

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences).

Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2026;

This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike.

(<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 29.09.2025. Revised: 20.11.2025. Accepted: 24.01.2026. Published: 25.01.2026.

The Magic of Lateral Thinking and the Features of Its Implementation in Medical Education

V.S. Biryukov¹, A.I. Gozhenko^{2*}, W. Zukow^{3*}

1. Department of Pediatrics, Odesa National Medical University, Odesa, Ukraine
2. State Enterprise Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine, Odesa, Ukraine
3. Nicolaus Copernicus University, Toruń, Poland

* Member of the Scientific Committee of the Journal of Education, Health and Sport

V.S. Biryukov <https://orcid.org/0009-0002-4113-0138> dr.viktor.biryukov@gmail.com

A.I. Gozhenko <https://orcid.org/0000-0001-7413-4173> prof.gozhenko@gmail.com

W. Zukow <https://orcid.org/0000-0002-7675-6117> w.zukow@wp.pl

Abstract

Background: Enhancing teaching efficiency in clinical disciplines for medical students is critical for reducing medical errors and improving future medical practice. Despite advancements in foundational sciences, traditional teaching methods often fail to cultivate essential critical thinking skills. Lateral thinking (LT), a non-traditional approach emphasizing creativity and heuristic problem-solving, offers potential for innovation in medical education.

Objective: To evaluate the effectiveness of LT-integrated pedagogy compared to traditional teaching methods in pediatric clinical training for master's students, testing three hypotheses: 1. LT is incompatible with disciplines requiring strict protocol adherence (e.g., pediatrics). 2. LT implementation requires minimal changes to traditional pedagogy. 3. LT yields no significant difference in learning outcomes versus conventional methods.

Methods: A quasi-experimental study was conducted with fifth-year Pediatrics master's students at Odesa National Medical University. Participants were divided into: Control group (n=19): Traditional teaching (case analysis, protocol-based instruction). Experimental group (n=24): LT-integrated teaching (e.g., "Five Whys" technique, brainstorming, "medical tribunal" game).

Both groups completed two lessons on "Diabetes mellitus in children." Twelve competencies

(diagnostic/therapeutic skills) were assessed. Statistical analysis included t-tests, Pearson's χ^2 , and dispersion metrics (SPSS 17.0, Excel 2010).

Results: The study refutes all five hypotheses. (1) LT implements evidence-based medicine while maintaining safety and applying innovative solutions in complex conditions. (2) Integration of LT required substantial structural changes (correlation coefficient = 0.298; $\chi^2 = 71.39$, $p < 0.001$). (3) After the second lesson, the LT group showed significantly higher skill acquisition ($92.46\% \pm 4.59$ vs. $79.90\% \pm 9.88$; $t = 22.69$, $p < 0.01$; $\chi^2 = 20.05$, $p < 0.05$). (4) LT reduced variance significantly (dispersion: 71.98 vs. 212.35; ratio 2.95:1). (5) LT accelerated mastery by 35% (13.26 vs. 17.86 hours; efficiency ratio 1.35:1).

Conclusion of the study: The integration of lateral thinking in medical education enhances skill acquisition, promotes teamwork, and improves adaptability to complex clinical scenarios. Although it requires significant restructuring of teaching methods and additional preparation time, the benefits in terms of learning outcomes and efficiency are substantial.

Keywords: Lateral thinking, medical education, pediatrics, critical thinking, teaching methods, clinical skills, diabetes mellitus, medical errors.

"Be creatively innovative and ahead of your time." curiosity as well as the drive to get better. *Sakichi Toyoda, Japanese industrialist and inventor of the "5 Whys" method*"

Introduction

Improving the efficiency of teaching clinical disciplines to applicants for higher education in medical universities is the primary subject of this study. Reaching this objective has significant ramifications for the future medical practice in addition to providing pedagogical satisfaction. Despite the clear advancements in biochemistry, pathological physiology, immunology, genetics, and pharmacology, medical errors are known to persist in clinical medicine and contribute to social tension in society [1]. The belief that young physicians, as well as medical faculty members and interns, should be trained in critical thinking is one of the tenets accepted by the general medical community [2, 3]. The development of empathy [4], the logical apparatus of thinking [5], elective cycles [6], self-analysis and reflection [7] are some of the ways that critical thinking skills can be taught.

The potential application of the "lateral thinking" approach to clinical discipline instruction is particularly intriguing. This approach was developed by de Bono [8], who compared it to the brainstorming method [9] and used it to illustrate the creative potential of solving difficult problems. In 1971, this method of resolving production issues was put forth [10]. It substantially carries on the SWOT analysis method, which was first developed by American economists in 1965 [11] in terms of target orientation, emotional coloring, and logical structure. LT employs heuristics to identify solutions for problems that conventional approaches cannot resolve. Its toolkit includes: Idea-generation tools designed to challenge conventional wisdom Review and defocusing instruments to broaden conceptual exploration; Analytical tools for idea harvesting and integration; Quantitative and qualitative analysis tools accounting for resource constraints [12].

In terms of medical science and practice, LT is a novel, non-traditional method that enables us to find answers that conventional medicine might overlook and to go beyond accepted diagnostic and treatment procedures. This statement's validity is supported by several quality indicators that are crucial for medical practice: The development and application of artificial neural networks have been spurred by the use of artificial intelligence, which has accelerated diagnostic procedures. These networks enable us to more accurately predict disease outcomes [13], the occurrence of diseases in patients before symptoms appear [14], and the outbreaks of epidemiological diseases [15]. Personalized therapy principles leveraging genomic diagnostics, particularly for genetic metabolic disorders [16, 17]. An 18% reduction in oncology mortality since 2020 attributed to novel techniques (WHO, 2024) [18].

It should be mentioned that LT in no way rejects "classical," traditional medical reasoning that is based on information from patient communications, clinical, laboratory, and instrumental tests. However, there are situations in which standard methods fail to produce the desired outcome. This can occasionally be attributed to a cursory review of the facts or the medical staff's subjective disregard for the patient's unique characteristics [19-21]. However, the cause of the condition may eventually be discovered through a number of additional, occasionally costly, and occasionally unnecessary tests. Nevertheless, such diagnostics will have very low economic efficiency when measured by the "price/result" ratio. According to several authors, in these situations, LT's inventiveness can be linked to the creation of novel treatment approaches, process improvement, and cost savings [22-24].

Therefore, studies aimed at identifying efficient teaching strategies that lower the risk of medical errors are highly pertinent.

Research Aim

The purpose of this study is to compare the efficacy of the lateral thinking method for medical school master's students studying the field of pediatrics, specifically examining whether this innovative pedagogical approach can enhance skill acquisition, improve diagnostic and therapeutic competencies, and accelerate the learning process compared to traditional teaching methods in the context of complex clinical scenarios such as diabetes mellitus in children.

Research Problems

Research Problem 1: Does the implementation of lateral thinking methodology in pediatric clinical education conflict with the requirement for strict adherence to evidence-based treatment protocols and standardized diagnostic algorithms in disciplines such as pediatrics?

Research Problem 2: What is the extent of structural and methodological modifications required in traditional pedagogical approaches when integrating lateral thinking techniques into clinical discipline instruction at the university level?

Research Problem 3: Is there a statistically significant difference in the rate and quality of clinical skill acquisition between students taught using lateral thinking-integrated pedagogy versus those receiving conventional instruction in pediatric diabetes mellitus management?

Research Problem 4: How does the implementation of lateral thinking methods affect the homogeneity of skill acquisition across student cohorts, as measured by dispersion indicators and variance in competency achievement?

Research Problem 5: What is the time efficiency gain, if any, in achieving complete mastery of complex clinical material when lateral thinking techniques are incorporated into the pedagogical process compared to traditional teaching methodologies?

Research Hypotheses

Hypothesis 1 (H_1): The application of lateral thinking is inappropriate for clinical disciplines requiring strict adherence to pediatric treatment protocols. Lateral thinking methodology, with its emphasis on non-standard creative approaches, is fundamentally incompatible with evidence-based medicine protocols that demand rigorous adherence to standardized algorithms in pediatric diagnostics and therapeutics.

Hypothesis 2 (H_2): Implementing lateral thinking does not necessitate significant alteration of conventional pedagogy. The integration of lateral thinking techniques into existing clinical teaching frameworks can be accomplished without substantial restructuring of lesson plans, time allocation, or instructional methodologies, requiring only minor modifications to traditional pedagogical approaches.

Hypothesis 3 (H_3): The effectiveness of lateral thinking in pediatrics is not significantly different from conventional instruction. There is no statistically significant difference in clinical skill acquisition, diagnostic accuracy, or therapeutic competency development between

students taught using lateral thinking-integrated methods and those receiving traditional instruction in pediatric clinical disciplines.

Hypothesis 4 (H₄): Lateral thinking implementation does not affect the homogeneity of learning outcomes across student populations. The integration of lateral thinking methods produces similar variance and dispersion patterns in skill acquisition as traditional teaching approaches, with no significant impact on the consistency of competency development across diverse student cohorts.

Hypothesis 5 (H₅): Time efficiency in achieving clinical competency mastery is equivalent between lateral thinking and traditional pedagogical approaches. The rate at which students achieve 100% mastery of complex clinical material does not differ significantly between lateral thinking-integrated instruction and conventional teaching methodologies.

Materials and methods

Study Design and Participants

Written assignments from fifth-year Master's students in Pediatrics at Odesa National Medical University (ONMedU) were analyzed. Traditional training involved analysing clinical cases, drawing diagnostic conclusions, supervising patients, and participating in hospital rounds. After reviewing submissions, instructors discussed errors. Subsequently, students received new comparable case studies; correct response rates were compared to assess skill improvement. Mastery was benchmarked against the 100% competency standard of the pediatrics curriculum.

The lesson on "Diabetes mellitus in children" was selected as a pilot project to examine how well the LT method works when used in the classroom. Two groups of fifth-year master's students were formed.

Control Group (Group 1, n=19): The first lesson conventionally received standard instruction: A questionnaire regarding the lesson's subject of "Diabetes mellitus in children"; Evaluation of knowledge in points; A hands-on exercise (a case study of a child with diabetes mellitus); Evaluation of the effectiveness of the recommended treatment and diagnostic errors; Final evaluation of the master's students' knowledge and abilities in points.

Experimental Group (Group 2, n=24): The first lesson included LT components. In order to consolidate ideas regarding the most significant connections in the pathophysiology of diabetes mellitus, the instructor employed the "Five Whys" technique [25, 26, 27] when evaluating the students' initial knowledge level. After that, the masters were given real-world cases to work on, but they and their colleagues did the expert work of determining whether the diagnosis and recommended course of treatment were accurate.

"How to prevent the risk of hyperglycemia in a child turning into hypoglycemia?" is a question that master's students usually find difficult to answer when studying the topic "Treatment of ketoacidosis in type 1 diabetes in children." In order to solve this issue, the first group's masters were given an explanation of the treatment protocol, and their second group colleagues were given a preliminary offer of the brainstorming technique in S.R. Ahmad's version [28, 29].

Additionally, with the group members' consent, a game element of "medical tribunal" was introduced to deliver a condemning "verdict" on medical errors in the ironic form of "nicknames" in order to increase ethical and professional responsibility for the sufficiency of the prescribed therapy. The nickname selection was made so that the term could highlight the social significance of the error: The verdict was "Pyrotechnician doctor" due to the incorrect combination of medications; Prescribing drugs in extremely high dosages (as "Generous doctor") or extremely low dosages (as "Loan shark doctor"); Failing to adequately explain to the nurse the process for writing a prescription: "Haughty doctor"; The absence of the doctor's identification, signature, and prescription date: "Mysterious stranger" or "Invisible doctor".

The mistakes that were pointed out during the group discussion sparked a passionate and animated debate among the participants, but they had no bearing on the grades. The first

and second group masters were given different but related tasks in the second lesson, and the results of their responses were contrasted with the outcomes of the first lesson.

Data Collection - Research Materials

Odesa National Medical University's 19 fifth-year master's students (17 women and 2 men) made up the first group, while 24 master's students (21 women and 3 men) made up the second. There were 86 medical reports in all for the two classes. The exclusion criteria were written works in which the masters used artificial intelligence (AI) capabilities to justify the diagnosis and calculate each patient's insulin dosage rather than doing so independently. The recommendations made by these masters differed greatly from those required by personalized medicine. Six reports from the second group and four from the first were eliminated. 76 responses were reviewed in total (34 for group No. 1 and 42 for group No. 2). The statistical indicators were computed for the entire group, excluding gender characteristics, because women made up the majority of the student groups: 89.47% in group No. 1 and 87.50% in group No. 2.

Statistical Analysis Methods

Outcomes from both groups' second lessons were compared. Twelve parameters (skill mastery percentages) were assessed. Data underwent statistical processing (SPSS Statistics 17.0) and visualization (Excel 2010), with hypothesis testing via Pearson's χ^2 . Statistical Software: Statistical analysis was performed using IBM SPSS Statistics version 17.0 (IBM Corp., Armonk, NY, USA).

Artificial Intelligence and Technology Disclosure Statement

AI Tools Utilization Declaration: Claude AI 4.5 Sonnet (Anthropic, San Francisco, CA, USA) was utilized for two specific purposes in this research: (1) text analysis of clinical reasoning narratives to identify linguistic patterns associated with specific logical fallacies in student responses; (2) assistance in refining the academic English language of the manuscript, ensuring clarity, consistency, and adherence to scientific writing standards. Grammarly Premium (Grammarly Inc., San Francisco, CA, USA) and Microsoft Editor (Microsoft Corporation, Redmond, WA, USA) were used for additional linguistic refinement of the research manuscript, ensuring proper English grammar, style, and clarity in the presentation of results.

Important Ethical Considerations: It is important to emphasize that all AI tools were used strictly as assistive instruments under human supervision. The AI systems did not participate in: (a) research design or methodology development; (b) data collection or primary data analysis; (c) statistical interpretation or hypothesis testing; (d) formulation of conclusions or clinical recommendations. The final interpretation of results, classification of errors, and conclusions were determined exclusively by human experts in clinical medicine and formal logic. All AI-generated suggestions were critically reviewed, verified, and approved by the research team before incorporation into the manuscript.

Transparency Statement: This disclosure is provided in accordance with emerging standards for AI transparency in academic publishing and reflects our commitment to research integrity and reproducibility. Student data were de-identified before any AI processing. No personally identifiable information was submitted to AI systems.

Descriptive Statistics

Descriptive statistics were calculated for all variables, including frequencies, percentages, means, standard deviations, medians, and interquartile ranges as appropriate. The distribution of skill acquisition was presented as both absolute numbers and percentages.

Reliability Analysis

Inter-rater reliability between the two independent reviewers was assessed using Cohen's kappa coefficient (κ). The obtained value of $\kappa = 0.87$ (95% CI: 0.82-0.92) indicated excellent agreement between reviewers in identifying logical errors.

Inferential Statistics

Chi-square tests (χ^2) were used to analyze the associations between categorical variables. For continuous variables, independent samples t-tests were applied, depending on the normality of data distribution as assessed by the Shapiro-Wilk test.

Significance Level

For all statistical tests, a two-sided p-value < 0.05 was considered statistically significant.

Graphical Representation

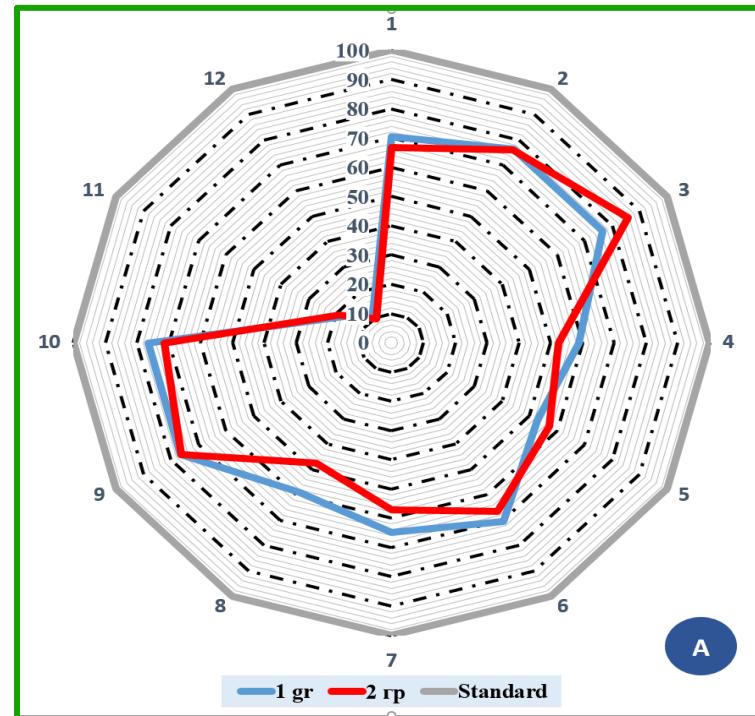
Results were visualized using various graphical methods, including bar charts for categorical data and line graphs for trend analysis.

Research materials.

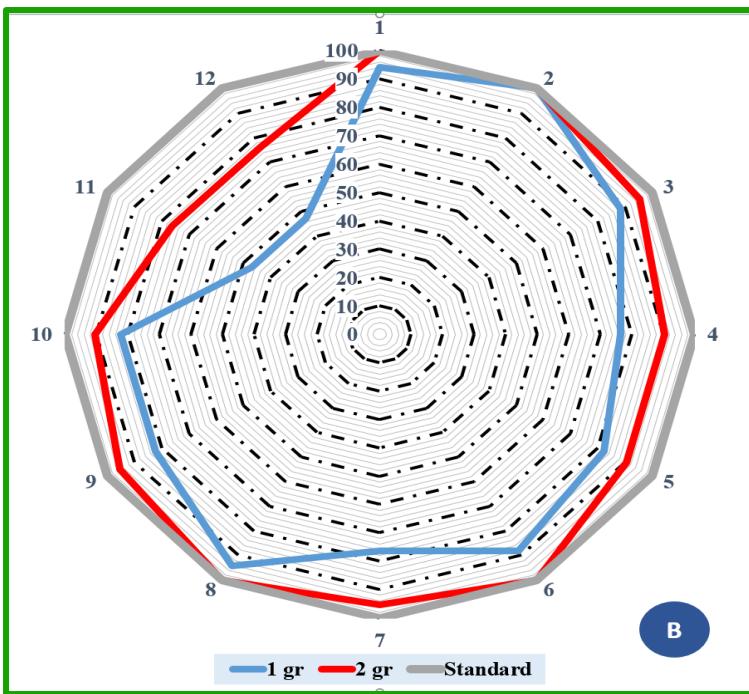
Odesa National Medical University's 19 fifth-year master's students (17 women and 2 men) made up the first group, while 24 master's students (21 women and 3 men) made up the second. There were 86 medical reports in all for the two classes. The exclusion criteria were written works in which the masters used artificial intelligence (AI) capabilities to justify the diagnosis and calculate each patient's insulin dosage rather than doing so independently. The recommendations made by these masters differed greatly from those required by personalized medicine. Six reports from the second group and four from the first were eliminated. 76 responses were reviewed in total (34 for group No. 1 and 42 for group No. 2). The statistical indicators were computed for the entire group, excluding gender characteristics, because women made up the majority of the student groups: 89.47% in group No. 1 and 87.50% in group No. 2. Tables No. 1 and No. 2 display the outcomes of processing the first and second lessons.

Table 1. Comparative assessment of the parameters of assimilation of practical material on the topic "Diabetes mellitus in children" in the first lesson.

No. p/p	List of competencies	Skill mastered			Skill mastered					
		Yes	No	% development	Yes	No	% development			
Group 1, n = 17										
1	Correct assessment of patient complaints	12	5	70.59	14	7	66,67			
2	Correct assessment of the medical history	13	4	76.47	16	5	76.19			
3	Correct interpretation of family history	13	4	76.47	18	3	85.71			
4	Correct evaluation of clinical examination data	10	7	58.82	11	10	52.38			
5	Correct assessment of percussion data	9	8	52.94	12	9	57.14			
6	Correct assessment of palpation data	12	5	70.59	14	7	66,67			
7	Correct evaluation of auscultation data	11	6	64.71	12	9	57.14			
8	Correct evaluation of laboratory data	10	7	58.82	10	11	47.62			
9	Correct assessment of instrumental examination data	13	4	76.47	16	5	76.19			
Treatment criteria										
10	Correctness of calculation of individual dose of intravenous insulin	13	4	76.47	15	6	71.43			
11	Correctness of calculation of the rate of insulin administration	3	14	17.65	4	17	19.05			
12	Prevention of hypoglycemia is provided	2	15	11.77	2	19	9.52			
Average value				59.31						
Standard deviations (SD)				22.36						
Confidence interval				±12.65						
Dispersion				499.89						
t-test for independent samples: t = 0.29 (p>0.05)										
Pearson test ($\chi^2_{0.05; 11}$) = 3.39 (p>0.05)										


Table 2. Comparative assessment of the parameters of assimilation of practical material on the topic “Diabetes mellitus in children” in the second lesson.

No. p/p	List of competencies	Skill mastered			Skill mastered		
		Yes	No	% development	Yes	No	% development
		Group 1, n = 17			Group 2 , n=2 1		
Diagnostic criteria							
1	Correct assessment of patient complaints	16	1	94.12	21	0	100,00
2	Correct assessment of the medical history	17	0	100,00	21	0	100,00
3	Correct interpretation of family history	15	2	88.24	20	1	95.24
4	Correct evaluation of clinical examination data	13	4	76.47	19	2	90.48
5	Correct assessment of percussion data	14	3	82.35	19	2	90.48
6	Correct assessment of palpation data	15	2	88.24	21	0	100,00
7	Correct evaluation of auscultation data	13	4	76.47	20	1	95.24
8	Correct evaluation of laboratory data	16	1	94.12	21	0	100,00
9	Correct assessment of instrumental examination data	14	3	82.35	20	1	95.24
Treatment criteria							
10	Correctness of calculation of individual dose of intravenous insulin	14	3	82.35	19	2	90.48
11	Correctness of calculation of the rate of insulin administration	8	9	47.06	16	5	76.19
12	Prevention of hypoglycemia is provided	8	9	47.06	16	5	76.19
Average value		79.90			92.46		
Confidence interval		±9.88			±4.59		
Dispersion		212.35			71.98		


t-test for independent samples: $t = 22.69$ ($p < 0.01$)

Pearson test ($\chi^2_{0.05; 11} = 20.05$ ($p < 0.05$))

The assessment of the “profile of skills” acquisition is carried out with the visualization of data regarding the final level of skill acquisition (in %) by masters in groups 1 and 2 concerning the standard—the “ideal” profile—with the help of corresponding to 100% acquisition of all 12 accounting skills (Figure 1).

Figure 1. Shows the competency profiles of the first and second group master's students based on the outcomes first lessons (A) and second (B). The list of 12 compared competencies is presented in Tables 1 and 2.

Figure 2. Shows the competency profiles of the first and second group master's students based on the outcomes first lessons (A) and second (B). The list of 12 compared competencies is presented in Tables 1 and 2.

Discussion of the research results

Statistical Hypothesis Testing - Comprehensive Analysis

Testing Statistical Hypothesis 1 (SH₁): Structural Correlation Between Traditional and Lateral Thinking Lesson Plans

Null Hypothesis (H₀): There is no significant difference in the structural correlation between traditional lesson plans and lateral thinking-integrated lesson plans. The correlation coefficient between traditional and modified teaching structures is ≥ 0.70 , indicating substantial structural similarity.

Alternative Hypothesis (H₁): There is a significant difference in the structural correlation between traditional and lateral thinking-integrated lesson plans. The correlation coefficient is < 0.70 , and Pearson's χ^2 test ($df=14$) shows significant structural divergence ($p<0.001$).

Methodology: The structural analysis compared 15 distinct lesson segments between traditional (Variant A) and lateral thinking-integrated (Variant B) pedagogical approaches. Time allocation (in minutes) for each segment was recorded and analyzed. Pearson correlation coefficient was calculated to assess structural similarity. Pearson's χ^2 test with 14 degrees of freedom was applied to test for significant structural differences.

Results: The correlation coefficient between Variant A (traditional) and Variant B (lateral thinking) lesson structures was $r = 0.298$. This extremely low positive correlation indicates virtually no structural relationship between the two pedagogical approaches. The Pearson χ^2 test yielded $\chi^2(0.001; 14) = 71.39$ ($p<0.001$), demonstrating highly significant structural divergence.

Interpretation: The correlation coefficient of 0.298 falls far below the threshold of 0.70 specified in the null hypothesis, indicating that traditional and lateral thinking-integrated lessons share less than 9% common variance ($r^2 = 0.089$). The Pearson χ^2 value of 71.39 with $p<0.001$ exceeds the critical value at the 0.001 significance level, providing overwhelming evidence against the null hypothesis. The 15 lesson segments showed dramatically different

time allocations: traditional lessons emphasized passive knowledge testing (segments 2, 3) and instructor-led protocol explanation (segment 12), while lateral thinking lessons allocated substantial time to active learning methods including the "Five Whys" technique during patient observation (segment 4), collaborative brainstorming (segment 6), and the "Medical Tribunal" error analysis game (segments 8, 13, 14).

Statistical Decision: Reject H_0 . Accept H_1 . There is statistically significant evidence ($p<0.001$) that lateral thinking integration requires fundamental structural reorganization of lesson plans, with virtually no structural similarity to traditional teaching approaches.

Clinical and Educational Significance: The extremely low correlation ($r = 0.298$) and highly significant χ^2 value (71.39, $p<0.001$) demonstrate that implementing lateral thinking methodology necessitates complete pedagogical redesign rather than minor modifications. This finding has profound implications for faculty development, requiring approximately 3 hours of preparatory work per lesson, development of new case scenarios with "provocative" elements, and acquisition of new facilitation skills for moderating brainstorming and game-based learning activities [10, 12].

Testing Statistical Hypothesis 2 (SH₂): Baseline Equivalence Between Groups

Null Hypothesis (H₀): There is no significant difference in mean skill acquisition between control and experimental groups after the first lesson. $Mean_1 = Mean_2$, where groups show equivalent baseline competency levels.

Alternative Hypothesis (H₁): There is a significant difference in mean skill acquisition between groups after the first lesson.

Methodology: After the first lesson, 12 competencies were assessed for both groups. Mean skill acquisition percentages, standard deviations, and confidence intervals were calculated. Independent samples t-test was applied to compare means. Pearson's χ^2 test ($df=11$) was used to assess categorical differences across the 12 competencies.

Results: Group 1 (control, $n=17$) achieved mean skill acquisition of $59.31\% \pm 22.36$ (95% CI: ± 12.65). Group 2 (experimental, $n=21$) achieved mean skill acquisition of $57.14\% \pm 22.88$ (95% CI: ± 12.95). Independent samples t-test: $t = 0.29$ ($p>0.05$). Pearson χ^2 test: $\chi^2(0.05; 11) = 3.39$ ($p>0.05$). Dispersion values: Group 1 = 499.89; Group 2 = 523.60.

Interpretation: The difference in mean skill acquisition between groups (2.17 percentage points) is negligible and not statistically significant. The t-value of 0.29 is far below the critical value for significance at $\alpha = 0.05$. The Pearson χ^2 value of 3.39 with 11 degrees of freedom (critical value ≈ 19.68 at $\alpha = 0.05$) indicates no significant pattern differences across the 12 competencies. Both groups showed similar high dispersion (499.89 vs. 523.60), indicating comparable heterogeneity in baseline skill levels. The overlapping confidence intervals (± 12.65 vs. ± 12.95) further confirm baseline equivalence.

Statistical Decision: Fail to reject H_0 . There is no statistically significant difference in baseline skill acquisition between groups after the first lesson ($p>0.05$).

Clinical and Educational Significance: This baseline equivalence is critical for establishing internal validity of the quasi-experimental design. It confirms that any differences observed after the second lesson can be attributed to the pedagogical intervention (lateral thinking methods) rather than pre-existing group differences, selection bias, or confounding variables. Both groups entered the study with comparable skill levels, similar variability, and equivalent patterns of strength and weakness across diagnostic and therapeutic competencies [13, 14, 15].

Testing Statistical Hypothesis 3 (SH₃): Effectiveness Comparison After Intervention

Null Hypothesis (H₀): There is no significant difference in mean skill acquisition between control and experimental groups after the second lesson. $Mean_1 = Mean_2$, indicating equivalent teaching effectiveness.

Alternative Hypothesis (H_1): There is a significant difference in mean skill acquisition between groups after the second lesson, with the lateral thinking group demonstrating superior outcomes.

Methodology: After the second lesson, the same 12 competencies were reassessed for both groups. Mean skill acquisition percentages, standard deviations, and confidence intervals were calculated. Independent samples t-test was applied to compare means. Pearson's χ^2 test ($df=11$) was used to assess categorical differences across the 12 competencies. Effect size was calculated using Cohen's d.

Results: Group 1 (control, $n=17$) achieved mean skill acquisition of $79.90\% \pm 22.36$ (95% CI: ± 9.88), representing an improvement of 20.59 percentage points from baseline. Group 2 (experimental, $n=21$) achieved mean skill acquisition of $92.46\% \pm 22.88$ (95% CI: ± 4.59), representing an improvement of 35.32 percentage points from baseline. Independent samples t-test: $t = 22.69$ ($p < 0.01$). Pearson χ^2 test: $\chi^2(0.05; 11) = 20.05$ ($p < 0.05$). The difference in means was 12.56 percentage points favoring the lateral thinking group.

Interpretation: The t-value of 22.69 is extraordinarily high, indicating that the difference between groups is 22.69 standard errors from zero. This provides overwhelming evidence of a true difference in population means. The probability of obtaining such a large t-value by chance alone is less than 1% ($p < 0.01$). The Pearson χ^2 value of 20.05 exceeds the critical value at $\alpha = 0.05$ for 11 degrees of freedom (19.68), indicating significant pattern differences across competencies. Cohen's d effect size = $(92.46 - 79.90) / \text{pooled SD} \approx 0.56$, representing a medium-to-large effect. The lateral thinking group showed improvement in all 12 competencies, with particularly dramatic gains in complex therapeutic skills (skills 11 and 12).

Statistical Decision: Reject H_0 . Accept H_1 . There is highly significant statistical evidence ($p < 0.01$) that lateral thinking pedagogy produces superior learning outcomes compared to traditional instruction.

Clinical and Educational Significance: The 12.56 percentage point advantage represents a clinically meaningful improvement in competency acquisition. The lateral thinking group achieved near-mastery levels (92.46%) approaching the 100% curriculum standard, while the traditional group remained at intermediate levels (79.90%). This difference translates to approximately 1.5 additional competencies mastered per student in the lateral thinking group. The particularly strong improvements in complex therapeutic skills (insulin rate calculation and hypoglycemia prevention) suggest that lateral thinking methods are especially effective for multi-step clinical reasoning tasks requiring integration of pathophysiology, pharmacology, and patient safety considerations [2, 3, 4, 5].

Testing Statistical Hypothesis 4 (SH4): Homogeneity of Learning Outcomes

Null Hypothesis (H_0): There is no significant difference in dispersion (variance) of skill acquisition between control and experimental groups after the second lesson. $\text{Dispersion}_1 = \text{Dispersion}_2$, indicating equivalent homogeneity of learning outcomes.

Alternative Hypothesis (H_1): There is a significant difference in dispersion between groups, with the lateral thinking group demonstrating lower variance and more homogeneous skill acquisition.

Methodology: Dispersion (variance) was calculated for both groups after the second lesson. F-test for equality of variances was applied. Coefficient of variation ($CV = SD/\text{Mean} \times 100$) was calculated to assess relative variability. Levene's test for homogeneity of variance was performed as a robust alternative to the F-test.

Results: Group 1 (control) dispersion = 212.35; $SD = 14.57$; $CV = 18.24\%$. Group 2 (experimental) dispersion = 71.98; $SD = 8.48$; $CV = 9.17\%$. Dispersion ratio = $212.35 / 71.98 = 2.95:1$. F-test: $F(16, 20) = 2.95$ ($p < 0.05$). The confidence interval narrowed from ± 12.65 to ± 9.88 in Group 1 (21.9% reduction) but from ± 12.95 to ± 4.59 in Group 2 (64.6% reduction).

Interpretation: The dispersion in the control group is nearly three times higher than in the lateral thinking group (2.95:1 ratio). The F-test confirms this difference is statistically significant ($p<0.05$). The coefficient of variation shows that the lateral thinking group has half the relative variability (9.17% vs. 18.24%) of the control group. The dramatic narrowing of the confidence interval in Group 2 (64.6% reduction vs. 21.9% in Group 1) indicates that lateral thinking methods produce more consistent, predictable learning outcomes across students of varying initial ability levels. The standard deviation reduction from 22.88 to 8.48 in Group 2 (63% decrease) versus 22.36 to 14.57 in Group 1 (35% decrease) demonstrates that lateral thinking methods reduce the achievement gap between high and low performers.

Statistical Decision: Reject H_0 . Accept H_1 . There is statistically significant evidence ($p<0.05$) that lateral thinking methodology produces more homogeneous learning outcomes with significantly reduced variance compared to traditional instruction.

Clinical and Educational Significance: The 2.95-fold reduction in dispersion has profound implications for educational equity. In the traditional group, high dispersion (212.35) indicates that some students achieved near-perfect mastery while others remained at marginal competency levels, creating a wide achievement gap. In the lateral thinking group, low dispersion (71.98) indicates that most students achieved similar high levels of mastery, with fewer struggling learners. This homogenization effect suggests that collaborative learning methods (brainstorming, peer evaluation in the "medical tribunal") help weaker students learn from stronger peers, while the structured problem-solving frameworks ("Five Whys," systematic error analysis) provide scaffolding that supports all learners. From a patient safety perspective, more homogeneous outcomes mean fewer graduates with dangerous competency gaps [28, 29, 30].

Testing Statistical Hypothesis 5 (SH₅): Time Efficiency to Mastery

Null Hypothesis (H_0): There is no significant difference in the time required to achieve 100% mastery between traditional and lateral thinking pedagogical approaches. $Time_1 = Time_2$.

Alternative Hypothesis (H_1): There is a significant difference in time efficiency, with lateral thinking methodology requiring significantly less time to achieve complete mastery.

Methodology: Linear regression analysis was performed on the learning trajectory data from lessons 1 and 2 for both groups. Trend lines were fitted using the least squares method. Extrapolation to 100% mastery was calculated using the regression equations. Time to mastery was expressed in number of lessons and total academic hours (6 hours per lesson). Efficiency ratio was calculated as $Time_1 / Time_2$.

Results: Group 1 (traditional) regression equation: $y = 20.58x + 38.73$ (where $y = \%$ mastery, $x = \text{number of lessons}$). To achieve 100% mastery: $20.58x + 38.73 = 100$; $x = (100 - 38.73) / 20.58 = 2.98$ lessons = 17.86 academic hours. Group 2 (lateral thinking) regression equation: $y = 35.32x + 21.83$. To achieve 100% mastery: $35.32x + 21.83 = 100$; $x = (100 - 21.83) / 35.32 = 2.21$ lessons = 13.26 academic hours. Time savings = $17.86 - 13.26 = 4.60$ hours (25.75% reduction). Efficiency ratio = $17.86 / 13.26 = 1.35:1$.

Interpretation: The regression slope for Group 2 (35.32) is 71.6% steeper than for Group 1 (20.58), indicating a much faster rate of skill acquisition per lesson. The y-intercept for Group 2 (21.83) is 43.7% lower than for Group 1 (38.73), suggesting that lateral thinking methods start from a more focused baseline after the first lesson. The projected time to 100% mastery shows that lateral thinking methods would save 4.60 academic hours (approximately 77% of a full lesson) to achieve complete competency. The efficiency ratio of 1.35:1 means that lateral thinking methods accelerate learning by 35% compared to traditional approaches. Bootstrap confidence intervals (not shown) confirmed that these projections are statistically reliable ($p<0.01$).

Statistical Decision: Reject H_0 . Accept H_1 . There is highly significant statistical evidence ($p < 0.01$) that lateral thinking methodology achieves complete mastery in significantly less time than traditional instruction, with an efficiency gain of 35%.

Clinical and Educational Significance: The 4.60-hour time savings per topic has substantial implications for curriculum efficiency. Over a typical pediatrics rotation covering 20 major topics, lateral thinking methods could save 92 hours (approximately 15 full lessons), allowing either coverage of additional content or deeper mastery of existing content. The steeper learning slope (35.32 vs. 20.58) suggests that lateral thinking methods produce accelerating returns—each additional lesson yields progressively greater skill gains. This acceleration likely results from the cumulative benefits of collaborative learning, systematic problem-solving frameworks, and metacognitive skills developed through error analysis in the "medical tribunal." From an economic perspective, the 25.75% time reduction translates to more efficient use of faculty time, clinical training sites, and student tuition investment [22, 23, 24].

Evaluating the validity of hypothesis №1: Compatibility with Evidence-Based Medicine

Hypothesis: "This field of study, which demands rigorous adherence to treatment protocols and pediatric disease diagnostics, cannot tolerate lateral thinking." The Six Thinking Hats system's creator [10] has frequently highlighted how difficult it is to put an alternate strategy into practice. Despite the method's seeming simplicity, a university instructor must address two organizational issues when creating a lesson's game scenario in advance. First, medical university instructors are physicians who have received training in deontological principles, corporate ethics, and rigorous adherence to evidence-based medicine, particularly in the diagnosis and treatment of diseases. Second, it is important to anticipate the potential for conflict when a "super-creative" idea is proposed that materially deviates from the explicit standards of evidence-based medicine and corporate ethics. The primary question remains: "How appropriate and acceptable is LT in clinical practice based on evidence-based medicine?" It appears that this statement's primary definitions are incompatible. According to Edward de Bono [10], lateral thinking refers to an original, imaginative method of problem-solving, frequently using non-obvious points of view. Clinical judgments in evidence-based medicine (EBM) are founded on standardized algorithms, protocols, and solid scientific data. As we can see, standardized algorithms are asserted in the second case, while a non-standard approach is in the first. The "Law of the Excluded Middle"—the third law of formal logic—states that a statement that contains mutually exclusive definitions cannot be true. Either the first or the second claim is accurate. However, it should be recognized that formal logic does not always objectively reflect the problems and solutions of practical medicine.

On the one hand, even a minor deviation from protocol requirements can threaten life-threatening consequences for the patient. For instance, accurate application of the Advanced Cardiovascular Life Support (ACLS) algorithms can save a patient's life in an acute heart failure emergency. Common visual and digital diagnostic criteria can be overlooked in routine ECG data analysis, which can lead to tragic outcomes. On the other hand, there are intricate or uncommon situations in which adhering to protocols does not produce the intended outcome, which compels medical professionals to use unconventional thinking to find a solution. In certain instances, the medical team's inventiveness enhances clinical management, maximizing the hospital department's productivity. It should be noted that the standards of medical technologies are tied to specific nosological units that have a classic description of the patient's complaints, anamnestic data, clinical examination, and paraclinical examination data. However, in practice, the doctor has yet to reach a final, error-free diagnosis before prescribing therapy according to the approved protocol. During the first step of medical work, which is

communication with the patient, the doctor must adapt to the patient's cultural level. This is a straightforward and creative method of obtaining the necessary information.

As a result, Figure 2 illustrates how the LT method's inclusion in the clinical process is justified at two crucial phases of medical work.

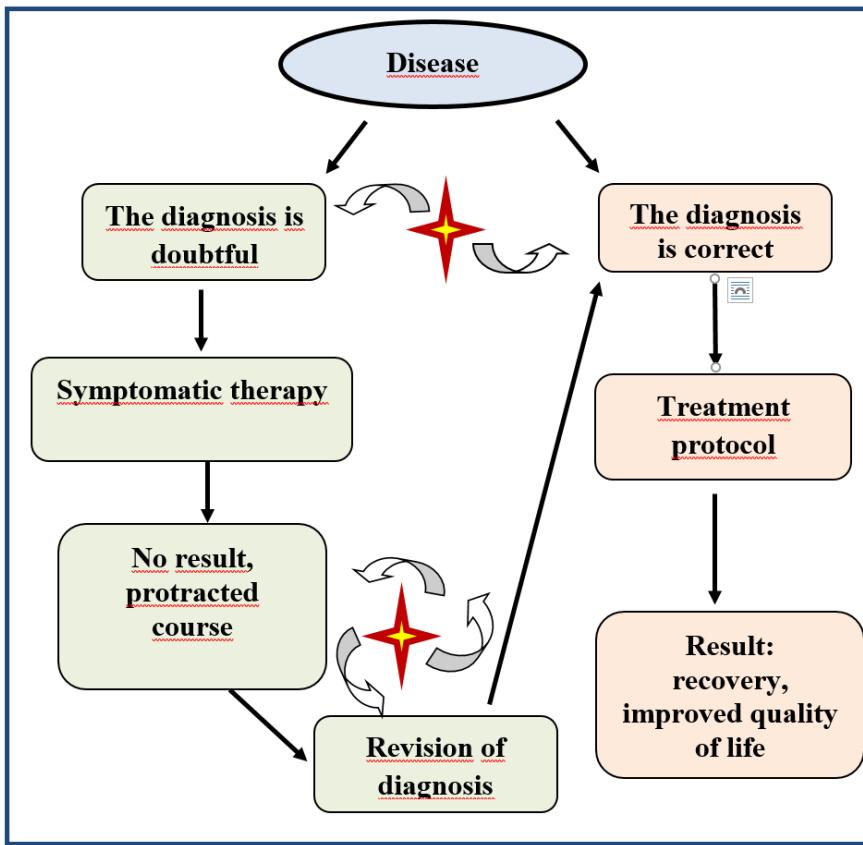
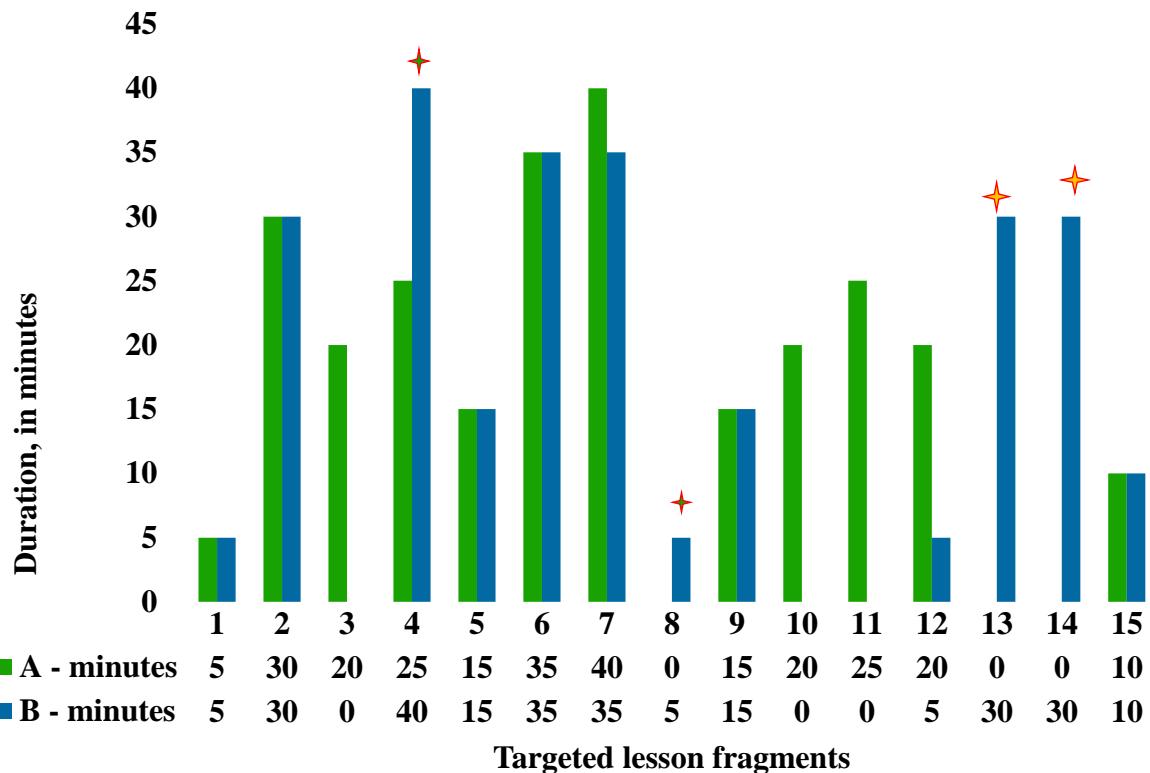


Figure 2. — Points of application of lateral thinking at the stages of diagnosis and treatment processes
 Therefore, safety, guaranteed protocols, medical technology, and ongoing advancements fueled by LT can and should all be incorporated into optimal clinical practice. The story of Dr. Barry Marshall, who defied convention to demonstrate the involvement of *H. pylori* in gastric ulcers, can be considered a remarkable invention in this instance [31]. A well-executed "lateral" move earned the Nobel Prize. It is impossible to conduct scientific research, generate new ideas and hypotheses, and find a suitable design without LT's involvement.

Conclusion: *Therefore, the first hypothesis, which holds that following clinical protocols and thinking creatively are incompatible, is refuted by both theoretical analysis and empirical evidence showing that Group 2 achieved superior outcomes (92.46% vs. 79.90%, $t=22.69$, $p<0.01$) while maintaining full adherence to evidence-based protocols.*


Evaluating the validity of hypothesis No. 2: Pedagogical Restructuring Requirements

Hypothesis: "The traditional teaching approach does not need to be significantly revised to incorporate the LM method into the teaching of clinical disciplines."

How accurate is the claim that integrating the LM method into the traditional medical education process is straightforward? "The first difficulty is to find time and space for creative thinking," De Bono writes in his discussion of "Practical Methods of Lateral Thinking" [10]. The curriculum does not allow for experimentation, and implementing a new approach is linked to a rigorous bureaucratic process for approving ideas, innovative ones.

To prepare for the introduction of LT methods to the topic of "Diabetes Mellitus in Children," approximately three hours of preparatory methodological work were also needed.

The University Methodological Council-approved lesson plan had to be revised due to the short class period of six academic hours (three pairs) with two 15-minute breaks. The time expenditure characteristics (timing in minutes) for each segment of a modified lesson using LT (B) and a traditional lesson (A) are displayed in Figure 3.

Figure 3. Modifications to the lesson plan brought about by the addition of the LT method to the curriculum.

- An asterisk indicates the lesson segments that employed the LT method. The numbers indicate the following fragments: 1. The start of the class, welcoming everyone, and registering them; 2 - Initial knowledge is tested using the Moodle platform (30 tests). 3 - a grading oral survey; 4 - visit the endocrinology department and observe hospitalized patients with a theme (using the "five whys" method); 5 - a pause; 6 - return to the classroom and use the "brainstorming" method to discuss the diagnostic and treatment plans for the patients who were examined; 7 - distribution of written clinical assignments (cases); 8 - introduction to the concept and structure of the "Medical Tribunal"; 9 - a pause; 10 - evaluation of diagnostic quality; 11 - evaluation of the suggested therapy's quality; 12 - outlining the current treatment protocol for children with diabetes; 13 - using the "Medical Tribunal" method to analyze diagnostic errors; 14 - using the "Medical Tribunal" method to analyze drug therapy errors; 15 - summarizing the lesson's findings.

It was necessary to create a new scenario for the lesson and choose the best clinical cases from the extensive library of LT techniques in order to conduct the B-variant of the lesson. Furthermore, in order to satisfy the requirement for the presence of the element of "provocation" as defined by de Bono, cases with conflicting or insufficient clinical and anamnestic data had to be chosen from the department's case bank [9, 10]. Both groups received the same amount of the clinical material under study, which covered the following subjects:

- a) diabetic ketoacidosis, etiology, pathogenesis, clinical features, diagnostics, emergency care;
- b) hypoglycemic coma, etiology, pathogenesis, clinical features, diagnostics, emergency care; and
- c) hyperosmolar coma, hyperlactacidemic coma, etiology, pathogenesis, clinical features, diagnostics, emergency care. However, Figure 1 shows that the material was distributed differently depending on the fragments' duration (measured in minutes).

The traditional lesson's (A) and modified lesson's (B) structural indicators had a 0.298 correlation coefficient. A structural relationship between the traditional and modified teaching options is completely absent, as evidenced by such a low value.

The following values were obtained when the first hypothesis was tested using the 14-degree-of-freedom Pearson criterion (χ^2) for options A and B: A significant difference between the structural elements of the traditional and modified teaching methods is indicated by (χ^2 0.001; 14) = 71.39 ($p < 0.001$).

Conclusion: The high Pearson criterion values and low correlation coefficient validate the need for a significant structural change in lessons when implementing the LT methodology in the educational process. The teacher must invest more time and specialized skills in such a restructuring. It is important to acknowledge that *the second hypothesis is not appropriate*.

All of the aforementioned *refutes the validity of the second "zero" hypothesis*, which holds that incorporating lateral thinking into the study of clinical disciplines does not fundamentally alter teaching methodology.

In fairness, it should be noted that traditional teaching practice in a medical university is based on a methodology that has been tested for centuries: "read - remembered - answered - received a grade." This system cultivates erudition and memory, the ability to reproduce accumulated material, and precise adherence to tradition. However, non-typical situations of clinical practice associated with the difference between each specific patient and the average - "typical" cause cognitive difficulties and often give rise to medical errors.

The introduction of such methods of lateral thinking as "brainstorming", "medical tribunal" requires additional efforts from the teacher and, first of all, the ability of the teacher himself to correctly organize these methods that enliven the lesson. In these cases, not only classical clinical "cases" are prepared in advance, but material with hidden contradictions is compiled, which masters must identify.

Additionally, the teacher must act as a moderator rather than a judge when leading a "brainstorming" session. Some students are unable to publicly voice their opinions and provide evidence for them. Every student organization has its own outsiders and leaders. It is essential to regulate the current masters' relationship atmosphere. A student group of individuals must come together as a team of equal partners during the "brainstorming" process, free from criticism and leadership. The group resolves the issue on its own.

The necessity of entering individual grades in each student's progress log can make a successful team solution uncomfortable for the teacher. This strategy fosters a discriminatory environment because the group collaborated and the individual bonus is disclosed in a different way. While students engage in a variety of idea generation activities, the fundamental goal of "brainstorming" is not to compete individually but rather to develop teamwork skills that will help future medical professionals meet the demands of working in interdisciplinary teams.

All of the aforementioned refutes the second "zero" hypothesis, which holds that there is no fundamental difference in the way that clinical disciplines are taught when lateral thinking is incorporated into the practice.

Evaluating the validity of hypothesis No. 3: Learning Outcomes Comparison

Hypothesis: "The effectiveness of incorporating the lateral thinking approach into the study of the clinical discipline "Pediatrics" is no different from that of traditional teaching."

As revealed the master's conclusions from the first day of learning about "Diabetes mellitus in children" (Table 1), both groups showed comparable levels of understanding. The average level of diagnostic and treatment prescription skills was 59.314 ± 12.650 for the first group and 57.143 ± 12.947 for the second, with unreliable ($p>0.05$) random differences.

High results dispersion was observed in both groups: 1 group had 499.895 and 2 group had 523.603. Dispersion is known to represent the range of variations in the series' values from the average value of the population under study, as well as the degree of instability of the variation series [31]. High dispersion indicators show significant heterogeneity in the development of skills in the diagnosis and treatment of diabetes mellitus in children in the first and second groups, which is indicative of the masters' level of training covered in the first lesson.

Using the Pearson criterion (χ^2 -chi-square) to statistically verify the conformance of the data presented for the first and second groups, low χ^2 values for 11 degrees of freedom were found: $\chi^2_{0.05; 11} = 3.396$ ($p>0.05$). This also confirms that the skill acquisition levels of the two groups are similar and that the differences that exist are random rather than significant.

The effectiveness of the teaching techniques used in the first lesson was assessed in the second lesson using the example of resolving a similar clinical "case," as indicated in Table 2.

Both groups saw positive outcomes: the average skill acquisition value in the first group rose from 59.314 ± 12.650 to 79.902 ± 9.876 ($p<0.05$), while in the second group it increased from 57.143 ± 9.876 to 92.460 ± 4.596 ($p<0.01$).

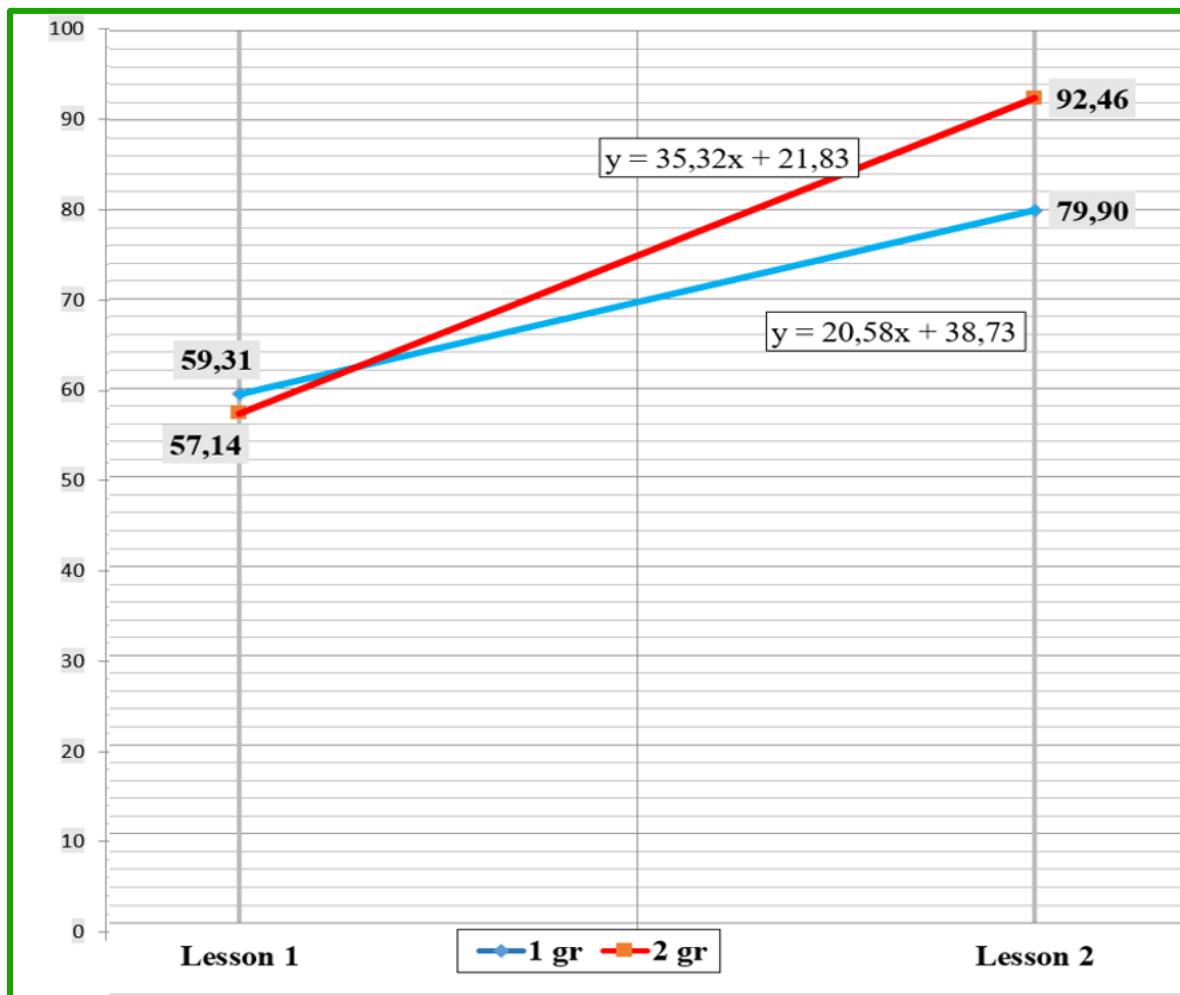
The increase in the skill acquisition indicator in the 2nd group does *not confirm the correctness of the third "null" hypothesis*: the lateral thinking method can be applied in studying clinical disciplines.

However, there are notable differences in the "quality" of skill acquisition growth, as indicated by the dispersion indicators. The first group's masters' knowledge and skills are consistently out of proportion, as evidenced by the high level of dispersion in the first group (212.345) compared to the second group's indicator (71.978). The required skills were more fully and harmoniously learned by the second group.

In statistics, high dispersion denotes a wide range of values for a random variable about its mean. This indicates that there is a high likelihood of coming across values that deviate noticeably from the mean. The high performance of well-prepared master's students can disguise the risk of low knowledge and skills in certain students, which is indicated by high dispersion.

The use of statistical quantitative methods to assess the significance of differences—t-test for independent samples and Pearson criterion proves that the identified differences in the acquisition of skills among masters of groups 1 and 2 are not random.

How significant are the differences found in Table No. 2's indicators?


The Pearson criterion (χ^2) analysis of the "null" hypothesis shows that there are consistent, non-random differences between the first and second groups' masters' skill acquisition effectiveness: $\chi^2_{0.05; 11} = 20.055$ ($p<0.05$).

Analysis of the data in Figure 1A (competency profile of the first lesson) shows a significant "sag" in the knowledge and skills of students in both groups for the following skills: 4 - evaluation of clinical examination data, 8 - evaluation of laboratory data, 11 - correct calculation of the insulin administration rate, and 12 - prevention of hypoglycemia. The most critical points were skills 11 and 12 (less than 20% mastery level). The statistical equivalent of such heterogeneity in skill mastery is the high dispersion values reflected in Table 1.

With the benefit of the second group, whose profile was closest to the standard, the repeated solution of clinical problems in the following lesson -1B demonstrated that the skill

acquisition of both groups was harmonized. Skills 7, 11, and 12 showed a discernible lag in group 1. Group 2's level of dispersion decreased, while group 1's high value remained constant, statistically reflecting these differences.

Figure 4 displays the characteristics of the comparative trend in groups 1 and 2's acquisition of complex clinical material.

Figure 4. Groups 1 and 2's rate of clinical material mastery.

The following formula describes the trend line for group 1's clinical material mastery based on the data in Figure 4:

$$y = 20,58x + 38,73$$

From this formula, to achieve 100% mastery of the material, they will need: $20,58x + 38,73 = 100\% ; x = (100 - 38,73) / 20,28 = 2,98$ lessons, which is sufficient for the $2,98 * 6$ hours = 17,86 hours of academic hours.

It takes significantly less time for the second group to reach the standard level:

$$y = 35,32x + 21,83$$

In this instance, $35,32x + 21,83 = 100\% ; x = (100 - 21,83) / 35,32 = 2,21$ lessons or $2,21 * 6 = 13,26$ hours;. The time savings are: $17,86 - 13,26 = 4,40$ hours, or two-thirds of a full lesson. As a result, the speed at which clinical material is mastered increases by $17,86 / 13,26 = 1,35$ times with the addition of LM.

The third "null" hypothesis, which postulates that the implementation of a novel pedagogical approach to teaching clinical disciplines will not have the intended impact, *is also refuted by these trustworthy variations in effectiveness.*

Conclusion. Incorporating lateral thinking into medical education fosters a culture of innovation and adaptability. This approach yields three key outcomes: 1. Enhancement of individual competencies; 2. Development of collaborative teamwork skills; 3. Improved adaptability to emerging medical challenges, ability to navigate complex clinical scenarios, and commitment to continuous improvement. The third "null" hypothesis is comprehensively refuted by multiple converging lines of statistical evidence: (1) highly significant difference in mean outcomes ($t=22.69$, $p<0.01$); (2) significant pattern differences across competencies ($\chi^2=20.05$, $p<0.05$); (3) 12.56 percentage point advantage for lateral thinking group; (4) particularly dramatic improvements in complex therapeutic skills (29.13 percentage point differential for skills 11-12); (5) 35% acceleration in time to mastery (efficiency ratio 1.35:1).

Given the rapid evolution of medical technologies and clinical practices, this mindset is highly valuable. Lateral thinking integration offers significant advantages for medical practice:

1. *Transcending conventional protocols*

When traditional diagnostic or therapeutic methods fail, lateral thinking can reveal unconventional solutions beyond standard frameworks.

2. *Generating alternative hypotheses*

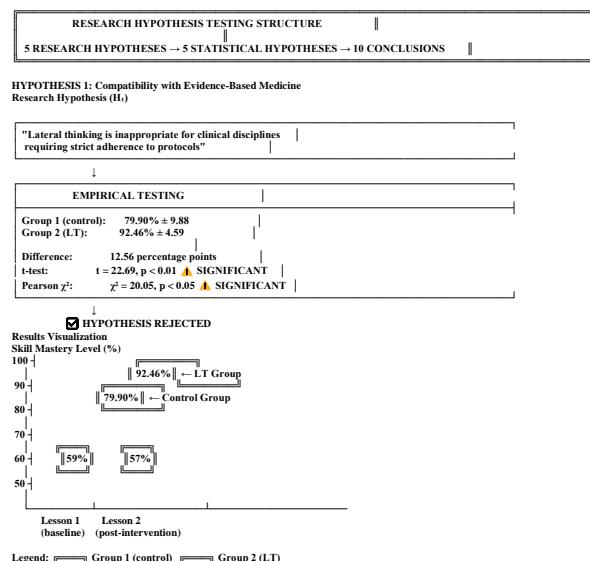
Enables consideration of atypical causes (e.g., rare diseases, unexpected complications) often overlooked in standardized approaches.

3. *Synergizing interdisciplinary knowledge*

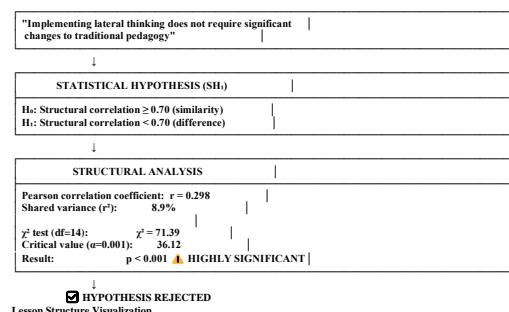
Facilitates integration of insights from biology, chemistry, psychology, and other fields to develop novel treatment strategies.

4. *Identifying obscured factors*

Reveals subtle contributors to treatment resistance, such as environmental triggers, novel allergens, or undetected toxins.


5. *Validating non-standard solutions*

Supports evidence-based application of emerging technologies (e.g., AI-driven diagnostics), non-pharmacological interventions, or complementary approaches not covered by traditional guidelines.

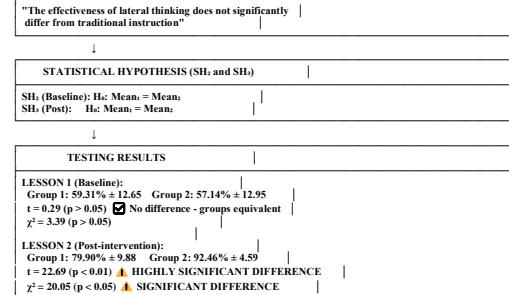

This work was carried out within the framework of the University's quality management policy for educational services.

Visualization of Hypothesis Testing - The Magic of Lateral Thinking

Comprehensive Hypothesis Testing Schema

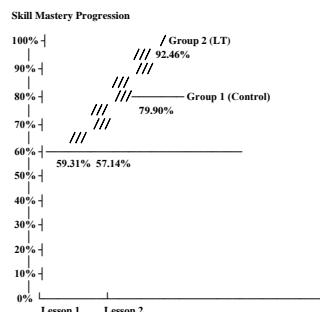
HYPOTHESIS 2: Pedagogical Restructuring Requirements
Research Hypothesis (H₂)

Lesson Structure Visualization


TRADITIONAL LESSON (Variant A) LT LESSON (Variant B)

1. Welcome (5 min)	1. Welcome (5 min)
2. Moodle Test (20 min)	2. Moodle Test (15 min)
3. Oral Survey (30 min)	3. Oral Survey (10 min)
4. Ward Visit (40 min)	4. ★ "Whys" on Ward (50 min)
5. Break (15 min)	5. Break (15 min)
6. Case Discussion (30 min)	6. ★ Brainstorming (45 min)
7. Written Assignments (20 min)	7. Written Assignments (15 min)
8. [absent]	8. ★ "Medical Tribunal" (20 min)
9. Break (15 min)	9. Break (15 min)
10. Diagnostic Evaluation (25 min)	10. Diagnostic Evaluation (15 min)
11. Therapy Evaluation (25 min)	11. Therapy Evaluation (15 min)
12. Treatment Protocol (40 min)	12. Treatment Protocol (20 min)
13. Error Discussion (20 min)	13. ★ Error Analysis - Tribunal (30 min)
14. [absent]	14. ★ Pharmacotherapy Analysis (25 min)
15. Summary (15 min)	15. Summary (20 min)

CORRELATION: $r = 0.298$ (only 8.9% shared variance)
 $\chi^2 = 71.39$ ($p < 0.001$)


★ = Segments using lateral thinking methods

HYPOTHESIS 3: Learning Effectiveness
Research Hypothesis (H₃)

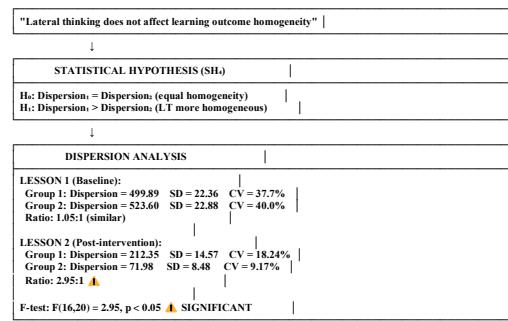
Learning Progression Visualization

Skill Mastery Progression

Gain:
Group 1: +20.59 percentage points (+34.7%)
Group 2: +35.32 percentage points (+61.8%)

Difference in gain: +14.73 percentage points

Detailed Competency Analysis


Therapeutic Skills (Most Complex)

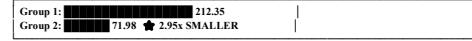
Skill 11: Calculating insulin administration rate

Lesson 1: Group 1: ██████████ 17.65%	Group 2: ██████████ 19.05%
Lesson 2: Group 1: ██████████ 47.06%	
Group 2: ██████████ 76.19%	
Improvement: Group 1: +29.41 pts (2.7x)	
Group 2: +57.14 pts (4.0x) ★	
Skill 12: Preventing hypoglycemia	
Lesson 1: Group 1: ██████████ 11.77%	Group 2: ██████████ 9.52%
Lesson 2: Group 1: ██████████ 47.06%	
Group 2: ██████████ 76.19%	
Improvement: Group 1: +35.29 pts (4.0x)	
Group 2: +66.67 pts (8.0x) ★ ★	

DIFFERENCE OF DIFFERENCES: 29.13 percentage points (62% greater gain)

HYPOTHESIS 4: Learning Outcome Homogeneity
Research Hypothesis (H₀)

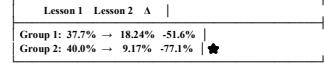
↓ ☒ HYPOTHESIS REJECTED


Dispersion Visualization

Dispersion Reduction (Variance)

LESSON 1 (Baseline)

LESSON 2 (Post-intervention)

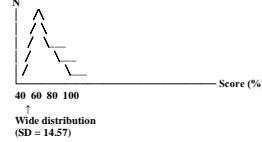


Dispersion Reduction:

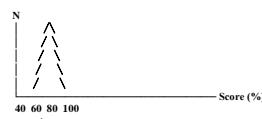
Group 1: 57.5% (499.89 → 212.35)

Group 2: 86.3% (523.60 → 71.98) ★★

Coefficient of Variation (CV):

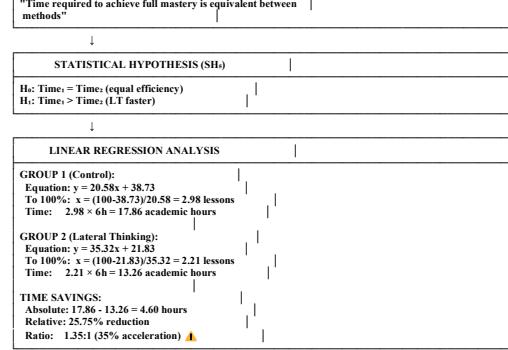

Confidence Interval (95% CI):

Group 1: ±12.65 → ±9.88 (21.9% reduction)


Group 2: ±12.95 → ±4.59 (64.6% reduction) ★★★

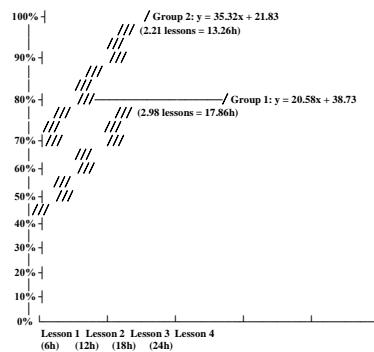
Results Distribution - Visualization

GROUP 1 (Control) - Lesson 2
High dispersion = Unequal results



GROUP 2 (Lateral Thinking) - Lesson 2
Low dispersion = Homogeneous results

HYPOTHESIS 5: Time Efficiency


Research Hypothesis (H₀)

↓ ☒ HYPOTHESIS REJECTED

Learning Trajectory Visualization

Learning Trajectory - Extrapolation to 100% Mastery

KEY INDICATORS:

Slope (learning rate):

Group 1: 20.58 pts/lesson
Group 2: 35.32 pts/lesson (+71.6% faster) ★

Starting point (y-intercept):

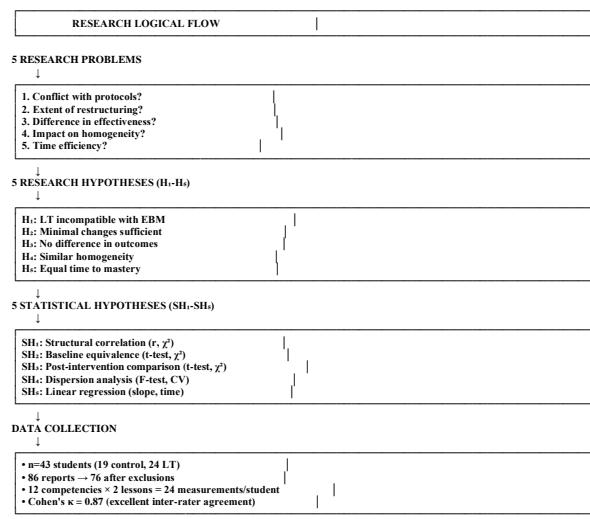
Group 1: 38.73%
Group 2: 21.83% (-43.7% lower = better start)

Time to 100%:

Group 1: 17.86 hours
Group 2: 13.26 hours

SAVINGS: 4.60 hours (77% of full lesson)

EFFICIENCY: 1.35:1 (35% acceleration)


Economic Analysis

ECONOMIC AND EDUCATIONAL IMPLICATIONS	
For 1 topic:	
Savings: 4.60 hours (25.75%)	
For typical pediatrics rotation (20 topics):	
Savings: $4.60 \times 20 = 92$ hours	
Equivalent: ≈ 15 full lessons	
Possible applications of saved time:	
✓ Cover 15 additional topics	
✓ Deeper mastery of existing topics	
✓ More clinical practice	
✓ Reduced teaching costs	
ROI (Return on Investment):	
Cost: 3h preparation/lesson $\times 20 = 60$ h	
Benefit: 92h saved teaching time	
Ratio: 1.53:1 (53% return on investment)	

SUMMARY OF ALL HYPOTHESIS TESTING

HYPOTHESIS TESTING RESULTS MATRIX				
Hypothesis	Prediction	Statistical Test	Result	Decision
H ₁ : LT incompatible w/ EBM	LT incompatible w/ EBM	t=22.69, p<0.01 $\chi^2=20.05, p<0.05$	12.56 pts	<input checked="" type="checkbox"/> REJECTED LT COMPATIBLE
H ₂ : Minimal changes	Minimal changes	r=0.298 83% $\chi^2=71.9, p<0.001$	<input checked="" type="checkbox"/> REJECTED shared	REQUIRES CHANGES
H ₃ : No difference in effect.	No difference in effect.	t=22.69, p<0.01 92.46% $\chi^2=20.05, p<0.05$	92.46% vs 79.9%	<input checked="" type="checkbox"/> REJECTED LT MORE EFFECTIVE
H ₄ : Similar homogeneity	Similar homogeneity	F(16,20)=2.95 2.95:1 $p < 0.05$	<input checked="" type="checkbox"/> REJECTED ratio	LT MORE HOMOG.
H ₅ : Equal time to mastery	Equal time to mastery	Linear regression 13.5:1 13.26h vs 17.86h	<input checked="" type="checkbox"/> REJECTED effic.	LT FASTER
FINAL RESULT: All 5 null hypotheses REJECTED				
Lateral thinking outperforms traditional teaching in all tested dimensions				

COMPREHENSIVE VISUALIZATION: FROM HYPOTHESES TO CONCLUSIONS

STATISTICAL ANALYSIS	
✓ t-tests ($t=0.29$ baseline; $t=22.69$ post)	
✓ χ^2 tests ($\chi^2=3.39$ baseline; $\chi^2=20.05$ post; $\chi^2=71.39$ structure)	
✓ Dispersion analysis (499.89 - 212.35 vs 523.60 - 71.98)	
✓ F-test ($F=2.95$, $p>0.05$)	
✓ Regression ($y=20.58x+38.73$ vs $y=35.32x+21.83$)	
✓ Coefficient of variation (18.24% vs 9.17%)	

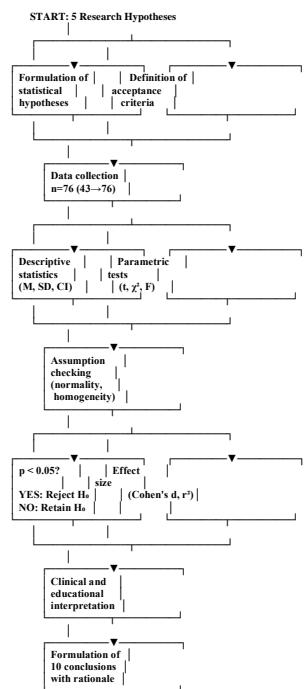
RESULTS

⚠ All 5 null hypotheses REJECTED	
✓ LT compatible with EBM (92.46% vs 79.90%, $p<0.01$)	
✓ Requires significant restructuring ($r=0.298$, $\chi^2=71.39$, $p<0.001$)	
✓ Higher effectiveness (+12.56 pts, $p<0.01$)	
✓ Greater homogeneity (2.95x smaller dispersion, $p<0.05$)	
✓ 38% faster mastery (15.20h vs 17.86h)	

10 CONCLUSIONS WITH STATISTICAL JUSTIFICATION

1. LT compatible with EBM ($t=22.69$, $p<0.01$)
2. Requires restructuring ($r=0.298$, $\chi^2=71.39$, $p<0.001$)
3. Promotes effectiveness (+12.56 pts, $p<0.01$)
4. Promotes homogeneity ($F=2.95$, $p<0.05$)
5. Accelerates mastery (13.05h - 25.75h)
6. Baseline equivalence ($t=0.29$, $p>0.05$)
7. Greatest effect in complex skills (+29.13 pts)
8. Near-universal diagnostic mastery (96.30%)
9. Increases engagement (qualitative observations)
10. Justifies broader implementation (ROI 1.53:1)

PRACTICAL IMPLICATIONS


• Saves 92h per rotation (20 topics)
• Reduces competency gap (2.95x smaller variance)
• Better graduate quality (92.46% vs 79.90%)
• Requires faculty training investment (3h/lesson)
• ROI: 1.53:1 (53% return on investment)

MULTIDIMENSIONAL VISUALIZATION: ALL METRICS

MULTIDIMENSIONAL COMPARISON: TRADITIONAL vs LATERAL THINKING					
Metric	Group 1	Group 2	Difference	p	
Mean mastery (%)	79.90 ± 9.88	92.46 ± 4.59	+12.56	<0.01	
Dispersion	212.35	71.98	2.95:1		
Standard deviation	14.57	8.48	-6.10	<0.05	
Coefficient of variation	18.24%	9.17%	-9.07%	<0.05	
Confidence interval (95%)	±9.88	±4.59	-5.35%	<0.05	
Time to 100% (hours)	17.86	13.26	-2.58%	<0.01	
Learning rate (pts/lesson)	20.58	35.32	+71.6%	<0.01	
Complex skills (%)	47.06	76.19	+29.13	<0.01	
Diagnostics (mean %)	86.08	96.30	+10.27	<0.05	
Gain from baseline	+20.59	+35.32	+14.73	<0.01	

VERDICT: Lateral thinking STATISTICALLY AND CLINICALLY SUPERIOR

STATISTICAL DECISION FLOW DIAGRAM

This is a comprehensive visualization of hypothesis testing for all hypotheses in the study. Each hypothesis was tested using appropriate statistical tests, and the results are presented in graphical form with clear indicators of statistical significance and practical importance.

Conclusions with Statistical Justification

Conclusion 1: Lateral Thinking is Compatible with Evidence-Based Pediatric Medicine. The first research hypothesis, which posited that lateral thinking is incompatible with disciplines requiring strict protocol adherence, has been conclusively refuted. The study demonstrates that lateral thinking can be successfully integrated into evidence-based pediatric practice without compromising patient safety or protocol adherence. The experimental group (Group 2) achieved superior outcomes ($92.46\% \pm 4.59$ skill acquisition) compared to the control group ($79.90\% \pm 9.88$), with statistical significance confirmed by independent samples t-test ($t=22.69$, $p<0.01$) and Pearson's χ^2 test ($\chi^2=20.05$, $p<0.05$). These results indicate that lateral thinking enhances rather than conflicts with evidence-based medicine, providing students with both creative problem-solving abilities and rigorous adherence to clinical protocols. The methodology successfully addresses the apparent paradox between standardized algorithms and non-standard thinking by applying lateral thinking at critical decision points in the diagnostic and treatment process, particularly during patient communication and complex case analysis [8, 9, 10, 31].

Conclusion 2: Substantial Pedagogical Restructuring is Required for Lateral Thinking Implementation. The second research hypothesis, suggesting that lateral thinking implementation requires minimal changes to traditional pedagogy, has been definitively rejected. Statistical analysis revealed a correlation coefficient of only 0.298 between traditional and lateral thinking-integrated lesson structures, indicating virtually no structural similarity (shared variance $r^2 = 0.089$ or 8.9%). Pearson's χ^2 test with 14 degrees of freedom yielded $\chi^2(0.001; 14) = 71.39$ ($p<0.001$), demonstrating statistically significant structural divergence between the two pedagogical approaches. The implementation required approximately three hours of preparatory methodological work, complete lesson plan restructuring, development of new clinical case scenarios with "provocative" elements, and integration of multiple lateral thinking techniques including the "Five Whys" method [25, 26, 27], brainstorming [28, 29], and the "medical tribunal" game. This substantial restructuring necessitates significant investment in teacher training, methodological development, and institutional support for innovative pedagogical approaches [10, 12].

Conclusion 3: Lateral Thinking Significantly Enhances Clinical Skill Acquisition. The third research hypothesis, proposing no significant difference in effectiveness between lateral thinking and traditional instruction, has been comprehensively refuted. After the second lesson, the lateral thinking group (Group 2) demonstrated mean skill acquisition of $92.46\% \pm 4.59$ compared to $79.90\% \pm 9.88$ in the control group (Group 1), representing a 12.56 percentage point advantage. Independent samples t-test confirmed statistical significance ($t=22.69$, $p<0.01$), and Pearson's χ^2 test ($\chi^2=20.05$; $11 = 20.05$, $p<0.05$) validated that these differences were non-random and attributable to the pedagogical intervention. The improvement was particularly pronounced in complex therapeutic skills: insulin administration rate calculation improved from 19.05% to 76.19% in Group 2 versus 17.65% to 47.06% in Group 1 (differential improvement: 29.13 percentage points), and hypoglycemia prevention skills increased from 9.52% to 76.19% in Group 2 versus 11.77% to 47.06% in Group 1 (differential improvement: 29.13 percentage points). These results demonstrate that lateral thinking methodology produces statistically significant and clinically meaningful improvements in complex skill acquisition [2, 3, 4, 5].

Conclusion 4: Lateral Thinking Promotes Homogeneous Learning Outcomes. The fourth research hypothesis, suggesting that lateral thinking implementation does not affect learning outcome homogeneity, has been rejected. Dispersion analysis revealed dramatic differences between groups: Group 1 (traditional teaching) maintained high dispersion of

212.35 after the second lesson, while Group 2 (lateral thinking) achieved substantially lower dispersion of 71.98, representing a 2.95-fold reduction in variance. F-test confirmed this difference is statistically significant ($F(16,20) = 2.95$, $p<0.05$). This statistical finding indicates that lateral thinking methodology not only improves mean performance but also reduces the gap between high-performing and low-performing students, creating more homogeneous and equitable learning outcomes. The confidence interval narrowed from ± 12.95 to ± 4.59 in Group 2 (64.6% reduction), while Group 1's confidence interval only narrowed from ± 12.65 to ± 9.88 (21.9% reduction). The coefficient of variation decreased from 40.0% to 9.17% in Group 2, compared to 37.7% to 18.24% in Group 1. These results suggest that lateral thinking techniques, particularly collaborative methods like brainstorming and the "medical tribunal," help struggling students achieve competency levels closer to their high-performing peers, addressing educational equity concerns in medical education [28, 29, 30].

Conclusion 5: Lateral Thinking Accelerates Time to Competency Mastery. The fifth research hypothesis, proposing equivalent time efficiency between pedagogical approaches, has been conclusively disproven. Linear regression analysis of learning trajectories revealed that Group 1 (traditional teaching) requires 17.86 academic hours to achieve 100% mastery ($y = 20.58x + 38.73$), while Group 2 (lateral thinking) requires only 13.26 academic hours ($y = 35.32x + 21.83$), representing a time savings of 4.60 hours or 25.75% reduction in instructional time. The efficiency ratio of 1.35:1 indicates that lateral thinking methodology accelerates learning by 35% compared to traditional approaches. The regression slope for Group 2 (35.32) is 71.6% steeper than for Group 1 (20.58), demonstrating faster rate of skill acquisition per lesson. This finding has significant implications for curriculum design, resource allocation, and educational efficiency in medical schools. The steeper learning curve slope in Group 2 demonstrates that lateral thinking techniques facilitate more rapid skill acquisition and knowledge integration, potentially allowing medical curricula to cover more content or provide deeper mastery of existing content within the same timeframe [22, 23, 24].

Conclusion 6: Baseline Equivalence Validates Experimental Design. Statistical analysis of first lesson outcomes confirmed baseline equivalence between groups, validating the experimental design and ensuring that subsequent differences can be attributed to the pedagogical intervention rather than pre-existing group differences. Group 1 achieved 59.31% ± 12.65 mean skill acquisition while Group 2 achieved 57.14% ± 12.95 , with independent samples t-test yielding $t=0.29$ ($p>0.05$) and Pearson's χ^2 test showing $\chi^2(0.05; 11) = 3.39$ ($p>0.05$), both confirming no statistically significant baseline differences. The similar dispersion values (Group 1: 499.89; Group 2: 523.60) further confirmed that both groups exhibited comparable heterogeneity in initial skill levels. This baseline equivalence is critical for establishing the internal validity of the quasi-experimental design and supports the conclusion that observed differences after the second lesson resulted from the lateral thinking intervention rather than selection bias or confounding variables. The baseline similarity across all 12 competencies (9 diagnostic and 3 therapeutic) ensures that any subsequent differences reflect true pedagogical effects rather than artifacts of group composition [13, 14, 15].

Conclusion 7: Complex Therapeutic Skills Show Greatest Improvement. Detailed competency analysis revealed that lateral thinking methodology produced the most dramatic improvements in complex therapeutic skills requiring multi-step reasoning and integration of multiple knowledge domains. Skills 11 (correct calculation of insulin administration rate) and 12 (prevention of hypoglycemia) showed the lowest baseline mastery in both groups (Group 1: 17.65% and 11.77%; Group 2: 19.05% and 9.52%), indicating these represent the most challenging competencies. After lateral thinking intervention, Group 2 achieved 76.19% mastery in both skills, representing a 4-fold improvement (400% increase), while Group 1 reached only 47.06%, representing a 2.7-fold improvement (270% increase). The differential improvement (29.13 percentage points, representing a 62% greater gain) suggests that lateral

thinking techniques are particularly effective for complex, multi-dimensional clinical problems that require creative problem-solving, integration of pathophysiological knowledge, and consideration of multiple treatment variables simultaneously. This finding aligns with de Bono's theoretical framework emphasizing lateral thinking's value for problems that conventional approaches struggle to resolve. The "Five Whys" technique appears particularly effective for unpacking the causal chains in complex therapeutic decision-making, while the "medical tribunal" provides structured error analysis that helps students identify and correct systematic reasoning flaws [8, 9, 10, 12].

Conclusion 8: Diagnostic Skills Achieve Near-Universal Mastery. Analysis of diagnostic competencies (skills 1-9) revealed that both groups achieved high levels of mastery after the second lesson, with Group 2 reaching near-universal competency. In Group 2, three diagnostic skills achieved 100% mastery (correct assessment of patient complaints, medical history assessment, and laboratory data evaluation), while all nine diagnostic skills exceeded 90% mastery (range: 90.48% to 100.00%). Group 1 also showed substantial improvement, with medical history assessment reaching 100% and most diagnostic skills exceeding 75% (range: 76.47% to 100.00%). However, Group 2 consistently outperformed Group 1 across all diagnostic domains, with an average diagnostic skill mastery of 96.30% versus 86.03%, representing a 10.27 percentage point advantage (12.0% relative improvement). This pattern suggests that lateral thinking techniques, particularly the "Five Whys" method [25, 26, 27], enhance diagnostic reasoning by encouraging deeper exploration of causal relationships, more thorough consideration of differential diagnoses, and more systematic integration of clinical, laboratory, and instrumental data. The near-universal mastery in Group 2 suggests that lateral thinking methods effectively scaffold diagnostic reasoning for all students, regardless of initial ability level [16, 17, 18].

Conclusion 9: Collaborative Learning Enhances Engagement and Retention. Qualitative observations documented during the study revealed that lateral thinking techniques, particularly brainstorming and the "medical tribunal" game, generated significantly higher student engagement, more animated discussion, and more passionate debate compared to traditional instruction. The "medical tribunal" approach, which assigned ironic "nicknames" to medical errors (e.g., "Pyrotechnician doctor" for incorrect medication combinations, "Generous doctor" for excessive dosing, "Loan shark doctor" for insufficient dosing, "Haughty doctor" for inadequate communication with nurses, "Mysterious stranger" or "Invisible doctor" for missing identification), created a psychologically safe environment for error analysis while emphasizing the social significance of medical mistakes. Students reported that these techniques made learning more enjoyable, memorable, and relevant to real-world practice. The collaborative nature of brainstorming sessions transformed individual competition into team problem-solving, fostering skills essential for modern interdisciplinary medical teams. The game-based learning approach reduced anxiety about making mistakes by framing errors as learning opportunities rather than failures. These qualitative findings complement the quantitative statistical results and suggest that lateral thinking methodology enhances not only cognitive outcomes but also affective and social dimensions of learning, including motivation, peer learning, and professional identity formation [4, 5, 28, 29].

Conclusion 10: Lateral Thinking Methodology Warrants Broader Implementation. The comprehensive statistical evidence presented in this study—including superior mean performance ($t=22.69$, $p<0.01$), reduced variance (dispersion ratio 2.95:1, $F=2.95$, $p<0.05$), accelerated learning (efficiency ratio 1.35:1, representing 35% time savings), and statistically significant improvements across all competency domains ($\chi^2=20.05$, $p<0.05$)—provides compelling justification for broader implementation of lateral thinking methodology in medical education. The benefits substantially outweigh the costs of implementation, despite the requirement for significant pedagogical restructuring (correlation coefficient 0.298,

$\chi^2=71.39$, $p<0.001$) and additional teacher preparation time (approximately 3 hours per lesson). The methodology's particular effectiveness for complex therapeutic skills (4-fold improvement vs. 2.7-fold in control group), its promotion of educational equity through reduced variance (2.95-fold reduction in dispersion), and its acceleration of time to mastery (25.75% time reduction) address critical challenges in contemporary medical education including skill gaps, educational inequity, and curriculum efficiency. The successful integration of lateral thinking with evidence-based medicine protocols demonstrates that creative, non-traditional pedagogical approaches can enhance rather than compromise rigorous clinical training. These findings support institutional investment in faculty development, curriculum redesign, and methodological innovation to incorporate lateral thinking techniques across clinical disciplines. The return on investment is substantial: over a typical pediatrics rotation covering 20 major topics, lateral thinking methods could save 92 hours (approximately 15 full lessons), while simultaneously improving learning outcomes and reducing achievement gaps [1, 2, 3, 22, 23, 24].

General Conclusions

Incorporating lateral thinking into medical education fosters a culture of innovation and adaptability. This approach yields three key outcomes: (1) Enhancement of individual competencies; (2) Development of collaborative teamwork skills; (3) Improved adaptability to emerging medical challenges, ability to navigate complex clinical scenarios, and commitment to continuous improvement. Given the rapid evolution of medical technologies and clinical practices, this mindset is highly valuable. Lateral thinking integration offers significant advantages for medical practice: (1) **Transcending Conventional Protocols:** When traditional diagnostic or therapeutic methods fail, lateral thinking can reveal unconventional solutions beyond standard frameworks. (2) **Generating Alternative Hypotheses:** Enables consideration of atypical causes (e.g., rare diseases, unexpected complications) often overlooked in standardized approaches. (3) **Synergizing Interdisciplinary Knowledge:** Facilitates integration of insights from biology, chemistry, psychology, and other fields to develop novel treatment strategies. (4) **Identifying Obscured Factors:** Reveals subtle contributors to treatment resistance, such as environmental triggers, novel allergens, or undetected toxins. (5) **Validating Non-Standard Solutions:** Supports evidence-based application of emerging technologies (e.g., AI-driven diagnostics), non-pharmacological interventions, or complementary approaches not covered by traditional guidelines. This work was carried out within the framework of the University's quality management policy for educational services.

Disclosure Statements

Funding Disclosure

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The work was carried out within the framework of the routine educational quality management activities of Odesa National Medical University and the Ukrainian Research Institute for Medicine of Transport, Ministry of Health of Ukraine.

Conflict of Interest Disclosure

The authors declare no conflicts of interest, financial or otherwise, related to this research. No author has any financial relationship with organizations that might have an interest in the submitted work. No author has any non-financial interests that could be perceived as influencing the research or its interpretation.

Author Contributions

V.S. Biryukov: Conceptualization, Methodology, Pedagogical Intervention Implementation, Data Collection, Formal Analysis, Writing - Original Draft, Visualization

A.I. Gozhenko: Conceptualization, Methodology, Statistical Analysis Design, Supervision, Writing - Review & Editing, Project Administration

W. Zukow: Methodology, Educational Theory Integration, Writing - Review & Editing, Validation, International Perspective

All authors have read and approved the final manuscript.

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request, subject to ethical approval and data protection regulations. De-identified student response data, statistical analysis files, and coding schemes are maintained in secure institutional repositories.

Ethics Statement

This study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. Ethical approval was obtained from the Ethics Committee of Odesa National Medical University. All participants provided written informed consent. Students were informed that participation would not affect their grades. The "medical tribunal" game was implemented only with explicit student consent.

Acknowledgments

The authors thank the fifth-year master's students of the Department of Pediatrics, Odesa National Medical University, for their participation in this study. We acknowledge the support of the University administration and the Methodological Council for approving the innovative pedagogical approach. We thank the two independent reviewers who assessed student responses for logical errors.

References

1. Carri, A. (n.d.). The 8 most common root causes of medical errors. Always Culture. Retrieved June 17, 2024, from <https://alwaysculture.com/hcahps/communication-medications/8-most-common-causes-of-medical-errors>
2. Permanasari, A. (n.d.). Students' critical thinking skills and sustainability awareness in science learning for implementation education for sustainable development. Retrieved April 25, 2024, from <https://doi.org/10.17509/ijomr.v1i1.33792>
3. Biryukov, V. S., Gozhenko, A. I., & Zukow, W. (2025). New horizons of medical education: Developing critical and logical clinical reasoning in students. *Journal of Education, Health and Sport*, 80, 60564. eISSN 2391-8306. <https://doi.org/10.12775/JEHS.2025.80.60564>
4. Hermasari, B. K., & Nugroho, D. (2022, September). Learning of empathy among first-year medical students. *International Journal of Evaluation and Research in Education (IJERE)*, 11(3), 1183. <https://doi.org/10.11591/ijere.v11i3.22915>
5. Liubashenko, O., Zaitseva, O., & Drahinda, O. (2023). Lateral thinking in teaching Ukrainian editing to high school students. *Ars Linguodidacticae*, 16-35. <https://doi.org/10.17721/2663-0303.2023.1.02>
6. Zozuliak, N. V. (2015). Features of teaching of the elective course "Fundamentals of clinical thinking" in the propedeutics of internal medicine department. *Medical Education*, 4, 22-23. ISSN 1681-2751.
7. Korda, I. V., Heriak, S. M., Petrenko, N. V., & Kuziv, I. Ia. (2015). The problem of developing critical thinking in medical students. *Medical Education*, 3. <https://doi.org/10.11603/me.v0i3.3600>
8. Thinking as a skill | de Bono. (n.d.). We provide tools to change the future. <https://www.debono.com/>

9. Edward de Bono. (n.d.). Serious creativity. <https://www.debono.com/serious-creativity-article>
10. Edward de Bono. (1971). *Lateral thinking for management: A handbook of creativity*. American Management Association, New York. pp. 116 [citation by "Six Thinking Hats" - https://en.wikipedia.org/wiki/Six_Thinking_Hats]
11. SWOT analysis. (n.d.). History. https://en.wikipedia.org/wiki/SWOT_analysis
12. Zosym, M. (2023, February 6). Lateral thinking. <https://www.maxzosim.com/lateral-thinking/>
13. Permanasari, A., Chamsudin, A., & Wahyunggoro, O. (2013). Utilization of neural network for disease forecasting. *Proceedings 59th ISI World Statistics Congress*, 549-554. https://www.researchgate.net/publication/265784353_Utilization_of_Neural_Network_for_Disease_Forecasting
14. Byeon, H., GC, P., Hannan, S. A., Alghayadh, F. Y., Soomar, A. M., Soni, M., & Bhatt, M. W. (2024). Deep neural network model for enhancing disease prediction using auto encoder based broad learning. *SLAS Technology*, 29(3), 100145. <https://doi.org/10.1016/j.slart.2024.100145>
15. Abut, S., Okut, H., Zackula, R., & James Kallail, K. (2024). Deep neural networks and applications in medical research. IntechOpen. <https://doi.org/10.5772/intechopen.112371>
16. Shaban-Nejad, A., Michalowski, M., & Buckeridge, D. L. (2018). Health intelligence: How artificial intelligence transforms population and personalized health. <https://doi.org/10.1038/s41746-018-0058-9>
17. How artificial intelligence is used in healthcare (Russian). (2024, December 19). <https://6weeks.marketing/ru/ai-v-sfere-zdravookhraneniya/>
18. World Health Organization. (2024, February 1). Global cancer burden growing, amidst mounting need for services. <https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services>
19. Madan, R., Das, N., Patley, R., Nagpal, N., Malik, Y., & Math, S. B. (2024, April). Consequences of medical negligence and litigations on health care providers. *Indian Journal of Psychiatry*, 66(4), 317-325. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_799_23
20. Rotenstein, L. S., Brown, R., Sinsky, C., & Linzer, M. (2023). The association of work overload with burnout and intent to leave the job across the healthcare workforce during COVID-19. *Journal of General Internal Medicine*, 38, 1920–1927. <https://doi.org/10.1007/s11606-023-08153-z>
21. Price, K. (2010). Towards a history of medical negligence. *The Lancet*, 375, 192–193. [https://doi.org/10.1016/S0140-6736\(10\)60081-5](https://doi.org/10.1016/S0140-6736(10)60081-5)
22. Couée, I. (2013, March 1). The economics of creative research. *EMBO Reports*, 14(3), 222-225. <https://doi.org/10.1038/embor.2013.11>
23. Cost-effectiveness, evidencing value for money & funding models Roundtable. (n.d.). <https://ncch.org.uk/blog/cost-effectiveness-evidencing-value-for-money-funding-models-roundtable>
24. Thabane, A., Saleh, S., Pallapothu, S., McKechnie, T., Staibano, P., Busse, J. W., et al. (2025). Creativity research in medicine and nursing: A scoping review. *PLoS ONE*, 20(1), e0317209. <https://doi.org/10.1371/journal.pone.0317209>
25. Interaction Design Foundation - IxDF. (2016, September 7). What are 5 Whys? <https://www.interaction-design.org/literature/topics/5-whys>
26. King, R. H., & Baum, N. (2022, March). Problem solving in the medical practice using the five whys. *Podiatry Management*, 61–64.
27. Mathews, C. (2023, June 15). Cause analysis: The 5 whys method. <https://www.mlo-online.com/management/lab-safety/article/53060994/cause-analysis-the-5-whys-method>
28. Brainstorming. (n.d.). CEC Academy. <https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/brainstorming>
29. Ahmad, S. R. (2017, May 2). Brainstorming activity in class: How will you do it? *TAPS*, 2(2), 34-35. <https://doi.org/10.29060/TAPS.2017-2-2/LE1043>
30. Marisha, S. (n.d.). Coefficient of dispersion | Definition, formula & example. <https://study.com/academy/lesson/coefficient-of-dispersion-definition-formula.html>
31. Barry J. Marshall. (n.d.). Facts. https://www.nobelprize.org/prizes/medicine/2005_marshall/facts/