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Abstract 

The main goal of the current overview is to assess major trends in studying of fine motor 

skills neurobiology.  

Materials and techniques. PubMed (MedLine), Embase databases have been used for 

Information search. Keywords: fine motor skills; neurobiology; neurorehabilitation. Search depth 

is 5 years (2016 – 2021). 12 papers that are more relevant to the topic have been chosen from the 

primary paper array (n=49). MAXQDA (Verbi Software GmbH, Germany) has been used for 

content analysis. 

Results and discussion. The current state is characterized by interdisciplinary integration 

using both complex experimental laboratory models and modern bionic and information 

technologies. 

Conclusion. Contemporary trends in the problem studying is the widespread utilization of 

information technologies and the development of approaches to neurorehabilitation with motor 

deficiency consideration. Fine motor skills recovery in patients with CNS lesions requires further 

interdisciplinary integration. 
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Fine motor skills are highly differentiated precise movements, predominantly of moderate 

amplitude and strength, where small muscles participate [1 – 3]. These movements are not innate 

reflexes like walking, jogging or jumping and require special development [1]. 

Fine motor skills involve the synchronization of hands and fingers movements with the 

eyes [4]. Difference in degree of movement precision of fine motor skills is defined by 

profession, life experience and many other factors. It promotes the intellectual growth and 

develops continuously throughout the human’s life [1, 5]. At the same time, in presence of 

musculoskeletal and nervous system diseases the quality of fine motor skills could deteriorate 

significantly [1, 2, 6, 7]. 

There are several major structures in Central Nervous System (CNS) that are responsible 

for the fine motor skills: cerebral cortex, basal ganglia and cerebellum [8, 9]. Motor cortex of 

cerebral hemispheres and frontal lobe anterior to motorsensory area provide voluntary control 

over all skeletal muscles of the body.  Our understanding of fine motor skills control centers’ 

localization in CNS is based on experimental studies of damage on different levels of neuroaxis, 

as well as clinical investigations data in patients with consequences of Acute Cerebrovascular 

Event, Craniocerebral Trauma and other CNS lesions [7, 9, 10]. Frontal lobe area that is 

responsible for motor skills includes prime motor cortex, supplementary motor area and premotor 

cortex [8]. Primary motor cortex is located in precentral gyrus and traditionally since the classical 

works of Penfield W. & Jasper H. (1951) is visualized as “motor homunculus” [11]. 

Supplementary motor area, which is located immediately in front of prime motor cortex, takes 

part in posture stabilization and adjustment in addition to coordinating the movements’ sequence. 

Premotor cortex, which is located below the supplementary motor area, processes sensory 

information from posterior parietal cortex and participates in sensory planning of movement and 

starts its programming [8, 9]. 

Basal ganglia are represented by the group of nuclei in brain, which is responsible for 

many functions, including movement. Globus pallidus and putamen are two nuclei of basal 

ganglia that participate in motor skills forming. Globi pallidi of hemispheres is involved in 

voluntary movements and putamen is in motor learning [9].  
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Cerebellum is very important for acquisition and development of the motor skills. It 

controls the fine motor skills as well as balance and coordination. Lateral part of the cerebellum 

hemispheres is connected with lateral corticospinal tract and participates in the planning of the 

extremities’ motions. The intermediate part of hemisphere is connected with both lateral 

corticospinal tract and rubrospinal tract and responsible for coordination in distal parts of 

extremities including fine motor skills of fingers [8-10]. 

At the same time, in spite of the fact that the issues of fine motor skills neuroregulation 

are well studied, neurobiological bases of formation of its complex motion skills and recovery of 

fine motor skills in patients with focal brain lesions of different genesis are still the subject to 

discuss. 

The main goal of the current overview is to assess major trends in studying of fine motor 

skills neurobiology.  

Materials and techniques. PubMed (MedLine), Embase databases have been used for 

Information search. Keywords: fine motor skills; neurobiology; neurorehabilitation. Search depth 

is 5 years (2016 – 2021). 12 papers that are more relevant to the topic have been chosen from the 

primary paper array (n=49). MAXQDA (Verbi Software GmbH, Germany) has been used for 

content analysis. 

Results 

One of the major problems of study of neurobiological substrate of fine motor skills is the 

complexity of experimental data usage in clinical situation. As the result, the well-known 

methods of fine motor skills function assessment are being adapted. For instance, Non-Human 

Primate Grasp Assessment Scale (GRAS) is proposed and successfully tested based on Fugl-

Meyer scale and Eshkol-Wachman motion tracking system. Using of GRAS scale allows to 

analyze the fullness of restoration of finger movements in primates with modelled cortical injury 

of motor area [12]. 

Another research studied the motor activitiy of distal parts of upper limbs in both 

phylogenetically primates and non-primates [13].  

In recent years, great attention has been paid to studying of neural networks that control 

fine motor skills. According to Mayhew SD et al. (2017) bilateral visual-parietal motor network 

is responsible for precise control of hand movements. Correlation between functional Magnetic 

Resonance Imaging (fMRI) and bilateral network of visual, premotor, primary motor, parietal and 
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lower frontal cortex took place during the entire feedback period. However, during stable 

contraction period the correlation has been found with premotor, parietal cortex and thalamus 

only. Thus, the authors have managed to identify the network closely associated with behavior 

reactions while providing visual feedback during performing fine motor movements. Whereas, in 

absence of this network, the broad brain activity was registered which was almost unrelated to the 

behavior characteristics [14]. 

The major researches of the last decades have provided the key proves of role of lobulus 

simplex of cerebelli and interposed nucleus in eyeblink conditioning and fine motor skills 

retardation [15].  

These areas receive inputs from both mossy and climbing fibers, which transmit the 

signals of conditioned and unconditioned stimuli. Based on the activity of these inputs, various 

forms of synaptic and structural plasticity arise at the level of Purkinje cells and interneurons of 

the molecular layer during learning, which leads to noticeable suppression of their simple spike 

activity. As a consequence, the bipolar neuron disinhibits, eventually driving not unconditional 

but conditional closure of the eyelids through the inferior premotor red nucleus and facial motor 

neurons. Another mechanism is the connection of the neurons of the cerebellar vermis through 

the fastigial nucleus with the underlying areas of the brain, which makes it possible to affect the 

performance of various motor tasks. 

Ontogenesis of fine motor skills has been analyzed in Hadders-Algra M (2018) study. It 

has been shown that starting from the early embryonal age the motor behavior is based on 

spontaneous neurological activity: the activity of neural networks in brainstem and spinal cord 

that is modulated by supraspinal activity. Supraspinal activity is initially provoked by cortical 

subplate and then cortical plate induces motion variation. Afferent information is used for 

modelling of developing neural system and in less degree for adaptation of motor behavior. On 

the next stage, starting from the functionally specific age, motor skills alteration begins being 

employed for adaptation. For sucking and swallowing this phase comes before newborn maturity. 

In the language, gross and fine motor skills’ progression this phase appears in 3-4 months after 

delivery i.e. when the focus of development of primary sensory and motor cortex shifts to 

permanent cortical circuits.  
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With age and increasing number of trial and error studies, the infant improves its ability to 

use adaptive and effective forms of vertical gross motor behavior, fine motor skills and 

vocalizations belonging to the mother tongue [17]. 

Some of the modern works consider the role of brainstem structures in fine motor skills 

control [18, 19]. 

However, in recent years, the major progress has been achieved in utilization of artificial 

intellect and machine learning technologies while studying fine motor skills. In the last decades, 

strict hierarchy in motor neurobiology moved to the second place. The most commonly used 

approach is to control motor function through an optimal feedback mechanism, when any of the 

following functions is postulated: either loss function or function of formal definition of the 

problem and finding out what behavior is optimal in relation to this function. This trend is 

considered more progressive in neurobiology and assists to analyze specific motor behavior. 

Nevertheless, by this time the method has been used quite actively in fine motor skills studying. 

On the other hand, the controlling algorithms that are used in artificial intellect and robotics could 

be beneficial. Employment of numerical methods during studying of motor control mechanisms 

allows not only better understanding of mechanisms of fine motor skills but also choosing 

optimal schemes for neuro rehabilitation in patients with motor deficiency after Acute 

Cerebrovascular Event [20]. Figure 1 shows the contemporary view on system of motor 

functions’ regulation including fine motor skills. 
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Figure 1. Neurobiological model of motor control [20] 

 

The above principles are used in particular to create bionic prostheses and other devices 

designed to compensate fine motor deficits [21-23]. 

Conclusion: 

1. Contemporary trends in the problem studying is the widespread utilization of 

information technologies and the development of approaches to neurorehabilitation with motor 

deficiency consideration. 

2. Fine motor skills recovery in patients with CNS lesions requires further 

interdisciplinary integration. 
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