roślinne kultury in vitro stają się coraz ważniejszym narzędziem w ochronie bioróżnorodności i w zrówno-
ważonym rozwoju. Umożliwiają one nie tylko pozyskiwanie cennych substancji bez niszczenia roślin w ich 
środowisku naturalnym i niezależnie od warunków klimatycznych, ale także rozmnażanie zagrożonych ga-
tunków i ich reintrodukcję. W artykule przedstawiono przegląd zastosowań różnych typów kultur in vitro 
w  medycynie (produkcja leków, białek terapeutycznych), rolnictwie (biostymulanty, mikrorozmnażanie), 
przemyśle spożywczym (barwniki, enzymy) i  nowoczesnych technologiach (nanomateriały). Szczególną 
uwagę poświęcono wykorzystaniu kultur in vitro w ochronie gatunków zagrożonych, dzikich i uprawnych. 
Artykuł podkreśla znaczenie zintegrowanego podejścia łączącego wiedzę z zakresu biotechnologii, chemii 
i ochrony środowiska. Mimo trudności w otrzymywaniu wydajnych i długożyjących kultur, zwłaszcza roślin 
jednoliściennych, technologie in vitro stanowią dziś nie tylko wsparcie dla przemysłu, ale też realną szansę 
na zachowanie zasobów przyrody dla przyszłych pokoleń.

Słowa kluczowe: bioróżnorodność, kalus, kultury in vitro, mikrorozmnażanie, rośliny, zarodki somatyczne
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WPROWADZENIE

Rośliny od tysięcy lat stanowiły podstawowe 
źródło leków, barwników, środków konserwują-
cych i  substancji zapachowych. Ich metabolity 
wtórne mają różnorodne działanie biologiczne, 
w tym właściwości przeciwutleniające, cytotok-
syczne, przeciwwirusowe, przeciwzapalne i an-
tybakteryjne (Hasnain i in., 2022). Współczesna 
farmakologia, kosmetologia i przemysł spożyw-
czy nadal intensywnie korzystają z  bogactwa 
związków naturalnych pochodzenia roślinnego. 
Jednak coraz częściej ich pozyskiwanie meto-
dami tradycyjnymi napotyka poważne ograni-
czenia. Postępujące zmiany klimatyczne, coraz 
bardziej intensywne rolnictwo, rozwój miast 
i  zanieczyszczenia oraz nadmierna eksploata-
cja surowców roślinnych doprowadziły do dra-
matycznego wzrostu liczby gatunków zagro-
żonych wyginięciem (Walters i  Pence, 2021). 
Zwłaszcza rośliny lecznicze i aromatyczne, czę-
sto rosnące w wyspecjalizowanych siedliskach 
i pozyskiwane z dzikich populacji, są szczegól-
nie narażone na nadmierny zbiór i presję ryn-
kową (Kougioumoutzis i in., 2024). Zagraża to 
bioróżnorodności, definiowanej jako zróżnico-
wanie życia na wszystkich poziomach organi-
zacji biologicznej, od genów po całe ekosyste-
my, co jest fundamentem stabilności przyrody 
oraz przetrwania człowieka (Corlett, 2016; Cor-
lett 2024). W Polsce, podobnie jak w wielu kra-
jach europejskich, obserwuje się zanik lokal-

nych populacji roślin dzikich i  endemicznych. 
Część z nich figuruje już na czerwonych listach 
gatunków zagrożonych, zarówno krajowych, 
jak i międzynarodowych (Perzanowska i Korze-
niak, 2020). Problemy te nie ograniczają się do 
ekosystemów naturalnych  – dotyczą również 
zasobów rolniczych, leczniczych i  ozdobnych, 
które mają ogromne znaczenie gospodarcze 
i kulturowe.

W odpowiedzi na rosnące zagrożenia, rozwi-
jane są różne strategie ochrony bioróżnorodno-
ści, w tym działania in situ (ochrona gatunków 
w ich naturalnym środowisku) oraz ex situ (poza 
miejscem naturalnego występowania). Jedną 
z  najbardziej obiecujących i  dynamicznie roz-
wijających się metod ochrony ex situ są kultury 
in vitro, czyli techniki hodowli komórek, tkanek 
i organów roślinnych w kontrolowanych warun-
kach laboratoryjnych (Bonga i in., 2010; Loyola-
-Vargas i Ochoa-Alejo, 2024). Pozwalają na uzy-
skanie roślin lub ich metabolitów niezależnie 
od sezonu, klimatu czy lokalizacji geograficznej 
(Miroshnichenko i  in., 2017). Dzięki możliwo-
ściom sterowania warunkami środowiskowy-
mi i  zastosowania stymulatorów, możliwe jest 
zwiększenie wydajności biosyntezy cennych far-
maceutyków, nutraceutyków, enzymów czy bio-
aktywnych składników kosmetycznych (Babich 
i in., 2020), bez niszczenia roślin w ich natural-
nych środowiskach. Technologie in vitro umoż-
liwiają także skalowanie produkcji  – od kultur 
w kolbach laboratoryjnych, po bioreaktory prze-
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In vitro plant cultures are becoming an increasingly important tool in biodiversity conservation and sustain-
able development. They not only enable the extraction of valuable substances without destroying plants in 
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mysłowe, co jest już stosowane komercyjnie 
w wielu branżach: od medycyny i  rolnictwa po 
kosmetologię i produkcję nanomateriałów (Kra-
steva i in., 2020; Wang i in., 2022). 

Zastosowanie kultur in vitro do ochrony 
obejmuje obecnie szeroki zakres działań: od 
rozmnażania gatunków zagrożonych wyginię-
ciem, przez tworzenie banków genów i  synte-
tycznych nasion, po wykorzystanie krioprezer-
wacji w zachowaniu unikatowych odmian roślin 
(Custódio i in., 2022, Radomir i in., 2023; Tripa-
thi i  in., 2021; Walters i Pence, 2021). Stano-
wią więc nie tylko źródło wartościowych meta-
bolitów, ale i ważny element globalnej strategii 
ochrony bioróżnorodności. Szczególną wartość 
mają te technologie w krajach o wysokim udzia-
le endemitów, gdzie rozwijane są narodowe 
banki kriogeniczne i  programy mikrorozmna-
żania roślin użytkowych i dzikich (Agrawal i in., 
2022; Mikuła i in., 2022).

Celem niniejszego artykułu jest przegląd ak-
tualnych zastosowań kultur in vitro dla ochrony 
środowiska i zachowania bioróżnorodności. Wy-
korzystanie technologii in vitro w ochronie roślin, 
zarówno dzikich, jak i użytkowych, (w tym lecz-
niczych, rolniczych i ozdobnych) to nie tylko na-
mnażanie roślin i ich reintrodukcja czy przecho-
wywanie genotypów. Techniki in vitro także dają 
unikatową możliwość zachowania roślin w natu-
ralnym środowisku, zastępując ich zbieranie  – 
produkcją roślinnych związków aktywnych w bio-
reaktorach. Dlatego warto używać tej technologii 
jako narzędzia wspierającego ochronę bogactwa 
przyrody w ujęciu lokalnym i globalnym.

TYPY KULTUR IN VITRO  
I METODY ICH TWORZENIA

Techniki kultur in vitro umożliwiają prowa-
dzenie różnych hodowli komórek, tkanek i orga-
nów roślinnych w warunkach sterylnych i ściśle 
kontrolowanych; przykłady niektórych form kul-
tur pokazano w Tabeli 1. W zależności od wieku 
i rodzaju materiału wyjściowego (eksplantatu), 
celu hodowli i zastosowanych warunków środo-
wiskowych, m.in. składników pożywek czy fito-
hormonów, uzyskuje się różne typy kultur (Ta-
bela 2). Poniżej przedstawiono krótki przegląd 

najważniejszych systemów kultur roślinnych 
stosowanych w laboratoriach i przemyśle i  ich 
potencjał biotechnologiczny.

Kultury Kalusa (Callus Cultures)
Kalus to niezorganizowana, proliferująca 

masa komórek parenchymatycznych, powstają-
ca wskutek dedyferencjacji komórek roślinnych 
pod wpływem regulatorów wzrostu. Proces in-
dukcji kalusa najczęściej inicjuje się na pożyw-
kach stałych, zawierających odpowiedni stosu-
nek auksyn do cytokinin (Miroshnichenko i in., 
2017). Eksplantatami mogą być praktycznie 
wszystkie fragmenty roślin: liście, hipokotyle, 
korzenie, łodygi lub zarodki somatyczne (Ikeu-
chi i in., 2013; Custódio i in., 2022). Kalus może 
być później wykorzystany do regeneracji całych 
roślin (organogeneza, embriogeneza) lub do 
uzyskania zawiesin komórkowych. Jego zaletą 
jest szybki wzrost i możliwość łatwego pobiera-
nia materiału do dalszych etapów kultury (Ef-
ferth 2019; Babich i in., 2020).

Zawiesiny komórkowe  
(Cell Suspension Cultures)

Zawiesiny komórkowe tworzy się przez roz-
drobnienie kalusa i przeniesienie go do płynnej 
pożywki. Zaletą zawiesin jest wysoka jednorod-
ność kultury i  łatwość skalowania (przejścia 
z niewielkich objętości laboratoryjnych do pro-
dukcji na skalę przemysłową w bioreaktorach), 
co czyni je efektywnym narzędziem do produk-
cji metabolitów wtórnych, barwników, enzy-
mów i  białek (Ramachandra Rao i  Ravishan-
kar, 2002; Gupta i in., 2024). Są jednak bardziej 
wrażliwe na zakażenia niż kultury na pożyw-
kach stałych oraz wymagają optymalizacji wa-
runków hodowli (pH pożywki, stężenia cukru, 
dodatku fitohormonów). Zastosowanie elicyto-
rów, takich jak jasmonian metylu, kwas salicy-
lowy, chitozan czy nanosrebro, może również 
zwiększyć syntezę metabolitów (Hasnain i  in., 
2022).

Kultury korzeni włośnikowatych 
(Hairy Root Cultures)

Kultury te powstają w wyniku infekcji mate-
riału roślinnego przez bakterie Agrobacterium 
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Kalus marchwi odmiany Deep Purple z powstającymi 
zarodkami somatycznymi

Kalus marchwi odmiany Deep Purple z rozwijającymi 
się zarodkami somatycznymi oraz młodymi roślinami

 

Tabela 2. Rodzaje kultur roślinnych in vitro i ich zastosowanie 
Typ kultury Postać Zastosowania główne Przykłady roślin 

Kalus Tkanka 
niezróżnicowana 

Produkcja metabolitów, 
transformacja genetyczna Taxus, Daucus, Panax 

Zawiesina 
komórkowa 

Komórki i ich 
agregaty w płynnej 
pożywce 

Produkcja związków 
aktywnych w 
bioreaktorach 

Ginkgo, Vitis, Linum 

Korzenie 
transformowane 
Agrobacterium 

Korzenie 
włośnikowate 

Produkcja związków 
aktywnych w 
bioreaktorach 

Salvia, Withania, 
Rubia 

Kalus marchwi odmiany Deep Purple z 
powstającymi zarodkami somatycznymi 

Kalus marchwi odmiany Deep Purple z 
rozwijającymi się zarodkami somatycznymi 
oraz młodymi roślinami 

 
Powstające zarodki somatyczne storczyka 
Dendrobium berry Oda 

Młode rośliny storczyka Dendrobium berry 
Oda, powstałe z zarodków somatycznych 
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rhizogenes, które przenoszą do rośliny tzw. pla-
zmid Ri (root-inducing), powodujący intensyw-
ny rozwój korzeni bocznych. Tego typu kultury 
charakteryzują się stabilnym i  szybkim wzro-
stem, wysoką genetyczną i biochemiczną stabil-
nością oraz zdolnością do kontrolowanej pro-
dukcji wielu metabolitów wtórnych typowych 
dla organów podziemnych (np. alkaloidów, sa-
ponin, lignanów, Babich i in., 2020).

Kultury pędów i mikrorozmnażanie
Mikrorozmnażanie (mikropropagacja) po-

zwala szybko rozmnażać rośliny o tych samych 
cechach. Bazuje na zdolności roślinnych ko-
mórek totipotencjalnych do regeneracji całe-
go organizmu. Mikrorozmnażanie stosuje się 
szeroko w ogrodnictwie i w ochronie zasobów 
genetycznych (Kulus i Tymoszuk, 2024; Bettoni 
i in., 2024).

Embriogeneza somatyczna i kultury zarodków
Embriogeneza somatyczna to wieloetapo-

wy proces tworzenia zarodków z  komórek so-
matycznych (czyli innych niż gamety). Można ją 
indukować poprzez aplikację auksyn, warunki 
stresowe (np. stres osmotyczny lub temperatu-
ry) czy dodatek elicytorów. Zarodki somatycz-
ne są użyteczne m.in.  w  mikroklonalnym roz-
mnażaniu roślin, zwłaszcza jednoliściennych 
i  w  przechowywaniu zasobów genetycznych 
(Coelho i  in., 2020; Rajan i Singh, 2021; Kau-
shal i in., 2023).

TRUDNOŚCI I OGRANICZENIA 
W KULTURACH IN VITRO

Mimo ogromnego potencjału, jaki niosą ze 
sobą roślinne kultury in vitro, ich tworzenie 
oraz praktyczne zastosowanie wciąż napotyka 
na trudności i  ograniczenia, zarówno techno-
logiczne, jak i  biologiczne. Jednym z  najczęst-
szych problemów, zwłaszcza w przypadku pracy 
z materiałem roślinnym ze środowiska natural-
nego, są trudności z  uzyskaniem sterylności. 
Rośliny dziko rosnące często są już skolonizo-
wane przez mikroorganizmy, których elimina-
cja bywa wyjątkowo trudna i  wymaga precy-
zyjnie dobranych procedur sterylizacji. Nawet 
niewielkie zakażenia mogą prowadzić do całko-
witego zniszczenia kultury, szczególnie w przy-
padku zawiesin komórkowych, gdzie infekcje 
rozprzestrzeniają się błyskawicznie (Gupta i in., 
2024; Churikova i in., 2015).

Kolejnym istotnym wyzwaniem jest tzw. 
„oporność” (ang. recalcitrance), czyli niska po-
datność określonych gatunków lub odmian 
na ponowne różnicowanie (dedyferencjację) 
i  regenerację. Niektóre rośliny nie reagują na 
standardowe zestawy regulatorów wzrostu, co 
skutkuje brakiem formowania kalusa, niezdol-
nością do inicjacji organogenezy lub embrioge-
nezy somatycznej. Dotyczy to szczególnie roślin 
jednoliściennych (o czym dalej), ale także licz-
nych gatunków roślin drzewiastych czy tropi-
kalnych (Bonga i in., 2010; Custódio i in., 2024, 

Tab. 2. Rodzaje kultur roślinnych in vitro i ich zastosowanie

Typ kultury Postać Zastosowania główne Przykłady roślin

Kalus Tkanka niezróżnicowana Produkcja metabolitów, 
transformacja genetyczna

Taxus, Daucus, Panax

Zawiesina komórkowa Komórki i ich agregaty 
w płynnej pożywce

Produkcja związków 
aktywnych w bioreaktorach

Ginkgo, Vitis, Linum

Korzenie 
transformowane 
Agrobacterium

Korzenie włośnikowate Produkcja związków 
aktywnych w bioreaktorach

Salvia, Withania, Rubia

Mikrorozmnażanie Eksplantaty pędów, 
korzeni, merystemy

Rozmnażanie gatunków 
i odmian

Musa, Solanum, Allium

Zarodki somatyczne Tworzenie zarodków z 
komórek somatycznych

Odtwarzanie roślin 
i produkcja na dużą skalę

Coffea, Theobroma, Citrus
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Bennur i in., 2025). Wymaga to czasochłonne-
go i kosztownego dostosowania warunków kul-
tury, do typu eksplantatu, fazy rozwojowej tkan-
ki oraz parametrów środowiskowych (Babich 
i in., 2020; Solís-Ramos i in., 2012).

Nawet jeśli uda się uzyskać skuteczną induk-
cję wzrostu kalusa lub pędów, proces ten nie za-
wsze przebiega stabilnie. Częstym zjawiskiem 
towarzyszącym długoterminowym hodow-
lom jest zmienność somaklonalna  – czyli po-
jawianie się niezamierzonych, spontanicznych 
zmian genetycznych lub epigenetycznych, któ-
re mogą prowadzić do modyfikacji cech feno-
typowych roślin (Bettoni i  in., 2024). Zjawisko 
to ma zarówno potencjał użytkowy (jako źródło 
zmienności do selekcji), jak i  negatywne kon-
sekwencje, gdy celem hodowli jest zachowanie 
pożądanych cech roślin, np. do dalszej uprawy 
w skali przemysłowej (Hasnain i in., 2022).

Odrębnym wyzwaniem pozostaje długoter-
minowe przechowywanie aktywnych kultur. 
Choć regularne pasażowanie umożliwia za-
chowanie żywotności komórek, wiąże się jed-
nak z ryzykiem stopniowej akumulacji mutacji 
i obniżenia jakości kultury. Alternatywne meto-
dy, takie jak krioprezerwacja, wymagają drogiej 
infrastruktury oraz precyzyjnych, często gatun-
kowo specyficznych protokołów (Babich i  in., 
2020; Custódio i  in., 2022). W  efekcie, mimo 
wysokiej wydajności i  wszechstronności tech-
nologii in vitro, jej efektywne zastosowanie wy-
maga dobrze zaplanowanego i  przemyślanego 
podejścia łączącego wiedzę z zakresu fizjologii 
roślin, mikrobiologii, chemii analitycznej i inży-
nierii procesowej.

Kultury in vitro z roślin jednoliściennych
Pomimo postępu w  lepszym zrozumieniu 

fizjologii, działania regulatorów wzrostu oraz 
mimo wdrażania narzędzi molekularnych i epi-
genetycznych, wiele gatunków roślin jednoli-
ściennych nadal pozostaje trudnych do rege-
neracji. Ich zmienność somatyczna również 
stanowi istotny problem, wpływając na jakość 
uzyskanych roślin i  ograniczając ich dalsze 
wykorzystanie w hodowli lub produkcji (Bairu 
i  Kane, 2011). Ponieważ do tej grupy należą 
rośliny bardzo ważne gospodarczo (np. zboża) 

i  zagrożone wyginięciem (np. storczyki), ko-
nieczne jest dalsze doskonalenie procedur kul-
tur in vitro, oparte na precyzyjnej regulacji szla-
ków hormonalnych oraz doborze odpowiednich 
eksplantatów w  określonym stadium rozwoju. 
Historia opracowywania skutecznych metod 
hodowli roślin jednoliściennych in vitro to za-
razem historia przełamywania ograniczeń tech-
nologicznych i biologicznych, z jakimi zmagała 
się biotechnologia roślinna od lat 60. XX wieku 
(Schenk i  Hildebrandt 1972; Gautheret 1983; 
Thorpe 2000).

Zjawisko oporności wiąże się również z ten-
dencją komórek jednoliściennych do szybkiej 
utraty potencjału embriogennego w czasie trwa-
nia kultury, co stwierdzono np. w badaniach nad 
Brachypodium distachyon – modelowym gatun-
kiem dla traw. W miarę wydłużania czasu kul-
tury dochodzi do zmian w ekspresji genów od-
powiedzialnych za totipotencję, co ogranicza 
możliwość dalszej regeneracji (Betekhtin i  in., 
2020). Dodatkowym utrudnieniem są trudno-
ści w integracji materiału genetycznego (np. za 
pomocą Agrobacterium tumefaciens), co ogra-
nicza wydajność transformacji. Wreszcie, wiele 
protokołów dla jednoliściennych wymaga szere-
gu kosztownych i czasochłonnych etapów, z uży-
ciem pożywek o bardzo złożonym składzie i sku-
teczności zależnej od genotypu (Zhu i in., 2024).

Na przykład owies (Avena sativa L.), zboże 
o  bardzo szerokim zastosowaniu w  uprawach, 
wciąż nie ma opracowanego efektywnego sys-
temu regeneracji, co utrudnia jego modyfikację 
genetyczną i wykorzystanie w programach ulep-
szania odmian (Custódio i  in., 2024; Hasnain 
i in., 2022). Zjawisko to potwierdzają także bada-
nia nad pszenicą jednoziarnową (pszenica samo-
psza, Triticum monococcum L.), która, podob-
nie jak owies, uchodzi za trudną w regeneracji. 
Mimo rozwoju metod embriogenezy somatycz-
nej i  zastosowania różnorodnych regulatorów 
wzrostu, skuteczność regeneracji u  tego gatun-
ku pozostaje niska i nieprzewidywalna. Dopiero 
zastosowanie złożonych kombinacji regulatorów 
wzrostu oraz ścisła kontrola stanu rozwojowego 
eksplantatu (w  tym użycie niedojrzałych zarod-
ków) pozwala uzyskać zadowalające efekty (Mi-
roshnichenko i in., 2017). 
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ZASTOSOWANIE KULTUR IN VITRO 

Techniki kultur in vitro znajdują szerokie za-
stosowanie w różnych dziedzinach biologii i rol-
nictwa, w tym w produkcji materiału roślinnego, 
zachowaniu zasobów genowych, pozyskiwaniu 
metabolitów wtórnych oraz ochronie środo-
wiska (Ryc. 1). Ich znaczenie wykracza daleko 
poza laboratorium  – są narzędziem nie tylko 
dla naukowców, lecz również dla praktyków zaj-
mujących się rolnictwem, w tym ogrodnictwem, 
i ochroną bioróżnorodności.

Kultury in vitro w medycynie –  
źródło leków, białek i związków bioaktywnych

W ostatnich latach znacząco wzrosło zainte-
resowanie technologiami in vitro w  pozyskiwa-
niu związków o wysokiej aktywności biologicznej 
(Agrawal i in., 2022). Ich głównym atutem, w po-
równaniu z tradycyjnymi metodami pozyskiwania 
materiału, jest możliwość kontrolowanej produk-
cji metabolitów (Tab. 3). W warunkach hodowli 
komórkowej można nie tylko utrzymać stabilną 
linię produkcyjną, ale także znacznie zwiększyć 
wydajność syntezy, stosując odpowiednie stymu-

latory i techniki inżynierii metabolicznej (Rama-
chandra Rao i Ravishankar 2002). Równie waż-
nym aspektem jest ochrona naturalnych zasobów 
roślin leczniczych, ponieważ namnażanie kultur 
in vitro, otrzymanych z minimalnej ilości pobra-
nego materiału roślinnego, eliminuje koniecz-
ność kolejnych zbiorów takich roślin. 

Szczególne znaczenie mają kultury komó-
rek kalusowych i  zawiesinowych z  gatunków 
takich jak Taxus spp., Catharanthus roseus, 
Podophyllum hexandrum, Panax ginseng, Di-
gitalis lanata, Artemisia annua czy Scutellaria 
baicalensis – wszystkie uznane za cenne źródła 
związków przeciwnowotworowych, przeciw-
bakteryjnych i neuroprotekcyjnych (Bhattacha-
ryya i in., 2016; Miroshnichenko i in., 2017; Ba-
bich i in., 2020).

Jednym z  najlepiej poznanych przypadków 
medycznego i komercyjnego wykorzystania kul-
tur komórkowych w medycynie jest produkcja 
taksolu (paklitakselu)  – diterpenowego alkalo-
idu o  działaniu cytotoksycznym, izolowanego 
pierwotnie z kory cisu (Taxus brevifolia). Z po-
wodu ograniczonej dostępności rośliny i ogrom-
nego zapotrzebowania na ten lek w terapii no-

Ryc. 1. Zastosowania kultur in vitro
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wotworów jajnika, piersi i  płuc, opracowano 
metodę pozyskiwania taksolu w hodowlach ko-
mórek zawiesinowych w  bioreaktorach (Kra-
steva i in., 2020). Użycie elicytorów pozwala na 
zwiększenie produkcji taksolu nawet 4–5-krot-
nie w  porównaniu do poziomu bazowego. Po-
dobne efekty uzyskano także dla artemizyniny 
(lakton o  silnym działaniu przeciwmalarycz-
nym) i  innych cennych związków terapeutycz-
nych (Hasnain i in., 2022).

Poza klasycznymi metabolitami wtórnymi, 
systemy in vitro są wykorzystywane do pro-
dukcji rekombinowanych białek  – enzymów, 
peptydów immunomodulujących, przeciwciał 
i szczepionek. W odróżnieniu od systemów mi-
krobiologicznych, komórki roślinne są zdolne 
do wprowadzania modyfikacji posttranslacyj-
nych zgodnych z systemem eukariotycznym, co 
jest kluczowe dla stabilności i aktywności funk-
cjonalnej tych cząsteczek (Gupta i  in., 2024). 
W literaturze opisano m.in. produkcję czynnika 
wzrostu EGF, szczepionek przeciwko HPV czy 
nawet fragmentów przeciwciał neutralizujących 
wirusa HIV, SARS-CoV-2 i Ebola (Yusibov i in., 
2016; Peyret i  in., 2021; Venkataraman i  in., 
2023). Ciekawym przykładem jest wykorzysta-
nie kultur Medicago truncatula do produkcji 
wirusopodobnych cząsteczek (VLP – virus-like 
particles), które mogą pełnić rolę nowej gene-
racji nośników szczepionek (Wang i in., 2022).

Kultury komórkowe stają się coraz częściej 
również źródłem mniej oczywistych substancji – 
takich jak inhibitory enzymów proteolitycznych, 
substancje o działaniu przeciwdepresyjnym, le-
ków hormonalnych lub immunomodulatorów 
(Babich i  in., 2020). Z  kultur Scutellaria ba-
icalensis uzyskiwano m.in.  bajkaleinę i  wogo-
ninę – flawony o działaniu neuroprotekcyjnym 

i uspokajającym, zaś z korzeni Withania somni-
fera – witanolidy o potencjale antynowotworo-
wym, adaptogennym i przeciwzapalnym (Dziur-
ka i in., 2021; Ahmad i in., 2024).

Kultury in vitro w rolnictwie 
Kultury in vitro są jednym z  filarów nowo-

czesnej biotechnologii rolniczej. Umożliwiają 
masowe rozmnażanie roślin o pożądanych ce-
chach, uzyskiwanie materiału wolnego od pa-
togenów, regenerację roślin transgenicznych, 
rozwój hodowli opartych na kulturach haplo-
idalnych oraz testowanie reakcji roślin na stre-
sy abiotyczne i  biotyczne w  warunkach kon-
trolowanych. Szczególne znaczenie mają tu 
technologie mikrorozmnażania, embriogenezy 
somatycznej, transformacji genetycznej oraz 
kultur mikrospor i kalusa.

Najpowszechniejszym zastosowaniem kul-
tur in vitro w rolnictwie jest mikrorozmnażanie 
roślin użytkowych – czyli szybkie, beznasienne 
namnażanie roślin na drodze klonalnej z  za-
chowaniem identyczności genetycznej (Moraes 
i in., 2021; Podwyszyńska i in., 2022; Hasnain 
i  in., 2022; Kulus i  Tymoszuk, 2024). Stosuje 
się je rutynowo w produkcji materiału wyjścio-
wego m.in. ziemniaka, czosnku, truskawek, wi-
norośli, chmielu, ananasa, bananowców i  wie-
lu gatunków roślin ozdobnych i  tropikalnych 
(Escobedo-GraciaMedrano i  in., 2016; Hasna-
in i  in., 2022). Technologia ta pozwala w krót-
kim czasie uzyskać dziesiątki tysięcy sadzonek 
z jednego pędu lub merystemu, co znacząco ob-
niża koszty uprawy i skraca czas potrzebny na 
wdrożenie nowej odmiany do produkcji polo-
wej. Dodatkowo możliwe jest utrzymanie mate-
riału matecznego w warunkach sterylnych, wol-
nych od bakterii, wirusów, grzybów i fitoplazm, 

Tab. 3. Porównanie pozyskiwania związków aktywnych metodami tradycyjnymi i z kultur in vitro

Aspekt Tradycyjne pozyskiwanie Kultury in vitro

Wpływ na populacje roślin Często destrukcyjny Ochronny, bez niszczenia

Uzależnienie od sezonu Wysokie Brak – całoroczna produkcja

Czystość i standaryzacja Trudna Łatwa do kontroli

Produkcja substancji rzadkich Ograniczona Możliwa na dużą skalę
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co ma ogromne znaczenie w  ochronie roślin 
i ograniczaniu strat w plonie (Gupta i in., 2024). 
Przykładowo, w  systemach bananowców, ana-
nasa i manioku mikrorozmnażanie w bioreak-
torach zanurzeniowych TIS (Temporary Im-
mersion Systems) pozwoliło na zmniejszenie 
kosztów produkcji materiału szkółkarskiego 
o  ponad 60% oraz ograniczenie zużycia środ-
ków ochrony roślin (Hasnain i in., 2022; Patiño 
i Figueroa, 2025; Solórzano-Acosta i Guerrero-
-Padilla, 2020). W  dodatku hodowle komórek 
zawiesinowych lub kalusa można poddawać 
działaniu określonych stresorów, a  następnie 
selekcjonować linie najbardziej odporne lub 
o  podwyższonej ekspresji genów obronnych 
(Gupta i  in., 2024; Custódio i  in., 2022). Tego 
typu podejścia są wykorzystywane m.in. w ho-
dowli odmian tolerujących suszę (np. w  przy-
padku ryżu, jęczmienia, słonecznika), metale 
ciężkie (np. gorczyca, rącznik, lucerna), zasole-
nie (pszenica, ziemniak) czy infekcje. Dzięki ta-
kim systemom można przeprowadzać selekcję 
wstępną na poziomie komórkowym, co znacz-
nie skraca czas tworzenia odmian użytkowych 
o zwiększonej odporności (Zhang i Zhu 2018; 
Saha i in. 2022).

Kultury roślinne in vitro stały się nieodzow-
nym narzędziem w  sadownictwie, umożliwia-
jąc szybkie i  precyzyjne namnażanie zarówno 
zrazów, jak i podkładek drzew owocowych, ta-
kich jak jabłoń czy śliwa (Alanagh i  in., 2014; 
Teixeira da Silva i in., 2019). W warunkach ste-
rylnych można uzyskać rośliny wolne od pato-
genów, o  jednorodnych cechach genetycznych, 
co ma ogromne znaczenie dla nowoczesnych 
szkółek i programów hodowlanych. W przypad-
ku jabłoni (Malus × domestica) techniki mikro-
propagacji pozwalają zachować czystość od-
mian oraz utrwalać pożądane cechy podkładek, 
które decydują o  wigorze, plonowaniu czy od-
porności drzew na stresy środowiskowe (Teixe-
ira da Silva i in., 2019). Równie ważne postępy 
odnotowano w  rozmnażaniu podkładek śliwy 
i  innych gatunków z  rodzaju Prunus. Badania 
z zastosowaniem modeli sztucznej inteligencji 
wykazały np., że skuteczność mikropropagacji 
in vitro podkładek takich jak GF677 (brzoskwi-
nia × migdał) silnie zależy od składu mineralne-

go pożywki. Zoptymalizowane pożywki zapew-
niają szybki wzrost zdrowych pędów, które po 
ukorzenieniu służą do szczepienia odmian szla-
chetnych (Alanagh i  in., 2014). Połączenie do-
świadczenia klasycznej hodowli z  technikami 
in vitro otwiera nowe możliwości uszlachetnia-
nia drzew owocowych. Uzyskane tą drogą klo-
ny podkładek i zrazów są nie tylko genetycznie 
jednolite, ale również łatwo dostępne przez cały 
rok, niezależnie od sezonu wegetacyjnego. Mi-
kropropagacja jabłoni i śliwy z wykorzystaniem 
technik kultur in vitro przyczynia się więc do 
zwiększenia efektywności produkcji szkółkar-
skiej, ochrony zasobów genetycznych oraz roz-
woju nowoczesnego sadownictwa.

Kultury mikrospor i pylników to zaawanso-
wana forma kultur in vitro, wykorzystywana do 
uzyskiwania roślin haploidalnych  – czyli posia-
dających pojedynczy zestaw chromosomów. Ta-
kie linie po podwojeniu (np. przez kolchicynę lub 
stres termiczny) stają się „podwojonymi haplo-
idami” (DH – doubled haploids), które są całko-
wicie homozygotyczne i mogą być natychmiast 
włączone do hodowli odmianowej (Wang i  in., 
2023). Metoda ta zrewolucjonizowała hodowlę 
roślin takich jak jęczmień, pszenica, ryż, rzepak 
czy tytoń. Pozwala skrócić proces selekcji od-
mian z 8–10 lat do zaledwie 2–3 sezonów. Prze-
łomem było zastosowanie tzw. markera RUBY 
w  kukurydzy i  pomidorze, umożliwiającego 
identyfikację roślin haploidalnych bez koniecz-
ności genotypowania – tylko na podstawie czer-
wonego zabarwienia tkanek (Wang i in., 2023).

Kultury in vitro są nieodzownym etapem 
transformacji genetycznej roślin. Eksplantaty 
poddaje się działaniu Agrobacterium tumefa-
ciens lub mikrowstrzeliwaniu DNA, a  następ-
nie regeneruje nowe rośliny z wykorzystaniem 
embriogenezy somatycznej lub organogenezy. 
Tak uzyskano pierwsze transgeniczne odmiany 
ziemniaka, kukurydzy, soi, bawełny i  rzepaku 
(np. Garrocho-Villegas i  in., 2012, McFarland 
i in., 2025 ). Obecnie techniki te są integrowa-
ne z edycją genomu CRISPR/Cas9. Kultura ka-
lusa lub zawiesina komórkowa służą jako ma-
teriał do modyfikacji genomowej, a  następnie 
regeneruje się z niej edytowane rośliny o wyci-
szonym genie odporności na herbicyd, o  pod-
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wyższonej zawartości skrobi lub tolerancji na 
suszę (Hasnain i in., 2022).

Bioreaktory roślinne jako źródło  
biostymulatorów i bioherbicydów

Kultury in vitro, szczególnie komórkowe 
i  korzeni transformowanych (hairy roots), sta-
nowią wydajne, niezależne od warunków po-
lowych źródło naturalnych biostymulatorów 
wzrostu i rozwoju roślin, takich jak auksyny, cy-
tokininy, kwas salicylowy, kwas jasmonowy czy 
poliaminy, które poprawiają parametry fizjolo-
giczne i odporność roślin uprawnych (Posmyk 
i Szafrańska 2016). 

Ekstrakty z  kultur in vitro wielu roślin, 
m.in. Azadirachta indica, Moringa oleifera, Oci-
mum sanctum czy Daucus carota, nie tylko 
mogą działać jako naturalne promotory wzrostu 
roślin (Gupta i  in., 2024; Hasnain i  in., 2022), 
ale można je łatwo dostosowywać do konkret-
nych potrzeb upraw: inne będą profilaktycz-
ne środki wzmacniające odporność pomidora 
w stresie suszy, a inne stymulatory zakorzenia-
nia dla sadzonek truskawki. W przeciwieństwie 
do syntetycznych regulatorów wzrostu, prepa-
raty pochodzenia roślinnego nie kumulują się 
w  środowisku i  nie naruszają równowagi mi-
krobiologicznej gleby. Obiecującym kierunkiem 
są również bioherbicydy (np. lignany, kumary-
ny, taniny czy alkaloidy), produkowane w  sys-
temach in vitro, które mogą hamować wzrost 
chwastów bez negatywnego wpływu na rośliny 
użytkowe (Babich i  in., 2020). W dobie rosną-
cego oporu społecznego wobec chemicznych 
środków ochrony roślin i konieczności wdraża-
nia strategii zrównoważonego rolnictwa, pro-
dukcja biostymulatorów i bioherbicydów z kul-
tur in vitro staje się kierunkiem o szczególnym 
znaczeniu aplikacyjnym i ekologicznym.

Hodowle grzybów mikoryzowych, zwłasz-
cza arbuskularnych (np. z  rodzaju Glomus, 
Gigaspora czy Rhizophagus), prowadzone na 
kulturach korzeni in vitro, otworzyły zupełnie 
nowe możliwości wykorzystania ich w  rolnic-
twie jako naturalnych biostymulantów wzro-
stu roślin. Dzięki opracowanym przez zespół S. 
Declercka (Cranenbrouck i  in., 2005) hodowli 
monoksenicznej (współkultury in vitro grzyba 

i  zainfekowanego korzenia), możliwe stało się 
namnażanie tych grzybów na skalę przemysło-
wą, w  postaci czystych inokulantów, wolnych 
od patogenów i  innych mikroorganizmów gle-
bowych. Ponieważ w naturze grzyby mikoryzo-
we tworzą symbiozę z  korzeniami większości 
roślin lądowych, poprawiając ich zdolność po-
bierania wody oraz pierwiastków takich jak fos-
for, azot, czy mikroelementy, stosowanie takich 
inokulantów w rolnictwie i ogrodnictwie popra-
wia żyzność gleby, ogranicza konieczność sto-
sowania nawozów mineralnych i  pestycydów 
oraz zwiększa odporność roślin na stres suszy 
i zasolenia.

Przemysł spożywczy i żywność funkcjonalna 
Roślinne kultury in vitro stanowią coraz 

bardziej atrakcyjne źródło dodatków do żywno-
ści, które pełnią funkcje zarówno sensoryczne 
(smak, zapach, barwa), jak i funkcjonalne (dzia-
łanie prozdrowotne, przeciwutleniające, prebio-
tyczne). Dzięki możliwości prowadzenia hodow-
li niezależnie od sezonu, pogody i  zmienności 
genetycznej, uzyskiwany materiał jest jednorod-
ny, czysty mikrobiologicznie i może być produ-
kowany na skalę przemysłową w bioreaktorach.

W dobie ograniczania syntetycznych dodat-
ków do żywności rośnie zainteresowanie natu-
ralnymi barwnikami pochodzenia roślinnego. 
Kultury in vitro umożliwiają wydajną syntezę 
i stabilizację tych barwników bez konieczności 
uprawy roślin w  polu. Przykładem mogą być 
antocyjaniny, produkowane m.in.  w  kulturach 
Vitis vinifera, Daucus carota, Solanum melon-
gena, Brassica oleracea oraz Vaccinium spp. 
(Miroshnichenko i in., 2023). Inną grupą barw-
ników są betalainy (w tym betacyjaniny i betak-
santyny)  – barwniki charakterystyczne dla bu-
raka ćwikłowego (Beta vulgaris), amarantusa 
i opuncji (Opuntia ficus-indica), czy karotenoidy, 
takie jak β-karoten, luteina, astaksantyna, zeak-
santyna i  likopen, syntetyzowane w  kulturach 
komórek Daucus carota, Tagetes erecta, Capsi-
cum annuum, Haematococcus pluvialis (glon) 
i Lycopersicon esculentum (Babich i in., 2020). 
Barwniki te wykorzystywane są nie tylko jako 
składniki dodające koloru w sokach, napojach, 
lodach czy deserach, ale również jako naturalne 
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przeciwutleniacze, o działaniu stabilizującym li-
pidy i neutralizującym wolne rodniki (Brudzyń-
ska i  in., 2021). W kulturach in vitro możliwa 
jest również biosynteza wielu związków aroma-
tycznych i  smakowych: waniliny (główny zwią-
zek zapachowy wanilii, Vanilla planifolia), men-
tolu, nadającego zapach ekstraktom z mięty, czy 
limonenu, geraniolu i  eugenolu, odpowiedzial-
nych za zapachy cytrusowe, różane i goździko-
we (Gupta i in., 2024). 

Oprócz barwników czy aromatów, kultury 
roślinne in vitro mogą syntetyzować enzymy, 
wykorzystywane w przemyśle mleczarskim, bro-
warniczym, piekarskim i  przetwórstwie owo-
ców. Często stosowane są pektynazy i celulazy 
(do klarowania soków i  win), amylazy i  inwer-
tazy (stosowane w  piekarnictwie i  browarnic-
twie) czy fitazy (wykorzystywane do obniżania 
poziomu trudno trawionych fitynianów w  mą-
kach i paszach). Zaletą tych enzymów jest brak 
alergenów charakterystycznych dla enzymów 
pochodzenia zwierzęcego lub mikrobiologicz-
nego, przy zachowaniu ich pełnej funkcjonalno-
ści (Hasnain i in., 2022). Z tego względu coraz 
więcej producentów żywności wegańskiej i bio 
sięga po enzymy uzyskiwane w  bioreaktorach 
komórkowych z kultur Helianthus, Brassica czy 
Daucus.

Kultury in vitro mogą służyć także do pro-
dukcji prebiotyków, np. polisacharydów i oligo-
sacharydów z  Cichorium intybus, Helianthus 
tuberosus i Allium sativum, wspierających florę 
jelitową, związków funkcjonalnych (np. saponin 
z  Panax ginseng, fitosteroli z  Brassica napus, 
tanin i  lignanów z  Linum usitatissimum), sto-
sowanych w suplementach diety czy alkaloidów 
i flawonoidów (np. katechiny z Camellia sinen-
sis, resweratrolu z winorośli, kurkuminy z Cur-
cuma longa), które działają przeciwzapalnie, 
przeciwutleniająco i kardioprotekcyjnie (Mora-
es i in., 2021).

Kultury roślinne w produkcji biomateriałów 
o zastosowaniach technologicznych

Poza sektorem spożywczym, kultury in vi-
tro pełnią coraz ważniejszą funkcję w  nowych 
technologiach przemysłowych, stanowiąc źró-
dło ekologicznych enzymów, biodegradowal-

nych materiałów i  nanocząstek o  precyzyjnie 
projektowanej aktywności, na przykład nano-
cząstek srebra (AgNP), złota (AuNP), tlenków 
cynku, krzemu czy selenu. To tzw. zielone nano-
technologie, uznawane za bezpieczniejsze i bar-
dziej zrównoważone od tradycyjnych metod che-
micznych (Hasnain i in., 2022). Tak wytwarzane 
nanomateriały mają szerokie zastosowanie  – 
w opakowaniach aktywnych (np. z właściwościa-
mi przeciwdrobnoustrojowymi), w  kosmetyce 
(kremy z nanosrebrem), w tekstyliach technicz-
nych (odzież antybakteryjna), a nawet jako nośni-
ki leków w medycynie celowanej (Hano i Abbasi 
2021). 

Kultury roślinne w ochronie i oczyszczaniu 
środowiska

Bardzo interesującym zastosowaniem kul-
tur roślinnych dla ochrony środowiska jest ich 
użycie w  fitoremediacji i  tworzeniu biosenso-
rów. Niektóre rośliny są zdolne do akumulowa-
nia, rozkładu lub immobilizacji zanieczyszczeń 
środowiskowych – metali ciężkich, pestycydów, 
azotanów. Kultury komórek kalusowych i korze-
ni transformowanych (np. Nicotiana tabacum, 
Brassica juncea, Lemna minor) pozwalają nie 
tylko prowadzić badania nad tymi mechanizma-
mi, ale także tworzyć biosensory, które reagują 
zmianą fluorescencji, koloru lub ekspresji genu 
na obecność określonych toksyn (Hasnain i in., 
2022). W przyszłości takie linie komórek mogą 
służyć do monitorowania jakości wody i  gleby, 
a  także być używane w  zintegrowanych syste-
mach biologicznego oczyszczania ścieków i gleb 
skażonych.

KULTURY IN VITRO W OCHRONIE  
I ZACHOWANIU BIORÓŻNORODNOŚCI

Wraz z postępującą degradacją siedlisk na-
turalnych, urbanizacją, intensyfikacją rolnictwa 
i  zmianami klimatycznymi, świat stoi wobec 
gwałtownej utraty bioróżnorodności. Według 
raportów IUCN, co najmniej 40% gatunków ro-
ślin naczyniowych na świecie jest zagrożonych 
wyginięciem. W tym kontekście technologie in 
vitro stają się nie tylko narzędziem produkcyj-
nym, ale również strategiczną metodą zachowa-
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nia i odtwarzania zasobów roślinnych, które nie 
mogą być skutecznie chronione klasycznymi 
metodami (Ramachandra Rao i  Ravishankar, 
2002). Metody te są istotnym elementem stra-
tegii ex situ, uzupełniając banki nasion, kolek-
cje ogrodów botanicznych oraz konwencjonal-
ne zachowanie upraw (Walters i Pence, 2021). 
Dzięki możliwościom mikrorozmnażania, krio-
prezerwacji, tworzenia „sztucznych nasion” 
(synseeds), a także prowadzenia długotrwałych 
kultur zawiesinowych lub kalusowych, można 
nie tylko zachować unikalne genotypy, ale też 
zapewnić materiał do reintrodukcji i odbudowy 
populacji w  warunkach naturalnych (Tripathi 
i in., 2021; Mikuła i in., 2022; Gupta i in., 2024). 
Jest to szczególnie ważne dla roślin, które nie 
tworzą nasion (np. rośliny triploidalne, niektó-
re klony i mutacje hodowlane), tworzą nasiona 
wrażliwe na wysuszenie (recalcitrant seeds), 
wytwarzają nasiona trudne do przechowywa-
nia (np. oleiste nasiona roślin tropikalnych) lub 
rozmnażają się wyłącznie wegetatywnie (Ebert 
i Engels 2020).

Zastosowanie hodowli in vitro umożliwia 
utrzymanie w  niewielkich objętościach (np. 
w probówkach lub mikropłytkach) unikatowych 
genotypów, populacji lokalnych i odmian o zna-
czeniu kulturowym, które często są marginali-
zowane w oficjalnych programach banków ge-
nów. Przykładem może być kolekcja Solanum 
tuberosum i  Allium sativum w  USDA Clonal 
Repository (Custódio i in., 2022), czy programy 
ochrony czosnku niedźwiedziego (Allium ursi-
num) prowadzone w Europie Środkowej (Ber-
naś i in., 2023).

Kultury in vitro umożliwiają także maso-
we rozmnażanie rzadkich roślin z  minimalnej 
ilości materiału źródłowego. W  przypadku ga-
tunków objętych ścisłą ochroną (np. storczyki, 
rośliny torfowiskowe, górskie endemity) moż-
liwe jest pozyskanie eksplantatu z  jednego li-
ścia, pąka, a nawet komórki, bez konieczności 
niszczenia całego osobnika. Dzięki metodom 
mikrorozmnażania, organogenezy i  embrioge-
nezy somatycznej, można w krótkim czasie uzy-
skać setki lub tysiące genetycznie jednorodnych 
i zdrowych roślin, które mogą być wykorzysta-

ne na przykład do reintrodukcji (Sarmah i  in., 
2017; Żabicki i in., 2019).

Szczególnie skuteczne okazały się te tech-
niki w rozmnażaniu m.in. storczyków europej-
skich (Orchis mascula, Dactylorhiza incarnata, 
Gymnadenia conopsea, Churikova, 2015), ro-
ślin górskich i torfowiskowych (Drosera rotun-
difolia, Pinguicula vulgaris, Gentiana pneumo-
nanthe, Petrova i in., 2021; Tienaho i in,. 2021; 
Podwyszyńska i  in., 2022) czy endemicznych 
roślin stepowych i sucholubnych (Monder i in., 
2024).

Rośliny lecznicze są grupą szczególnie na-
rażoną na wyginięcie z  powodu nadmiernego 
pozyskiwania z  naturalnych siedlisk. W  dodat-
ku wiele z nich jest endemitami lub gatunkami 
o wąskim zasięgu występowania. Zmiany klima-
tyczne mogą powodować dodatkowe ogranicze-
nie zasięgu a  tym samym utratę zasobów far-
makologicznych (Behera i  in., 2022). Techniki 
kultur in vitro umożliwiają zarówno ich rozmna-
żanie, jak i pozyskiwanie metabolitów wtórnych 
w  warunkach kontrolowanych. Przykładami 
skutecznego zastosowania kultur zarówno do 
ochrony samych roślin, jak i przemysłowej pro-
dukcji ich metabolitów są np.  Withania som-
nifera (ashwagandha, witanolidy, Ahmad i  in., 
2024), Catharanthus roseus (barwinek różowa-
ty, pozyskiwanie przeciwnowotworowych alka-
loidów winblastyny i winkrystyny, Loyola-Vargas 
i Ochoa-Alejo, 2018), Panax ginseng (żeńszeń, 
namnażanie z  tkanek korzeniowych i kontrolo-
wana synteza ginsenozydów, Miroshnichenko 
i  in., 2017), Nothapodytes nimmoniana (kry-
tycznie zagrożony producent kamptotecyny, 
leku antynowotworowego, Castillo-Pérez i  in., 
2018) czy Gentiana lutea i Valeriana officinalis, 
których ochroną i utrzymaniem linii w bankach 
in vitro zajmują się laboratoria w Polsce (Miku-
ła i  in., 2022; Zimnoch-Guzowska i  in., 2022). 
Techniki in vitro dla roślin leczniczych stosowa-
ne są z powodzeniem np. w  Indiach, Chinach, 
Bułgarii, Niemczech, Polsce i  na Litwie, gdzie 
utworzono specjalistyczne centra ochrony far-
makoekologicznej (Krasteva i in., 2020; Walters 
i Pence, 2021).

Bioróżnorodność rolnicza, obejmująca lo-
kalne odmiany, podgatunki oraz dzikich krew-
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niaków roślin uprawnych, wymaga szczególnej 
troski. Jest to tym bardziej ważne w kontekście 
stosowania na świecie ogromnych areałów mo-
nokultur (np. pszenica, kukurydza, ryż) i  za-
chodzących zmian klimatu. W  dodatku wiele 
z tych form rozmnaża się wegetatywnie, przez 
co nie może być zachowane w postaci nasion. 
Wykorzystanie różnych form kultur i  technolo-
gii in vitro pozwala m.in.  na mikrorozmnaża-
nie odmian lokalnych, zagrożonych wyparciem 
przez odmiany stosowane do produkcji wielko-
towarowej (np. czosnek, ziemniak, Gupta i  in., 
2024), ochronę roślin uprawnych i  ich dzikich 
krewniaków (np. Triticum dicoccum i  Avena 
strigosa, przechowywane w  postaci kallusów, 
Castillo-Pérez i in., 2018; Ruta i in., 2020). Ta-
kie metody można też stosować do utrwalania 
czystych, wolnych od patogenów linii odmiano-
wych (np.  ziemniak, czosnek, topinambur, Mi-
kuła i in., 2022) czy dla długoterminowego prze-
chowywania roślin pastewnych i sadowniczych 
metodami krioprezerwacji (Tripathi i in., 2021; 
Walters i Pence, 2021),

W  Polsce instytucje takie jak IHAR w  Ra-
dzikowie czy ogrody botaniczne i banki tkanek 
w Poznaniu i Powsinie prowadzą aktywne pro-
gramy in vitro dla linii czosnku, cebuli, ziemnia-
ka i żyta (Mikuła i  in., 2022; Zimnoch-Guzow-
ska i  in., 2022). W  Korei i  Japonii stosuje się 
pożywki z dodatkiem sorbitolu i maltodekstry-
ny do długoterminowego utrzymania meryste-
mów ryżu i  pszenicy w  niskiej temperaturze 
(Gupta i in., 2024; Loyola-Vargas i Ochoa-Alejo, 
2018). W Ameryce Południowej i Azji prowadzi 
się intensywne prace nad zachowaniem dzikich 
i uprawnych roślin bananowców oraz otrzyma-
niem odmian odpornych na zagrażające im pa-
togeny (Gogoi i in., 2020). Techniki te wspierają 
nie tylko konserwację genotypów, ale również 
ich praktyczne wykorzystanie w  programach 
hodowlanych, adaptacyjnych i  klimatycznych 
(Kaviani i Kulus, 2022; Priyanka i in., 2021).

W krajach takich jak Japonia, Finlandia czy 
Brazylia programy restytucji rzadkich roślin 
z  zastosowaniem mikrorozmnażania in vitro 
stanowią oficjalną część polityki ochrony przy-
rody, zwłaszcza dla roślin trudnych w rozmnaża-
niu konwencjonalnym, np. Paphiopedilum spp., 

Primula spp., Fritillaria meleagris, a  także za-
grożonych drzew tropikalnych, takich jak Sho-
rea robusta czy Swietenia macrophylla (Cho-
kheli i in., 2022; Custódio i in., 2022; Sochacki 
i in., 2024). Opracowanie technologii tworzenia 
tzw. sztucznych nasion (synthetic seeds, synse-
eds), struktur funkcjonalnie analogicznych do 
nasion oraz zastosowanie zarodków somatycz-
nych jako eksplantatów zdolnych do dalszego 
rozwoju, usprawniło przechowywanie, trans-
port, a  nawet zautomatyzowało siew roślin za-
grożonych. Technologia synseeds wykazuje wy-
soką przeżywalność (>80% po 6 miesiącach 
przechowywania) i  umożliwia wymianę mate-
riału między bankami tkanek w różnych krajach 
bez ryzyka zakażeń patogenami (Walters, 2020; 
Gupta i in., 2024). Ta technika jest badana jako 
metoda „szybkiej regeneracji populacji” i rozwi-
jana w coraz większym stopniu.

Rośliny ozdobne, zwłaszcza storczykowa-
te (Orchidaceae), należą do najbardziej zagro-
żonych grup ze względu na atrakcyjny wygląd 
i wysoką wartość rynkową (Tiwari i  in., 2024). 
Większość z  nich występuje naturalnie w  nie-
wielkich, izolowanych populacjach a niekontro-
lowane wykorzystywanie i zbieranie oraz bardzo 
skomplikowane cykle życiowe storczyków sta-
nowią kluczowe wyzwanie w ich ochronie. We-
dług statystyk Globalnej Czerwonej Listy IUCN 
(Międzynarodowa Unia Ochrony Przyrody) dla 
948 gatunków storczyków, 56,5% zostało skla-
syfikowanych jako zagrożone. Dlatego mikro-
rozmnażanie i kultury in vitro stały się podsta-
wową strategią w  zintegrowanych działaniach 
ochronnych (Tiwari i  in., 2024). Przykładami 
mogą być utworzone kolekcje linii Vanilla pla-
nifolia (Castillo-Pérez i in., 2018), Dactylorhiza 
majalis, Ophrys apifera, Cattleya spp. czy Pa-
phiopedilum spp. (Tripathi i  in., 2021; Walters 
i Pence, 2021; Mikuła i  in., 2022). Oczywiście, 
kolekcje są tworzone nie tylko dla storczyków, 
ale dla coraz większej liczby gatunków, w  tym 
endemicznych, takich jak Aloe polyphylla (Leso-
tho), Primula scotica (Szkocja) czy Silene poly-
petala (USA), często w połączeniu z tworzeniem 
banków DNA i nasion (Walters i Pence, 2021).

Największą siłą technologii in vitro jest 
możliwość zachowania i przywrócenia popula-
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cji dzikich gatunków. W ten sposób próbuje się 
przywrócić naturze zagrożone wyginięciem po-
pulacje Eryngium alpinum, Pulsatilla patens, 
(Żabicka i in., 2021; Mikuła i in., 2022), Podo-
phyllum hexandrum (Gupta i in., 2024), Artemi-
sia laciniata (Miroshnichenko i  in., 2017), czy 
roślin owadożernych (np. Dionaea muscipula) 
w  ramach programów edukacyjnych i  ochron-
nych w UE i USA (Singh i Chokheli, 2025). Ban-
ki tkanek i krioprezerwacja są skutecznie wdra-
żane m.in. przez Millennium Seed Bank (UK), 
Kostrzyńskie Centrum Roślin Zielarskich, La-
boratorium Biotechnologii w Kórniku oraz eu-
ropejskie banki regionalne (Mikuła i in., 2022; 
Walters i  Pence, 2021; Zimnoch-Guzowska 
i in., 2022).

Hodowle komórkowe roślin zagrożonych są 
nie tylko narzędziem ich zachowania, ale także 
doskonałą platformą do badania ich metaboli-
tów wtórnych i potencjału leczniczego, monitoro-
wania zmienności genetycznej i  epigenetycznej 
między populacjami, czy testowania tolerancji 
na czynniki abiotyczne (np. suszę, zasolenie). 
Przykładem są kultury Scutellaria baicalensis 
(potencjał przeciwnowotworowy), Hypericum 
perforatum (hiperycyna), czy Taxus wallichia-
na (taksol), gdzie udało się zachować produkcję 
cennych związków farmakologicznych nawet po 
wieloletniej hodowli in vitro (Babich i in., 2020; 
Gupta i in., 2024). 

PERSPEKTYWY ZASTOSOWAŃ KULTUR 
IN VITRO W PRZYSZŁOŚCI

W ciągu ostatnich kilku dekad technologie 
kultur in vitro ewoluowały od narzędzi badaw-
czych wykorzystywanych głównie w  laborato-
riach akademickich, do zaawansowanych plat-
form biotechnologicznych o  coraz większym 
znaczeniu przemysłowym (Babich i  in., 2020; 
Chandana i in., 2018; Espinosa-Leal i in., 2018; 
Wawrosch i  Zotchev 2021). Obecnie rosnące 
zapotrzebowanie na zrównoważoną produkcję 
biomasy, roślin leczniczych i  funkcjonalnych, 
a także na ochronę zagrożonych ekosystemów, 
kieruje uwagę ku kulturze komórkowej jako 
kluczowemu elementowi przyszłościowej bio-
ekonomii.

Jednym z najważniejszych trendów jest roz-
wój biofabryk roślinnych, czyli zautomatyzo-
wanych systemów produkcji wykorzystujących 
komórki, tkanki lub organoidy roślinne do wy-
twarzania związków aktywnych na skalę prze-
mysłową. Takie „zielone fabryki” działają nie-
zależnie od sezonowości, zmian klimatu czy 
presji patogenów, a ich produkty są bardziej jed-
norodne i wolne od zanieczyszczeń rolniczych. 
Już dziś bioreaktory z kulturami Panax ginseng, 
Taxus spp., Nicotiana tabacum czy Hypericum 
perforatum są wykorzystywane do produkcji 
suplementów, kosmetyków, związków immuno-
modulujących i neuroaktywnych (Krasteva i in., 
2020; Babich i in., 2020). W najbliższych latach 
spodziewać się można miniaturyzacji tych sys-
temów i  integracji z  algorytmami sterowania 
opartymi na sztucznej inteligencji.

Równolegle rozwija się wykorzystanie kultur 
in vitro do biosyntezy białek terapeutycznych, 
takich jak przeciwciała monoklonalne, enzymy, 
hormony roślinne i  szczepionki. Transformo-
wane komórki tytoniu, marchwi czy ziemniaka 
mogą produkować rekombinowane białka iden-
tyczne z ludzkimi, a ich ekspresję można regu-
lować światłem lub chemicznymi induktorami. 
Technologia ta, znana jako „plant molecular 
farming”, już została zastosowana do produk-
cji szczepionki przeciw COVID-19 (Medicago), 
a także leków na choroby rzadkie. Udoskonalo-
na kontrola nad ekspresją genów, w połączeniu 
z systemami oczyszczania białek z pożywki ho-
dowlanej, może zrewolucjonizować rynek bio-
farmaceutyków (Singh i in., 2025).

W  obszarze ochrony środowiska i  rolnic-
twa, kultury in vitro odgrywają coraz większą 
rolę w  tzw. biotechnologii regeneratywnej, któ-
ra stawia sobie za cel nie tylko produkcję, ale 
i odbudowę zasobów biologicznych. Umożliwia 
to np.  odtworzenie populacji roślin stepowych 
i  torfowiskowych, bez ryzyka nadmiernej eks-
ploatacji siedlisk naturalnych. Rośliny uzyskane 
in vitro mogą być wprowadzane na obszary zde-
gradowane, jako czynniki umożliwiające fitore-
mediację i  regenerację gleby, a  ich produkcja 
nie wymaga eksploatacji zasobów naturalnych 
(Custódio i in., 2022). Coraz więcej badań wska-
zuje, że podobne podejście można zastosować 



Kultury roślinne in vitro – od produkcji leków do ochrony bioróżnorodności 233

także w odniesieniu do komercyjnego zastoso-
wania w  rolnictwie mikroorganizmów glebo-
wych, w tym bakterii i grzybów mikoryzowych, 
które mogą być utrzymywane i  namnażane 
w kulturach in vitro. Umożliwia to kontrolowa-
ne namnażanie szczepów korzystnych dla roślin 
i ich aplikację w rolnictwie jako biostymulantów 
poprawiających wzrost, dostępność składników 
pokarmowych i  odporność roślin na stres. Jak 
podkreślają Sharma i  Jain (2022), rozwój ta-
kich technologii może znacząco ograniczyć zu-
życie nawozów mineralnych i przyczynić się do 
odbudowy mikrobiomu glebowego w rolnictwie 
ekologicznym. Nowe możliwości otwiera także 
rozwój biosensorów roślinnych, czyli kultur ko-
mórkowych reagujących ekspresją genów repor-
terowych na obecność związków toksycznych, 
pestycydów, metali ciężkich lub mikroorgani-
zmów. Linie takie mogą być wykorzystywane 
do szybkiej oceny jakości gleby, wody czy żyw-
ności – zarówno w laboratoriach, jak i w mobil-
nych systemach terenowych (Oluwaseun Ade-
tunji i in., 2022).

Istotną perspektywą jest także rosnące zna-
czenie kultur in vitro w kontekście zmian klima-
tu. Dzięki możliwości selekcji linii odpornych 
na suszę, zasolenie czy ekstremalne temperatu-
ry, możliwe będzie tworzenie roślin uprawnych 
przystosowanych do zmieniających się warun-
ków agroklimatycznych. Już teraz w warunkach 
in vitro testowane są prototypy odmian Oryza 
sativa, Solanum tuberosum i  Zea mays zdol-
nych do wydajnej fotosyntezy przy niedoborze 
wody lub nadmiarze jonów metali (Gupta i in., 
2024; Mansinhos i in., 2024). 

Wreszcie, rosnąca świadomość społeczna 
i  naciski ekologiczne będą sprzyjały wykorzy-
staniu kultur in vitro do produkcji surowców ko-
smetycznych, spożywczych i suplementów, któ-
re nie wymagają niszczenia populacji dzikich 
roślin. Już dziś niektóre marki kosmetyczne de-
klarują całkowite przejście na ekstrakty z  ho-
dowli komórkowych zamiast ekstraktów z roślin 
dziko rosnących, na przykład fenoli czy alkalo-
idów (Bennur i in., 2025; Krasteva i in., 2020). 

Można przypuszczać, że technologie in vitro 
będą także sprzęgane z  narzędziami bioinfor-
matycznymi, analizą „big data” i modelowaniem 

metabolicznym, co pozwoli jeszcze skuteczniej 
projektować linie komórkowe o pożądanych ce-
chach. Ich potencjał jako narzędzi badawczych, 
produkcyjnych i  środowiskowych będzie tylko 
rósł – czyniąc z kultur in vitro jeden z  filarów 
zielonej biotechnologii XXI wieku.

PODSUMOWANIE

Kultury in vitro roślin stanowią dziś jedno 
z  najważniejszych narzędzi współczesnej bio-
technologii – zarówno w badaniach podstawo-
wych, jak i  w  zastosowaniach przemysłowych, 
medycznych, rolniczych czy środowiskowych. 
Dzięki zdolności do kontrolowanej regeneracji 
tkanek i komórek, systemy te pozwalają nie tyl-
ko na masowe rozmnażanie roślin i pozyskiwa-
nie metabolitów wtórnych o wysokiej wartości 
biologicznej, ale także na ochronę zagrożonych 
gatunków, rekultywację terenów zdegradowa-
nych oraz projektowanie nowych biosystemów 
o określonych funkcjach.

Rozwój technik mikrorozmnażania, elicyta-
cji, inżynierii metabolicznej i bioreaktorów za-
nurzeniowych pozwolił znacząco zwiększyć wy-
dajność produkcji związków aktywnych, takich 
jak alkaloidy, flawonoidy, terpenoidy czy anto-
cyjany. W  połączeniu z  możliwościami trans-
formacji genetycznej i precyzyjnego kierowania 
ekspresją genów, kultury in vitro stają się real-
ną alternatywą dla konwencjonalnych upraw – 
szczególnie w  kontekście globalnych wyzwań: 
zmian klimatu, degradacji gleb, kurczenia się 
bioróżnorodności oraz rosnącego zapotrzebo-
wania na zielone technologie.

Z uwagi na swoją elastyczność, skalowalność 
i ekologiczny charakter, kultury komórek roślin-
nych mogą odegrać kluczową rolę w kształtowa-
niu przyszłości bioekonomii. Wydaje się, że ich 
potencjał nie został jeszcze w pełni wykorzysta-
ny – ale rozwój automatyzacji, narzędzi bioinfor-
matycznych, biosensorów i bioreaktorów nowej 
generacji sprawia, że technologie in vitro wcho-
dzą dziś w fazę dynamicznej ekspansji. Są one 
nie tylko odpowiedzią na współczesne proble-
my cywilizacyjne, ale też propozycją zrównowa-
żonej drogi rozwoju opartej na biologii, precyzji 
i szacunku dla zasobów przyrody.
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