

Journal of Education, Health and Sport. eISSN 2450-3118

Journal Home Page

<https://apcz.umk.pl/JEHS/index>

CEMAGA, Roman, HEBDA, Patryk, CZAPLIŃSKI, Mieszko, SZPLIT, Ewa, PATALOG, Mikolaj, PUSTUŁA, Paweł, WIĘCKOWSKA, Katarzyna, BLASZKOWSKI, Bartłomiej, WOLSKI, Adam, and KUBICKI, Mateusz. The Role of Physical Activity in the Prevention and Management of Various Cancers. *Journal of Education, Health and Sport*. 2026;88:68346. eISSN 2391-8306.

<https://doi.org/10.12775/JEHS.2026.88.68346>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences). Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2026; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 16.01.2026. Revised: 05.02.2026. Accepted: 02.02.2026. Published: 17.02.2026.

The role of Physical Activity in the Prevention and Management of Various Cancers

Roman Cemaga¹

ORCID: <https://orcid.org/0009-0003-8372-2905>

E-mail: rcemaga@gmail.com

¹Medical University of Białystok, Jana Kilińskiego 1, 15-089, Białystok, Poland

Patryk Hebda²

ORCID: <https://orcid.org/0009-0006-4660-3554>

E-mail: patrys10h@gmail.com

²Andrzej Frycz Modrzewski University in Krakow, ul. Gustawa Herlinga-Grudzińskiego 1,

30-705 Kraków, Poland

Mieszko Czapliński³

ORCID: <https://orcid.org/0009-0003-8052-4129>

E-mail: 194058@uck.gda.pl

³University Clinical Centre in Gdańsk, Medical University of Gdańsk, ul. Dębinki 7, 80-952 Gdańsk, Poland

Ewa Szplit⁴

ORCID: <https://orcid.org/0009-0001-1464-6027>

E-mail: e.szplit@gmail.com

⁴Gdańsk Medical University, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland

Mikołaj Patalong⁵

ORCID: <https://orcid.org/0000-0003-4230-7521>

E-mail: patalongmikolaj@gmail.com

⁵Mikołaj Patalong Private Medical Practice, ul. Zabrzeńska 26/55, 41-907 Bytom, Poland

Paweł Pustula⁶

ORCID: <https://orcid.org/0009-0003-4494-1080>

E-mail: p.pustula@icloud.com

⁶Family Medicine Center, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland

Katarzyna Więckowska⁷

ORCID: <https://orcid.org/0009-0002-4233-1927>

E-mail: katarzyna.wieckowska@o2.pl

⁷Individual Medical Practice Katarzyna Więckowska ul. Deszczowa 18, 40-318 Katowice, Poland

Bartłomiej Błaszkowski⁸

ORCID: <https://orcid.org/0009-0001-9898-2908>

E-mail: B.blaszkowski46@gmail.com

⁸F. Ceynowa Specialist Hospital in Wejherowo 10 Dr. Alojzy Jagalski Street 84-200 Wejherowo Poland

Adam Wolski⁴

ORCID: <https://orcid.org/0009-0005-1969-0640>

E-mail: adam00wolski@gmail.com

⁴Gdańsk Medical University, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland

Mateusz Kubicki⁹

ORCID <https://orcid.org/0009-0005-5646-8109>

E-mail: mateuszpkubicki@gmail.com

⁹Faculty of Medicine, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19a, 25-516 Kielce, Poland

Corresponding Author

Roman Cemaga, Email: rcemaga@gmail.com

Abstract

Background: Cancers remain a leading cause of mortality in a modern society, and their incidence is growing each year. The disease and its related therapies cause considerable side effects, functional deterioration, and reduce quality of life (QoL), all of which correlate with less favourable outcomes. Physical activity (PA) represents a cost-effective and non-invasive adjunct to the traditional therapy regimes, which can alleviate these negative effects and improve clinical outcomes

Aim: The narrative review summarises current evidence about the role of PA in oncology. It provides a solid background in biochemical mechanisms involved in the modulation of cancer biology and evaluates its clinical significance by assessing psychological, physiological, cognitive, QoL and mortality rates

Methods: We conducted a narrative review of the available literature on the role of physical activity in modulating physiological and functional parameters, as well as mortality, in cancer patients. We considered original studies, reviews, systematic reviews and meta-analyses.

Results: Evidence indicates that PA is an effective tool in both the prevention and management of cancers. Patients who engage in PA have improved metabolic, immune and oxidative stress parameters, which provide clinical outcomes such as improved QoL, cognitive, psychological and physiological performance. This consequently leads to a better prevention of cancers and provides benefits in terms of overall survival

Conclusions: PA is an effective strategy for enhancing clinical outcomes in the cancer population and should be considered as an additional approach integrated into clinical guidelines.

Keywords: cancer, physical activity, exercise, sport

1. Introduction

Cancers are one of the major preoccupations in modern medicine. According to the International Agency for Research on Cancer (IARC) report from 2022, there were 20 million new cancer cases and 9.7 million deaths. About 1 in 5 people develops cancer in their lifetime. It is also predicted that by 2050, there will be a 77% increase from the estimated 20 million cases in 2022 [1]. The same report has stated that only 39% of the participating countries in the survey covered the financial basics for cancer management, and only 28% have covered the palliative care basics [1]. As our population tends to live longer thanks to advances in the medical field and novel therapies, the cancer incidence increases [2]. This causes a substantial burden in economics [3]. Therefore, there is a need to develop new cost-effective and evidence-based strategies that could apply to the entire population to 1) reduce cancer incidence; 2) improve cancer management and survival; 3) increase the quality of life (QoL) of cancer patients.

Physical activity (PA) is an important public health tool which can be used in the treatment and prevention of various physical diseases, including diabetes [4], hypertension [5], dyslipidemias [6], osteoporosis [7] and psychiatric issues [8]. This is especially important in the context of cancer patients since malignancies tend to alter muscle function, which can be further declined using treatment regimens which can cause cardiotoxicity, nephropathies and muscle atrophy [9]. This may consequently lead to a sedentary lifestyle and make patients more prone to cardiovascular diseases (CVDs) [10].

PA has an array of positive functions in our body, including the modulation of the immune system [11], decreasing the glucose and lipid levels [6,12] and managing oxidative stress (OS) [13]. The importance of physical activity is especially highlighted by the fact that various medical associations include it as a first-line intervention in common civilisation diseases [14]. It is stated that moderate physical activity can alleviate symptoms of the disease and should be considered as part of rehabilitation in various diseases, including cancers.

Not only can PA be helpful in patients with already diagnosed cancer, but some studies suggest an inverse association between PA and tumour incidence [15].

Therefore, our goal was to provide the current evidence on effects of physical activity on 1) biochemical pathways related to cancer development and progression; 2) incidence of cancers; 3) QoL parameters such as physiological, psychological and cognitive function; 4) mortality in cancer patients.

2. Research methods

A comprehensive literature review was conducted by utilising the advanced search method of the PubMed database. The queries used to find appropriate papers are represented in Table 1. Additionally, some resources were found manually from the cited articles.

The authors reviewed articles referring to the 1) physiological effects of exercise on immune, metabolic and oxidative stress; 2) performance outcomes of exercise on cognitive function, psychological and functional status of cancer patients; 3) role of PA on mortality in cancer patients. Only reliable sources were cited, and proper measures were taken to check the reliability of citations.

Query number	Query	Description
#1	“cancer” OR “tumor” OR “tumour” OR “malignancy” OR “neoplasia”	The query was used to find papers related to cancers
#2	“Immune system” OR “Inflammation” OR “immune response”	The query was used to find papers related to immune response
#3	“Oxidative stress” OR “reactive oxygen species” OR “ROS”	The query was used to find papers related to oxidative stress
#4	“insulin” OR “metabolic” OR “estrogen” OR “obesity” OR “adipose tissue”	The query was used to find papers related to metabolic
#5	“depression” OR “anxiety” OR “psychiatric disorders” OR “mental disorders”	The query was used to find papers related to psychiatric disorders
#6	“cognitive” OR “thinking” OR “dementia” OR “behavior”	The query was used to find papers related to cognitive function disorders
#7	“Cardiorespiratory fitness” OR “muscle strength” OR “muscle mass” OR “fatigue” OR “dyspnea”	The query was used to find papers related to functional status
#8	“QoL” OR “Quality of life”	The query was used to find papers related to quality of life

#9	“mortality” OR “overall survival” OR “death”	The query was used to find papers related to mortality
#10	“Exercise” OR “sport” OR “physical activity”	The query was used to find papers related to physical activity
#10	#1 AND #10 AND #2	The query was used to find papers associated to effects of physical activity on immune response in cancer patients
#11	#1 AND #10 AND #3	The query was used to find papers associated to effects of physical activity on oxidative stress in cancer patients
#12	#1 AND #10 AND #4	The query was used to find papers associated to effects of physical activity on metabolic profile in cancer patients
#13	#1 AND #10 AND #5	The query was used to find papers associated to effects of physical activity on psychiatric disturbances in cancer patients
#14	#1 AND #10 AND #6	The query was used to find papers associated to effects of physical activity on cognitive disturbances in cancer patients
#15	#1 AND #10 AND #7	The query was used to find papers associated to effects of physical activity on functional status in cancer patients
#16	#1 AND #10 AND #8	The query was used to find papers associated to effects of physical activity on quality of life in cancer patients
#17	#1 AND #10 AND #9	The query was used to find papers associated to effects of physical activity on mortality rate in cancer patients

Table 1: Search strategy and keywords used for literature identification. Column A represents the number of query in PubMed advanced search tool; Column B represents keywords used in each query; Column C represents the description of each query.

3. Results

3.1. Physical activity and metabolism

The metabolic properties of cancer cells are one of the oldest areas of research in cancer. It is believed that various metabolic activities are disrupted in tumours, which promotes their

malignant phenotype [16]. To acquire this phenotype, cancer cells need to switch to an anabolic state to produce molecules needed for replication and tumour growth [16].

This can be done by the various pathways and hormones, including the estrogen pathway, insulin and insulin-growth factor-1 (IGF-1) pathway, and leptin pathway.

The estrogen pathway is one of the most prominent in the pathogenesis of estrogen-dependent cancers such as breast cancer (BC), ovarian cancer or endometrial cancer [17]. In pre-menopausal women, estrogens are mainly produced by the ovaries, while in post-menopausal women, peripheral synthesis from aromatisation of adrenal androgens is more significant [17]. The latter process occurs in the adipose tissue and hence is related to obesity [18]. Therefore, weight gain and body mass index (BMI) are one of the major risk factors for developing estrogen-dependent tumours, including BC [18]. Since PA decreases the amount of adipose fat, it can decrease estrogens and lower the risk of BC [12].

Another pathway that promotes the development of cancers is the insulin pathway. Insulin is an anabolic hormone which promotes the growth of cells by allowing an increased availability of substrates such as glucose or amino acids. It also increases the synthesis of IGF-1, a known mitogen that promotes proliferation. Additionally, insulin increases the activity of aromatase, which increases the peripheral synthesis of estrogen, and decreases the hepatic production of sex-hormone binding globulin (SHBG), a protein responsible for estrogen binding in plasma. Reduction of SHBG consequently leads to an increase in the active (unbound) form of estrogen [12,19]. All those changes can lead to the acquisition of a malignant phenotype.

PA is an important factor in modulating the insulin pathway. It increases hepatic and muscle insulin sensitivity, promotes its uptake by those tissues and therefore decreases its plasma levels [12]. Additionally, PA decreases the levels of IGF-1 [20].

Additionally, PA modulates the leptin pathway, which is a hormone produced by adipocytes that stimulates cell proliferation. It also increases the synthesis of proteolytic enzymes such as metalloproteinases (MMPs), favouring the invasion and migration of cancer cells. This can be further facilitated by the pro-angiogenetic potential of leptin.

PA has been shown to reduce leptin levels, most likely due to reducing adiposity. Furthermore, lowering adiposity increases the levels of adiponectin, an anti-inflammatory protein that reduces the proliferation of cancer cells [12].

3.2. Physical activity and oxidative stress

Oxidative stress is defined as a disturbance in the balance between the production of reactive oxygen species (ROS) and their elimination through antioxidants. OS can be caused by various

factors, such as infection, ischemia, mental stress or due to exposure to environmental pollutants, smoking or drugs [21]. It is also associated with obesity, which is linked to a sedentary lifestyle [22,23]. OS may contribute to the development of chronic disorders such as autoimmune disorders, CVDs, neurodegenerative diseases, and ageing [13]. It is one of the most important factors of DNA damage, which can promote mutations and cancer development [12]. For example, it can cause mutation of a tumour suppressor gene - p53 [12]. Moreover, OS promotes the production of angiogenic factors such as VEGF and facilitates MMPs that promote cancer growth and metastasis [12].

During PA, the level of OS increases, causing the organism to adapt and improve its antioxidant defence systems [13]. For example, it was found that people who exercise more have increased levels of mitochondria [12]. Moreover, PA can increase superoxide dismutase (SOD) and glutathione (GSH) activity, favouring an anti-oxidative state [13]. It can also increase the plasma concentration of uric acid, a known scavenger of plasma ROS [23]. On the contrary, a sedentary lifestyle promotes proteolysis in muscles, which favours OS formation [23].

3.3. Physical activity and immunological response

The immune system is a network of biochemical processes aimed at recognising and destroying “alien” antigens such as infectious pathogens or malignancies [24]. It is comprised of cytokines, proteins and immune cells. Therefore, its proper activity is an important factor in the prevention of cancer development. Indeed, altered immune function, which can be seen in various diseases, including inborn errors of immunity (IEI) [25] or AIDS [26] has been linked to the higher incidence of the tumours [25].

Immune escape is the final phase of cancer development, where cancer cells modulate the immune system to escape from being destroyed by it [27]. For example, they can modify self-antigens to escape from T-cell recognition, changing the balance between pro-death and anti-death signals via upregulation of antiapoptotic molecules, secreting metabolites which impair the function of immune cells [27].

The immunosuppressive state in cancer patients is further aggravated by chemotherapy, which, due to its non-specific nature, destroys immune cells [28,29].

Therefore, various therapies were implemented to strengthen the immune response to destroy tumours, and the new field of immunooncology has been developed [24]. Hence, novel strategies are needed to increase immune activity to not only “fight” the cancer cells, but also to prevent infections, which are common in cancer patients [30].

It has been demonstrated in various studies that regular PA positively affects immune competence and reduces the risk of infections compared to a sedentary lifestyle [11]. For example, Bachi et al. [31] have found that physically active individuals have higher immunoglobulin M and G levels against influenza virus compared to the sedentary group. This could be explained by the fact that regular activity favours the secretion of inflammatory cytokines such as interferon-gamma (IFN- γ), tumour necrosis factor-alfa (TNF- α), interleukin-6 (IL-6) and IL-12 via Toll-like receptor (TLR) signalling pathways, and increases the level of Th1 lymphocyte [32]. However, some other evidence suggests that extensive exercise causes immunosuppressive effects due to elevated levels of cortisol [33]. Epidemiological analyses support this theory. It has been shown that the incidence of upper respiratory tract infections is generally higher during the period of heavy training and 1-2 weeks after participation in a marathon [33]. Therefore, we should advise cancer patients to limit excessive exercise in favour of moderate activity.

Various studies have assessed the immune system activity in cancer patients who undergo PA. For example, a systematic review by Fairey et al. [28] has proposed the “inverted J hypothesis”, which suggests that positive benefits of PA occur with regular or moderate exercise, while exhaustive exercise may lead to a suppressed immune system. The improvements upon moderate PA are believed to be caused by an enhanced NK activity, reduced neutropenia, increased granulocyte count and reduced insulin-like growth factor (IGF-1), which can promote binding of immune cells to the cancer cell, thus helping with apoptosis [28]. As for today no study provides the direct link between the PA and reduced infections rate, although it could be suggested indirectly by the fact that PA reduces the hospital admission by 8% (AR = -0.08 (95% CI from -0.03 to -0.13) [34] and infections are responsible for approximately 31% of hospital admissions in cancer patients representing its most common cause [30].

3.4. Physical activity as a prevention against cancer

Taking together all the PA benefits, it could be logically assumed that PA, through reduction of OS, decreasing the level of estrogen and leptin-producing adipose tissue and enhancing immune activity, could decrease the incidence of cancer.

Various epidemiological studies support this theory. For example, PA is associated with a 25% reduction of BC risk and a 30-40% reduction of colon cancer risk [15]. It is consisted with the study of Rockhill et al., [35] who found that a regular physical activity for more than 7h per week reduced a BC incidence by 18% compared to those who trained less than 1h for

week (RR = 0.82; 95% CI: 0.70 - 0.97) and Wolin et al., [36] study which found that PA is associated with 24% lower risk of colon cancer (RR = 0.76; 95% CI: 0.72-0.81). Moreover various meta-analyses found that PA also reduces the risk of gastric cancer by 19% (RR = 0.81; 95% CI: 0.73-0.89) [37]; pancreatic cancer by 11% (RR = 0.89; 95% CI: 0.82-0.96) [38]; lung cancer by 21% for a normal-intensity PA (RR = 0.79; 95% CI: 0.73-0.86) and 25% for a high-intensity PA (RR = 0.75; 95% CI: 0.68-0.84) [39] and 35% lower odds for developing hepatocellular carcinoma (OR = 0.65; 95% CI: 0.45-0.95) [40]. Therefore, it becomes clear that PA is an effective way to prevent cancer incidence. Doctors must motivate patients to engage in PA during routine visits because it not only decreases the risk of cancer occurrence but also improves the physiological and psychological well-being of patients who have been diagnosed with cancer.

3.5 Physical activity and psychological function

Various studies have demonstrated that cancer patients are frequently affected by psychiatric conditions, including depression [41,42] and anxiety [43]. The prevalence of depression was estimated to be 27% (95% CI: 24-30%) and tends to be higher amongst females [44].

Those conditions are mainly caused by an increased stress associated with the physical *pain due to the pharmacological regimes* [45], various contraindications and limitations in life [46], loss of healthy functioning [46], feeling of worthlessness, fear of death [46] and financial burden, often called “financial toxicity” imposed on the family [47]. The latter is especially crucial in the low-income countries such as Pakistan, Nepal or Vietnam, where people face higher depression prevalence compared to the high-income countries [41,44].

The consequences of those conditions cannot be overlooked as they lead to the worst compliance with the therapies due to lack of motivation, neglect of the doctor’s advice, and struggle with communication of crucial symptoms [41]. They can also lead to lifestyle modification and promote a sedentary lifestyle. Interestingly, depression and anxiety could also predispose to cancer development as both diseases share similar risk factors with cancers, including sedentary lifestyle, alcohol consumption and smoking [43]. Taking the profound role of psychiatric conditions in both the development and management of cancer, there is a need to implement strategies that could prevent them.

There is much evidence that PA is a beneficial factor in both prevention and management of psychiatric disorders [48,49] and improves the mood in individuals without psychiatric conditions [8]. People who exercise regularly report better self-esteem, vitality,

general well-being and satisfaction with physical appearance, all of which might be altered in cancer patients [50]. Various hypotheses explain how PA can affect individuals.

The psychological theory states that the psychological benefits are achieved by: 1) distraction where diversion from unfavourable stimuli, such as daily life struggles in cancer patients; 2) self-efficacy, which improves our mood by engaging into challenging activity and achieving new goals; 3) social interaction since mutual involvement in the same activity can form bonds between participants [8]. Taken the fact that cancer patients are commonly affected by depressive mood disorders [42], *PA, through providing distraction by not thinking about the disease and improving self-efficacy, could show promising results.* Since cancer patients are often marginalised by society [51], the additional social interaction could also improve psychological well-being.

On the other hand physiological theory explains that improvements in the mood can be improved thanks to the next molecular mechanisms: 1) increasing synaptic activities of monoamines, which could partially work in the same manner as anti-depressive drugs and 2) release of endorphins (endogenous opioids) that have an inhibitory function on central nervous system (CNS) can provide sensation of calm [8] and reduction of pain [52]. This could reduce negative thinking in cancer patients and provide better pain management.

For example, Aydin et al, [46] have observed that 60 min aerobic and home-based exercise in patients who completed cancer therapy and were on routine controls have had improvement in psychological health parameters assessed by WHOQOL Score ($p=0.009$) and social score ($p=0.016$). The same study has shown that the exercise group had 3 times lower depression risk assessed by the Beck Depression Inventory Scale ($Z=-3.893$; $p<0.001$). Another meta-analysis demonstrated that yoga moderately decreased depression (Hedge's $g = -0.554$; 95% CI: from -0.878 to -0.231) and anxiety (Hedge's $g = -0.553$; 95% CI: from -0.781 to -0.325) symptoms compared to controls [53]. Additionally, meta-analysis by Zhang et al. [54] showed that amongst breast cancer survivors, those who performed exercise had lower depression severity ($SMD = -0.63$; 95% CI: from 0.93 to -0.33) compared to controls. The anxiety severity was also reduced ($SMD = -0.49$; 95% CI: from -0.74 to -0.23). Interestingly, the same study found that the sessions lasting less than 60 minutes had more favourable outcomes than those above 60 minutes. This could be potentially caused by the fact that cancer survivors usually have a lower tolerance for physical exercise, and prolonged activity could induce excessive fatigue and anger. The exercise was also considered to be safe, as the amount of side effects was the same between the control and cancer group [54].

Taking into consideration the psychological aspect of the patients, doctors should encourage them to undertake moderate physical exercise to improve well-being and help with depression/anxiety symptoms. This could potentially lead to a better QoL, better compliance with the therapy and ultimately better impact on survival.

3.6 Physical activity and functional status

Functional status is an individual's ability to perform normal daily activities required to maintain well-being. It is determined by the physiological capacity (muscle strength, walking distance, maximal oxygen uptake) of the organism and symptom burden (eg, fatigue, dyspnea, musculoskeletal pain). It is an important predictor of overall health condition and longevity [55].

PA seems to play an important role in the improvement of those parameters [56,57]. People who exercise tend to have fewer fractures and falls [58], can walk longer distances [59] and have improved muscle strength [57].

Cancer patients are especially prone to alterations in those parameters. On one side, the cancer itself can cause deterioration of physical health by causing a chronic inflammatory [60], compressing organs and altering their function [61] or reducing red blood cell (RBC) formation [62]. From the other side, patients who undergo cancer treatment are faced with numerous toxicities and side effects caused by chemotherapy (CTX), radiotherapy (RTX) or surgical intervention [63,64]. It can be even further aggravated by the fact that a psychological decline can cause a lack of motivation in cancer patients and promote a sedentary lifestyle. Later is in fact associated with the progression of other diseases, including CVDs [65], metabolic diseases [66] and mental health disturbances [67]. Consequently, the management of cancer/treatment side effects should be included in intra- and post-treatment care.

There are various symptoms that patients can report during/after therapy. Those include fatigue [68], decreased muscle strength [69] and cardio-respiratory efficacy [70].

Fatigue is believed to be the most common cause of physical deterioration in cancer patients. Up to 80-90% of patients undergoing RTX or CTX report fatigue [71]. It can be characterised by lack of energy, decreased physical ability and chronic tiredness [71]. Fatigue can significantly impair a patient's daily life, decrease their work activity and emotional well-being. It can be caused by various factors, including the chronic inflammation state induced by the cancer, side effects of treatments, which can cause the release of cytokines from the destroyed cells, psychological distress or muscle deterioration caused by a sedentary lifestyle. [72]. Various studies have found that PA improves fatigue in cancer patients [20,68,71]. For example, meta-analysis by Tomlinson et al. [71] has found that PA moderately decreases

fatigue (SMD = -0.45; 95% CI: from -0.57 to -0.32). Another study by Dennett et al. [68] was consistent with the findings. They have shown that exercise had a positive effect on fatigue when compared to usual care. However, an excessive PA has been associated with a lesser efficacy.

Fatigue can be especially seen in lung cancer patients, since the tumour or tumour-related interventions can reduce the amount of functional lung tissue, which leads to hypoxemia [70]. PA can partially restore such distress by increasing respiratory muscle strength [70].

Another important parameter which is reduced in cancer patients is **cardio-respiratory fitness (CRF)**. It shows the capacity of the organism to transport and use oxygen [73]. Since cancer patients have reduced diffusion capacity due to the infiltration of the lungs or damage to cardiac muscle caused by the chemotherapeutics, their cardio-respiratory fitness markers, such as the 6-minute walking test (6MWT) and peak oxygen consumption ($VO_{2\text{peak}}$), decrease [74].

PA seems to provide a beneficial role on CRF as indicated by the increase of 6MWT in healthy individuals [59]. Similar benefits were seen in the cancer population. For example, meta-analysis by Fong et al. [20] has shown that PA was associated with an additional 29m (95% CI: 3-55m) of walking distance in the 6MWT test. They have also observed that $VO_{2\text{peak}}$ was increased in physically active individuals. Furthermore, an RCT study done by Edvardsen et al. [75] has shown that PA not only reported an increase in $VO_{2\text{peak}}$, but that the control group that did not perform PA reported a decrease in $VO_{2\text{peak}}$ in lung cancer patients.

Another important parameter of functional status in cancer patients is **muscle mass and strength**. Loss of muscle mass is associated with the worst prognosis in chronic diseases such as diabetes, cirrhosis and CVDs [76]. In cancer, low muscle mass (sarcopenia) is linked to cachexia, driven by systemic inflammation and the presence of chronic disease [76]. This leads to various negative effects, including reduced muscle strength [70] and more severe toxicities induced by CTX [76,77]. Consequently, patients with reduced muscle mass should employ other strategies to prevent further decline in muscle mass and strength.

PA can increase muscle mass by the activation of satellite cells, enhancing protein synthesis through the mechanistic target of rapamycin (mTOR) pathway and modulating microRNAs to promote growth pathways [78]. Therefore, various studies have confirmed the positive role of exercise on muscle mass in cancer patients [79,80].

The effect of exercise on the musculoskeletal system can be assessed directly by measuring lean body mass (LBM), which is a measure of the body's non-fat tissue used to determine the amount of muscle mass in the organism [81] or indirectly through strength tests.

The current evidence tells us that PA has a beneficial effect on muscle mass. For example, Lønbro et al. [80] have observed that lean body mass (LBM) assessed by dual energy X-ray absorptiometry was increased in post-chemotherapy cancer patients after exercise by 0.7kg (95% CI: 0.6-2.0). Additionally, exercise improved knee extension by 17.6 kg (95% CI: 12.7-22.5), chest press by 7.0 kg (95% CI: 5.6-8.0) and leg press by 21.3 kg (95% CI: 8.2-34.4); however, the group size was relatively small. The results were consistent with meta-analysis by Koeppel et al., [82] which showed that the exercise group gained on average 0.85 kg LBM (95% CI: 0.26-1.43). Moreover, the control group has shown a decrease in LBM of 0.59kg. However, it was not statistically significant (95% CI: from -1.04 to 0.06) [80]. Additionally, it is worth noticing that the implementation of exercise with dietary advice significantly improves outcomes compared to exercise alone [83]. Those results become especially clinically relevant as a handgrip was found to be an independent prognostic factor of survival [69].

3.7 Physical activity and cognitive function

Cognitive performance is defined as the ability to execute cognitive tasks that require memory and attention to generate an appropriate response to external stimuli. Cancer-related cognitive impairment (CRCI) comprises deficits in memory retention, attention control and processing speed alterations [84]. It is confirmed by neuroimaging studies, which show grey and white matter loss in multiple brain areas in cancer patients [84]. Studies suggest that those impairments can persist up to 2 years after the treatment, and 30-40% of patients will never return to the baseline levels of cognitive function [85]. Various mechanisms were proposed to sit behind those changes. For example, some chemotherapeutics, such as platinum-based compounds, have neurotoxic effects caused by inducing an inflammatory state and destroying the blood-brain barrier [85].

PA has demonstrated a beneficial role in improving cognitive performance [86]. The mechanism behind it is similar to the mechanism of improved psychological function and counters the chemotherapy by regulation of oxidative stress and inflammation, improving blood flow via producing Vascular Endothelial Growth Factor (VEGF) and a positive effect on a range of neurotransmitters [84].

An umbrella review by Hu et al. [85] has demonstrated that PA causes moderate-to-large improvement in verbal memory assessed by the Hopkins Verbal Learning Test (HVLT). Specifically, this test checks the ability of the patient to verbally recall the words which have been read before. They have also found an improvement in processing speed and executive

function using the Trail Making Test protocol. Patients also reported an improvement in self-reported questionnaires.

3.8 Physical activity and quality of life

The quality of life is defined by the World Health Organization (WHO) as “an individual's perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns” [87]. Many factors contribute to the QoL. Amongst them are physical and psychological well-being, financial [83,88] and social status [89,90], level of healthcare in a specific country [41], and familial support [89]. *Given the fact that cancer patients show worse physiological and psychological activity and become marginalised by society*, their QoL significantly decreases [91]. This becomes a substantial problem, since the QoL influences the mortality of patients [92].

For example, Fukushima et al. [92] have observed that the overall risk of mortality increases by 6% for every unit of QoL drop (HR = 1.06; 95% CI: 1.05-1.07). The number becomes even higher for some tumours, such as lung or liver cancer, where the risk increases by 10% and 20% respectively. Interestingly, the pre-treatment QoL has proved to be the most significant factor affecting mortality (HR = 1.06; 95% CI: 1.05-1.07). Another study has found that high physical functioning stratified by QLQ-C30 score is correlated to approximately 3 times longer survival [93]. The QLQ-C30 score assesses physical, psychological and social function in patients with cancer. The group which achieved more than 66.6 points had a median survival time in months of 65.38 (95% CI: 56.02-71.52), the group which got between 33.3 and 66.6 point had a median survival of 27.24 (95% CI: 23.36-40.44) and the group which got less than 33.3 points has achieved a median survival of 20.80 months (95% CI: 13.17-72.21). Therefore, future therapeutic strategies should consider improving patients' QoL.

Various studies showed that PA positively impacts QoL in a healthy population [94], and other diseases such as depression [95] or asthma [96].

Many studies have assessed whether PA can improve the QoL of cancer patients. For example study by Lin et al. [97] has found that for every additional minute of walking per week, the QoL score was increased by 0.03 points assessed by the FACT-L score. It is worth noting that the FACT-L score focuses primarily on physical and functional abilities and does not take into consideration psychological aspects. Another meta-analysis has shown that PA improves QoL scores by 5.55 points on a 100-point scale after standardisation of results (MD = 5.55; 95% CI: 3.19-7.9) [98]. Additionally, it was found that frequent exercise (3-5 times per week) was

associated with improved peak oxygen consumption, self-esteem, and reduced fatigue and that shorter exercise provided more benefits [98]. Interestingly, frequent exercise was linked to shorter hospital stay [98], which is beneficial, since cancer treatment causes financial burden [1]. Another meta-analysis done by Sweegers et al. [99] has further evaluated the role of physical activity on self-assessed QoL of cancer patients. They found a small to moderate improvement of QoL in cancer patients who undergo exercise ($g = 0.19$; 95% CI: 0.13-0.26). Additionally, they found that supervised exercise showed better results than unsupervised, and that moderate-high activity better affects QoL than moderate or low-moderate activity. The duration of the session also matters; patients exercising more than 60 minutes did not show an improvement in QoL, although the number of studies was relatively small ($N = 3$).

3.9 Physical activity and cancer mortality

As we already established, moderate physical activity is associated with various benefits to our life by increasing the immune response, antioxidant defence mechanisms and improving metabolic equilibrium. Consequently, those molecular changes lead to better physiological and psychological parameters and QoL in cancer patients. Therefore, we hypothesised that more physically active patients would have a better prognosis in terms of cancer survival.

Indeed, PA was shown to decrease mortality in various studies (REFs). For instance, a meta-analysis done by Bettariga et al. [74] has assessed whether the muscle strength and cardio-respiratory fitness (CRF) score affect all-cause cancer mortality. The all-cause mortality was 31% lower (HR = 0.69; 95% CI 0.61-0.78) in patients with high muscle strength levels compared with those with low muscle strength levels, and better CRF results were associated with a 46% reduction of all-cause mortality (HR = 0.54; 95% CI: 0.38-0.84). Another meta-analysis, which included 777,696 patients, used metabolic equivalent of task (MET) per hour per week to measure people's activity. The higher MET was associated with the highest activity, while the lowest MET was associated with the sedentary lifestyle. People in the lowest quartile of physical activity (less than 2.5 MET-h/week) who were mostly inactive during the week and sat for more than 8h per day had a 21% increased risk (95% CI: 1.14-1.28) [100]. Interestingly, even those who sat for more than 8h per day but had a high MET-h/week, hence were physically active, have not had a higher risk of cancer death [100]. However, it is worth mentioning that the provided results evaluated only all-cause mortality, not specifically caused by the cancer.

Several other studies have assessed the relationship between PA and mortality for specific cancers. For example, Benke et al. [101] have found that post-diagnosis PA was

associated with 31% reduced risk of dying from prostate cancer (RR = 0.69; 95% CI: 0.55-0.85).

Another cohort study has provided evidence that PA provides beneficial effects on women with BC. Interestingly, it provided more benefits in women with advanced-stage cancer (RR = 0.36; 95% CI: 0.19-0.71 for those who trained for 9 or more MET-h/week) and those with positive estrogen/progesterone cancers [102]. The latter could be explained by the fact that PA, by reducing adipose tissue, can also reduce peripheral estrogen production and slow progression of the disease. However, we should notice that hormone-positive cancers generally have a better prognosis [103]. Positive role of PA on BC was found in other cohort studies involving women with BC [104-106]. Additionally, a study by Irwin et al. [104] found that lack of physical activity was associated with a 4-fold greater risk for death (HR = 0.55; 95% CI, 0.22 to 1.38 for those who were physically active vs HR = 3.95; 95% CI, 1.45 to 10.50 for physically inactive).

For colorectal cancer (CRC), it was observed that physical activity for more than 18 MET-h/week was associated with a 71% lower risk of CRC cancer-specific mortality (95% CI: 0.11-0.77) [107]. Another study found provides evidence that post-diagnosis physical activity was associated with the 42% lower risk for all-cause mortality (95% CI: 0.47-0.71) and those who had been spending more than 6 hours of leisure time sitting had 36% higher all-cause mortality compared to those who spent less than 3h sitting during the leisure time (HR = 1.36; 95% CI: 1.10-1.68) [108].

The role of PA was also assessed in a patient with palliative, recurrent malignant glioma and a Karnofsky performance status ≥ 70 [109]. PA has granted a longer survival in physically active patients. For example, patients who engaged in PA represented in 9 or more MET-h/weeks had a median survival of 21.84 months, while those less active had a median survival of 13.03 months. This provides evidence that even in palliative care, PA can provide substantial benefits [109].

4. Limitations & Discussion:

Cancer is one of the main causes of death in the XXI century and imposes a substantial health burden on our society [1]. Novel strategies should be implemented globally to reduce its incidence, improve the QoL of affected patients, and increase survival.

The role of PA has been assessed in various studies in the context of cancer management and prevention. It has been shown that more physically active people have improved immune response [31], reduced levels of OS [12], and metabolic/hormonal profile [12]. Clinically, those

changes could lead to a better physical, psychological and cognitive performance in cancer patients [46,71,85], potentially improving their quality of life and survival.

Even though, as evidenced by this study, PA provides numerous benefits for both life quality and survival for cancer patients, doctors should be cautious and keep in mind that not everyone can benefit from such implementation. PA should be adapted to the clinical status of the patient, individually taking into consideration age, global health parameters and comorbidities [72]. For example, PA can be contraindicated in patients with myocardial ischemia or severe arrhythmia which occurs during exercise [72]. Moreover, patients with respiratory distress should limit their PA intensity [72]. Bone metastases should also be taken into consideration to avoid excessive pressure on the affected bones [72]. Additionally, we should be aware that excessive physical activity is associated with the worst prognosis [68].

Finally, it should be emphasized that PA is not a single non-pharmacological remedy for the disease. The patient should also work on a proper diet, limit interaction with irritants such as smoking or pollution and sleep well.

5. Conclusions

Our review indicates that PA has a substantial role in both the prevention and management of cancers. On one side, it improves QoL in cancer patients by providing benefits in physiological, cognitive and psychological function. From the other side, improvements in such parameters positively impact patients' health, providing a decline in cancer mortality rate. Various metabolic, immune and oxidative stress pathways are believed to be engaged in this process. Further studies are needed to evaluate the role of PA in cancer patients, and novel adjustments in guidelines should be implemented on a global scale to decrease the economic and health burden caused by cancers.

Supplementary materials: not applicable

Disclosure: the article is authored in its entirety by Roman Cemaga.

Funding: the study received no funding and incurred no expenses unrelated to the publication costs for the author.

Author Contributions: conceptualisation: R.C., P.H., E.S.; Methodology: R.C., M.C., Check: R.C., Writing: R.C., P.H., E.S., K.W., B.B., M.K.; Supervision: R.C.; Project administration: R.C.; Formal Analysis: M.P., P.P., A.W., M.K.; writing – rough preparation: P.H., P.P., B.B. All authors have read and agreed with the published version of the manuscript.

Informed consent statement: not applicable.

Institutional Review Board Statement: not applicable.

Data availability statement: not applicable.

Conflict of interest: the author declares no conflict of interest in relation to this study.

Data Availability Statement: The study is a review; therefore, no new data were generated. Existing data used in this work can be found in the PubMed database. Further inquiries can be directed to the corresponding author.

Declaration of Generative AI and AI-Assisted Technologies: during the preparation of this work, the author used Grammarly to improve grammar. After using this tool, the author reviewed and edited the content as needed and takes full responsibility for the content of the publication. No generative AI was used.

References

- [1] Global cancer burden growing, amidst mounting need for services n.d. <https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services> (accessed December 20, 2025).
- [2] Li M, Hu M, Jiang L, Pei J, Zhu C. Trends in Cancer Incidence and Potential Associated Factors in China. *JAMA Netw Open* 2024;7:e2440381. <https://doi.org/10.1001/jamanetworkopen.2024.40381>.
- [3] Liu G, Liu Y, Jing H, Chen T, Wang H, Qiu H, et al. Global, regional, and national economic consequences of tracheal, bronchial, and lung cancer. *Lung Cancer* 2025;207:108685. <https://doi.org/10.1016/j.lungcan.2025.108685>.
- [4] Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. *Med Sci Sports Exerc* 2022;54:353–68. <https://doi.org/10.1249/MSS.0000000000002800>.
- [5] Diaz KM, Shimbo D. Physical activity and the prevention of hypertension. *Curr Hypertens Rep* 2013;15:659–68. <https://doi.org/10.1007/s11906-013-0386-8>.
- [6] Berisha H, Hattab R, Comi L, Giglione C, Migliaccio S, Magni P. Nutrition and Lifestyle Interventions in Managing Dyslipidemia and Cardiometabolic Risk. *Nutrients* 2025;17:776. <https://doi.org/10.3390/nu17050776>.
- [7] Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. *Cochrane Database Syst Rev* 2011;CD000333. <https://doi.org/10.1002/14651858.CD000333.pub2>.

[8] Peluso MAM, Guerra de Andrade LHS. Physical activity and mental health: the association between exercise and mood. *Clinics (Sao Paulo)* 2005;60:61–70. <https://doi.org/10.1590/s1807-59322005000100012>.

[9] Ezzatvar Y, Ramírez-Vélez R, Sáez De Asteasu ML, Martínez-Velilla N, Zambom-Ferraresi F, Izquierdo M, et al. Physical Function and All-Cause Mortality in Older Adults Diagnosed With Cancer: A Systematic Review and Meta-Analysis. *The Journals of Gerontology: Series A* 2021;76:1447–53. <https://doi.org/10.1093/gerona/glaa305>.

[10] Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary Behavior, Exercise, and Cardiovascular Health. *Circ Res* 2019;124:799–815. <https://doi.org/10.1161/CIRCRESAHA.118.312669>.

[11] Krüger K, Mooren F-C, Pilat C. The Immunomodulatory Effects of Physical Activity. *Curr Pharm Des* 2016;22:3730–48. <https://doi.org/10.2174/1381612822666160322145107>.

[12] De Boer MC, Wörner EA, Verlaan D, Van Leeuwen PAM. The Mechanisms and Effects of Physical Activity on Breast Cancer. *Clinical Breast Cancer* 2017;17:272–8. <https://doi.org/10.1016/j.clbc.2017.01.006>.

[13] Militello R, Luti S, Gamberi T, Pellegrino A, Modesti A, Modesti PA. Physical Activity and Oxidative Stress in Aging. *Antioxidants (Basel)* 2024;13:557. <https://doi.org/10.3390/antiox13050557>.

[14] McEvoy JW, McCarthy CP, Bruno RM, Brouwers S, Canavan MD, Ceconi C, et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). *Eur Heart J* 2024;45:3912–4018. <https://doi.org/10.1093/eurheartj/ehae178>.

[15] Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and Mechanisms of Aerobic Exercise on Cancer Initiation, Progression, and Metastasis: A Critical Systematic Review of In Vivo Preclinical Data. *Cancer Res* 2016;76:4032–50. <https://doi.org/10.1158/0008-5472.CAN-16-0887>.

[16] DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. *Sci Adv* 2016;2:e1600200. <https://doi.org/10.1126/sciadv.1600200>.

[17] Chen GG, Zeng Q, Tse GM. Estrogen and its receptors in cancer. *Medicinal Research Reviews* 2008;28:954–74. <https://doi.org/10.1002/med.20131>.

[18] Cleary MP, Grossmann ME. Obesity and Breast Cancer: The Estrogen Connection. *Endocrinology* 2009;150:2537–42. <https://doi.org/10.1210/en.2009-0070>.

[19] Boyd DB. Insulin and Cancer. *Integr Cancer Ther* 2003;2:315–29. <https://doi.org/10.1177/1534735403259152>.

[20] Fong DYT, Ho JWC, Hui BPH, Lee AM, Macfarlane DJ, Leung SSK, et al. Physical activity for cancer survivors: meta-analysis of randomised controlled trials. *BMJ* 2012;344:e70–e70. <https://doi.org/10.1136/bmj.e70>.

[21] Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. *Oxid Med Cell Longev* 2017;2017:8416763. <https://doi.org/10.1155/2017/8416763>.

[22] Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. *J Clin Invest* 2004;114:1752–61. <https://doi.org/10.1172/JCI21625>.

[23] Debevec T, Millet GP, Pialoux V. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity. *Front Physiol* 2017;8:84. <https://doi.org/10.3389/fphys.2017.00084>.

[24] Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. *Journal of Immunology Research* 2016;2016:4273943. <https://doi.org/10.1155/2016/4273943>.

[25] Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. *Clin Exp Immunol* 2022;210:114–27. <https://doi.org/10.1093/cei/uxac089>.

[26] Weiss RA. Viruses, cancer and AIDS. *FEMS Immunol Med Microbiol* 1999;26:227–32. <https://doi.org/10.1111/j.1574-695X.1999.tb01393.x>.

[27] Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. *Expert Rev Clin Immunol* 2014;10:41–62. <https://doi.org/10.1586/1744666X.2014.865519>.

[28] Fairey AS, Courneya KS, Field CJ, Mackey JR. Physical exercise and immune system function in cancer survivors. *Cancer* 2002;94:539–51. <https://doi.org/10.1002/cncr.10244>.

[29] Schmidt T, Jonat W, Wesch D, Oberg H-H, Adam-Klages S, Keller L, et al. Influence of physical activity on the immune system in breast cancer patients during chemotherapy. *J Cancer Res Clin Oncol* 2018;144:579–86. <https://doi.org/10.1007/s00432-017-2573-5>.

[30] Mustafa N, Attili D, Alsoud F, Alsheikh N, Faqeer N. Characteristics of Unplanned Hospital Admissions Among Patients With Cancer Treated at a Comprehensive Cancer Center in Jordan. *Cureus* n.d.;17:e77012. <https://doi.org/10.7759/cureus.77012>.

[31] Bachi ALL, Suguri VM, Ramos LR, Mariano M, Vaisberg M, Lopes JD. Increased production of autoantibodies and specific antibodies in response to influenza virus vaccination in physically active older individuals. *Results Immunol* 2013;3:10–6. <https://doi.org/10.1016/j.rinim.2013.01.001>.

[32] Zheng Q, Cui G, Chen J, Gao H, Wei Y, Uede T, et al. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways. *Cell Physiol Biochem* 2015;37:735–46. <https://doi.org/10.1159/000430391>.

[33] Nieman DC. Marathon training and immune function. *Sports Med* 2007;37:412–5. <https://doi.org/10.2165/00007256-200737040-00036>.

[34] Mizrahi D, Lai JKL, Wareing H, Ren Y, Li T, Swain CTV, et al. Effect of exercise interventions on hospital length of stay and admissions during cancer treatment: a systematic review and meta-analysis. *Br J Sports Med* 2024;58:97–109. <https://doi.org/10.1136/bjsports-2023-107372>.

[35] Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Colditz GA. A Prospective Study of Recreational Physical Activity and Breast Cancer Risk. *Arch Intern Med* 1999;159. <https://doi.org/10.1001/archinte.159.19.2290>.

[36] Wolin KY, Yan Y, Colditz GA, Lee I-M. Physical activity and colon cancer prevention: a meta-analysis. *Br J Cancer* 2009;100:611–6. <https://doi.org/10.1038/sj.bjc.6604917>.

[37] Psaltopoulou T, Ntanasis-Stathopoulos I, Tzanninis I-G, Kantzanou M, Georgiadou D, Sergentanis TN. Physical Activity and Gastric Cancer Risk: A Systematic Review and Meta-Analysis. *Clin J Sport Med* 2016;26:445–64. <https://doi.org/10.1097/JSM.0000000000000316>.

[38] Farris MS, Mosli MH, McFadden AA, Friedenreich CM, Brenner DR. The Association between Leisure Time Physical Activity and Pancreatic Cancer Risk in Adults: A Systematic Review and Meta-analysis. *Cancer Epidemiol Biomarkers Prev* 2015;24:1462–73. <https://doi.org/10.1158/1055-9965.EPI-15-0301>.

[39] Zhong S, Ma T, Chen L, Chen W, Lv M, Zhang X, et al. Physical Activity and Risk of Lung Cancer: A Meta-analysis. *Clin J Sport Med* 2016;26:173–81. <https://doi.org/10.1097/JSM.0000000000000219>.

[40] DiJoseph K, Thorp A, Harrington A, Schmitz KH, Chinchilli VM, Stine JG. Physical Activity and Risk of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. *Dig Dis Sci* 2023;68:1051–9. <https://doi.org/10.1007/s10620-022-07601-w>.

[41] Nakie G, Melkam M, Takelle GM, Fentahun S, Rtbey G, Andualem F, et al. Depression, anxiety and associated factors among cancer patients in Africa; a systematic review and meta-analysis study. *BMC Psychiatry* 2024;24:939. <https://doi.org/10.1186/s12888-024-06389-5>.

[42] Linden W, Vodermaier A, Mackenzie R, Greig D. Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. *J Affect Disord* 2012;141:343–51. <https://doi.org/10.1016/j.jad.2012.03.025>.

[43] Wang Y-H, Li J-Q, Shi J-F, Que J-Y, Liu J-J, Lappin JM, et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. *Mol Psychiatry* 2020;25:1487–99. <https://doi.org/10.1038/s41380-019-0595-x>.

[44] Mejareh ZN, Abdollahi B, Hoseinipalangi Z, Jeze MS, Hosseiniard H, Rafiei S, et al. Global, regional, and national prevalence of depression among cancer patients: A systematic review and meta-analysis. *Indian J Psychiatry* 2021;63:527–35. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_77_21.

[45] Soriano D, Santos Chocler G, Varela MA, Coronel MF. Chemotherapy-induced neuropathy and pain in pediatric oncology patients: impact of combination therapies. *Eur J Pediatr* 2024;183:3749–56. <https://doi.org/10.1007/s00431-024-05638-9>.

[46] Aydin M, Kose E, Odabas I, Meric Bingul B, Demirci D, Aydin Z. The Effect of Exercise on Life Quality and Depression Levels of Breast Cancer Patients. *Asian Pac J Cancer Prev* 2021;22:725–32. <https://doi.org/10.31557/APJCP.2021.22.3.725>.

[47] Abrams HR, Durbin S, Huang CX, Johnson SF, Nayak RK, Zahner GJ, et al. Financial toxicity in cancer care: origins, impact, and solutions. *Transl Behav Med* 2021;11:2043–54. <https://doi.org/10.1093/tbm/ibab091>.

[48] Carek PJ, Laibstain SE, Carek SM. Exercise for the treatment of depression and anxiety. *Int J Psychiatry Med* 2011;41:15–28. <https://doi.org/10.2190/PM.41.1.c>.

[49] Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, Stubbs B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. *Neurosci Biobehav Rev* 2019;107:525–39. <https://doi.org/10.1016/j.neubiorev.2019.09.040>.

[50] Gualdi-Russo E, Rinaldo N, Zaccagni L. Physical Activity and Body Image Perception in Adolescents: A Systematic Review. *Int J Environ Res Public Health* 2022;19:13190. <https://doi.org/10.3390/ijerph192013190>.

[51] Fox RS, Armstrong GE, Gaumond JS, Vigourex TFD, Miller CH, Sanford SD, et al. Social isolation and social connectedness among young adult cancer survivors: A systematic review. *Cancer* 2023;129:2946–65. <https://doi.org/10.1002/cncr.34934>.

[52] Davis GC. Endorphins and pain. *Psychiatr Clin North Am* 1983;6:473–87.

[53] Gonzalez M, Pascoe MC, Yang G, de Manincor M, Grant S, Lacey J, et al. Yoga for depression and anxiety symptoms in people with cancer: A systematic review and meta-analysis. *Psychooncology* 2021;30:1196–208. <https://doi.org/10.1002/pon.5671>.

[54] Zhang Y, Li G, Zhang S, Zhou Y, Lv Y, Feng L, et al. Effects of Exercise on Depression and Anxiety in Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Cancer Med* 2025;14:e70671. <https://doi.org/10.1002/cam4.70671>.

[55] Strasser B, Burtscher M. Survival of the fittest: VO₂max, a key predictor of longevity? *Front Biosci (Landmark Ed)* 2018;23:1505–16. <https://doi.org/10.2741/4657>.

[56] Sandler RB, Burdett R, Zaleskiewicz M, Sprowls-Repcheck C, Harwell M. Muscle strength as an indicator of the habitual level of physical activity. *Med Sci Sports Exerc* 1991;23:1375–81.

[57] Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, et al. Disability, physical activity, and muscle strength in older women: the Women's Health and Aging Study. *Arch Phys Med Rehabil* 1999;80:130–5. [https://doi.org/10.1016/s0003-9993\(99\)90109-0](https://doi.org/10.1016/s0003-9993(99)90109-0).

[58] Karlsson MK, Nordqvist A, Karlsson C. Physical activity, muscle function, falls and fractures. *Food Nutr Res* 2008;52. <https://doi.org/10.3402/fnr.v52i0.1920>.

[59] Steffens D, Beckenkamp PR, Hancock M, Paiva DN, Alison JA, Menna-Barreto SS. Activity level predicts 6-minute walk distance in healthy older females: an observational study. *Physiotherapy* 2013;99:21–6. <https://doi.org/10.1016/j.physio.2011.11.004>.

[60] Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. *Front Immunol* 2011;2:98. <https://doi.org/10.3389/fimmu.2011.00098>.

[61] Rodriguez M, Dinapoli RP. Spinal cord compression: with special reference to metastatic epidural tumors. *Mayo Clin Proc* 1980;55:442–8.

[62] Aapro M, Österborg A, Gascón P, Ludwig H, Beguin Y. Prevalence and management of cancer-related anaemia, iron deficiency and the specific role of i.v. iron. *Ann Oncol* 2012;23:1954–62. <https://doi.org/10.1093/annonc/mds112>.

[63] Di Nardo P, Lisanti C, Garutti M, Buriolla S, Alberti M, Mazzeo R, et al. Chemotherapy in patients with early breast cancer: clinical overview and management of long-term side effects. *Expert Opin Drug Saf* 2022;21:1341–55. <https://doi.org/10.1080/14740338.2022.2151584>.

[64] Dilalla V, Chaput G, Williams T, Sultanem K. Radiotherapy side effects: integrating a survivorship clinical lens to better serve patients. *Curr Oncol* 2020;27:107–12. <https://doi.org/10.3747/co.27.6233>.

[65] Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, et al. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. *Ageing Res Rev* 2023;92:102121. <https://doi.org/10.1016/j.arr.2023.102121>.

[66] Arocha Rodulfo JI. Sedentary lifestyle a disease from xxi century. *Clin Investig Arterioscler* 2019;31:233–40. <https://doi.org/10.1016/j.arteri.2019.04.004>.

[67] Biddle SJH, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. *Br J Sports Med* 2011;45:886–95. <https://doi.org/10.1136/bjsports-2011-090185>.

[68] Dennett AM, Peiris CL, Shields N, Prendergast LA, Taylor NF. Moderate-intensity exercise reduces fatigue and improves mobility in cancer survivors: a systematic review and meta-regression. *J Physiother* 2016;62:68–82. <https://doi.org/10.1016/j.jphys.2016.02.012>.

[69] Kilgour RD, Vigano A, Trutschnigg B, Lucar E, Borod M, Morais JA. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. *Support Care Cancer* 2013;21:3261–70. <https://doi.org/10.1007/s00520-013-1894-4>.

[70] Avancini A, Sartori G, Gkountakos A, Casali M, Trestini I, Tregnago D, et al. Physical Activity and Exercise in Lung Cancer Care: Will Promises Be Fulfilled? *Oncologist* 2020;25:e555–69. <https://doi.org/10.1634/theoncologist.2019-0463>.

[71] Tomlinson D, Diorio C, Beyene J, Sung L. Effect of Exercise on Cancer-Related Fatigue: A Meta-analysis. *American Journal of Physical Medicine & Rehabilitation* 2014;93:675–86. <https://doi.org/10.1097/PHM.0000000000000083>.

[72] Bouillet T, Bigard X, Brami C, Chouahnia K, Copel L, Dauchy S, et al. Role of physical activity and sport in oncology: scientific commission of the National Federation Sport

and Cancer CAMI. Crit Rev Oncol Hematol 2015;94:74–86. <https://doi.org/10.1016/j.critrevonc.2014.12.012>.

[73] Chu DJ, Al Rifai M, Virani SS, Brawner CA, Nasir K, Al-Mallah MH. The relationship between cardiorespiratory fitness, cardiovascular risk factors and atherosclerosis. *Atherosclerosis* 2020;304:44–52. <https://doi.org/10.1016/j.atherosclerosis.2020.04.019>.

[74] Bettariga F, Galvao DA, Taaffe DR, Bishop C, Lopez P, Maestroni L, et al. Association of muscle strength and cardiorespiratory fitness with all-cause and cancer-specific mortality in patients diagnosed with cancer: a systematic review with meta-analysis. *Br J Sports Med* 2025;59:722–32. <https://doi.org/10.1136/bjsports-2024-108671>.

[75] Edvardsen E, Skjønsberg OH, Holme I, Nordsletten L, Borchsenius F, Anderssen SA. High-intensity training following lung cancer surgery: a randomised controlled trial. *Thorax* 2015;70:244–50. <https://doi.org/10.1136/thoraxjnl-2014-205944>.

[76] Rier HN, Jager A, Slijfer S, Maier AB, Levin M-D. The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. *Oncologist* 2016;21:1396–409. <https://doi.org/10.1634/theoncologist.2016-0066>.

[77] Wallengren O, Iresjö B-M, Lundholm K, Bosaeus I. Loss of muscle mass in the end of life in patients with advanced cancer. *Support Care Cancer* 2015;23:79–86. <https://doi.org/10.1007/s00520-014-2332-y>.

[78] Francaux M, Deldicque L. Exercise and the control of muscle mass in human. *Pflugers Arch - Eur J Physiol* 2019;471:397–411. <https://doi.org/10.1007/s00424-018-2217-x>.

[79] Stene GB, Helbostad JL, Balstad TR, Riphagen II, Kaasa S, Oldervoll LM. Effect of physical exercise on muscle mass and strength in cancer patients during treatment—A systematic review. *Critical Reviews in Oncology/Hematology* 2013;88:573–93. <https://doi.org/10.1016/j.critrevonc.2013.07.001>.

[80] Lønbø S, Farup J, Bentsen S, Voss T, Rittig N, Wang J, et al. Lean body mass, muscle fibre size and muscle function in cancer patients during chemotherapy and 10 weeks exercise. *JCSM Clinical Reports* 2017;2:1–15. <https://doi.org/10.17987/jcsm-cr.v2i1.26>.

[81] Heymsfield SB, Brown J, Ramirez S, Prado CM, Tinsley GM, Gonzalez MC. Are Lean Body Mass and Fat-Free Mass the Same or Different Body Components? A Critical Perspective. *Adv Nutr* 2024;15:100335. <https://doi.org/10.1016/j.advnut.2024.100335>.

[82] Koeppel M, Mathis K, Schmitz KH, Wiskemann J. Muscle hypertrophy in cancer patients and survivors via strength training. A meta-analysis and meta-regression. *Critical Reviews in Oncology/Hematology* 2021;163:103371. <https://doi.org/10.1016/j.critrevonc.2021.103371>.

[83] Liu X, Xu X, Cheung DST, Chau PH, Ho M-H, Takemura N, et al. The effects of exercise with or without dietary advice on muscle mass, muscle strength, and physical functioning among older cancer survivors: a meta-analysis of randomized controlled trials. *J Cancer Surviv* 2024;18:1548–56. <https://doi.org/10.1007/s11764-023-01396-z>.

[84] Gehring K, Roukema JA, Sitskoorn MM. Review of recent studies on interventions for cognitive deficits in patients with cancer. *Expert Review of Anticancer Therapy* 2012;12:255–69. <https://doi.org/10.1586/era.11.202>.

[85] Hu C, Zheng Y, Xing S, Han X, Gong H, Wang J, et al. Exercise Interventions in Cancer-Related Cognitive Impairment: An Umbrella Review. *Am J Phys Med Rehabil* 2025;104:1162–76. <https://doi.org/10.1097/PHM.0000000000002848>.

[86] Mualem R, Leisman G, Zbedat Y, Ganem S, Mualem O, Amaria M, et al. The Effect of Movement on Cognitive Performance. *Front Public Health* 2018;6. <https://doi.org/10.3389/fpubh.2018.00100>.

[87] WHOQOL - Measuring Quality of Life| The World Health Organization n.d. <https://www.who.int/tools/whoqol> (accessed December 21, 2025).

[88] Shao Z, Zhu T, Zhang P, Wen Q, Li D, Wang S. Association of financial status and the quality of life in Chinese women with recurrent ovarian cancer. *Health Qual Life Outcomes* 2017;15:144. <https://doi.org/10.1186/s12955-017-0714-9>.

[89] Alonso MAM, Barajas MES, Ordóñez JAG, Ávila Alpirez H, Fhon JRS, Duran-Badillo T. Quality of life related to functional dependence, family functioning and social support in older adults. *Rev Esc Enferm USP* 2022;56:e20210482. <https://doi.org/10.1590/1980-220X-REEUSP-2021-0482en>.

[90] Murphy ER, Wippold GM, Crichlow ZR. Socioeconomic Status, Social Support, and Quality of Life Among Black Adults. *J Racial Ethn Health Disparities* 2025;12:4101–10. <https://doi.org/10.1007/s40615-024-02204-9>.

[91] Al-Mhanna SB, Wan Ghazali WS, Mohamed M, Rabaan AA, Santali EY, H Alestad J, et al. Effectiveness of physical activity on immunity markers and quality of life in cancer patient: a systematic review. *PeerJ* 2022;10:e13664. <https://doi.org/10.7717/peerj.13664>.

[92] Fukushima T, Suzuki K, Tanaka T, Okayama T, Inoue J, Morishita S, et al. Global quality of life and mortality risk in patients with cancer: a systematic review and meta-analysis. *Qual Life Res* 2024;33:2631–43. <https://doi.org/10.1007/s11136-024-03691-3>.

[93] Quinten C, Coens C, Mauer M, Comte S, Sprangers MA, Cleeland C, et al. Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient

data from EORTC clinical trials. *The Lancet Oncology* 2009;10:865–71. [https://doi.org/10.1016/S1470-2045\(09\)70200-1](https://doi.org/10.1016/S1470-2045(09)70200-1).

[94] Pucci GCMF, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. *Rev Saude Publica* 2012;46:166–79. <https://doi.org/10.1590/s0034-89102012000100021>.

[95] Patten SB, Williams JVA, Lavorato DH, Bulloch AGM. Recreational physical activity ameliorates some of the negative impact of major depression on health-related quality of life. *Front Psychiatry* 2013;4:22. <https://doi.org/10.3389/fpsyg.2013.00022>.

[96] Pacheco DRR, Silva MJB, Alexandrino AMS, Torres RMT. Exercise-related quality of life in subjects with asthma: a systematic review. *J Asthma* 2012;49:487–95. <https://doi.org/10.3109/02770903.2012.680636>.

[97] Lin Y-Y, Liu MF, Tzeng J-I, Lin C-C. Effects of Walking on Quality of Life Among Lung Cancer Patients: A Longitudinal Study. *Cancer Nurs* 2015;38:253–9. <https://doi.org/10.1097/NCC.0000000000000176>.

[98] Gerritsen JK, Vincent AJ, Peeters A. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med* 2016;50:796–803. <https://doi.org/10.1136/bjsports-2015-094787>.

[99] Sweegers MG, Altenburg TM, Chinapaw MJ, Kalter J, Verdonck-de Leeuw IM, Courneya KS, et al. Which exercise prescriptions improve quality of life and physical function in patients with cancer during and following treatment? A systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med* 2018;52:505–13. <https://doi.org/10.1136/bjsports-2017-097891>.

[100] Ekelund U, Brown WJ, Steene-Johannessen J, Fagerland MW, Owen N, Powell KE, et al. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. *Br J Sports Med* 2019;53:886–94. <https://doi.org/10.1136/bjsports-2017-098963>.

[101] Benke IN, Leitzmann MF, Behrens G, Schmid D. Physical activity in relation to risk of prostate cancer: a systematic review and meta-analysis. *Ann Oncol* 2018;29:1154–79. <https://doi.org/10.1093/annonc/mdy073>.

[102] Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical Activity and Survival After Breast Cancer Diagnosis. *JAMA* 2005;293:2479–86. <https://doi.org/10.1001/jama.293.20.2479>.

[103] Negi P, Kingsley PA, Jain K, Sachdeva J, Srivastava H, Marcus S, et al. Survival of Triple Negative versus Triple Positive Breast Cancers: Comparison and Contrast. *Asian Pac J Cancer Prev* 2016;17:3911–6.

[104] Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, et al. Influence of Pre- and Postdiagnosis Physical Activity on Mortality in Breast Cancer Survivors: The Health, Eating, Activity, and Lifestyle Study. *J Clin Oncol* 2008;26:3958–64. <https://doi.org/10.1200/JCO.2007.15.9822>.

[105] Pierce JP, Stefanick ML, Flatt SW, Natarajan L, Sternfeld B, Madlensky L, et al. Greater Survival After Breast Cancer in Physically Active Women With High Vegetable-Fruit Intake Regardless of Obesity. *J Clin Oncol* 2007;25:2345–51. <https://doi.org/10.1200/JCO.2006.08.6819>.

[106] Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ, et al. Physical Activity and Survival after Diagnosis of Invasive Breast Cancer. *Cancer Epidemiology, Biomarkers & Prevention* 2008;17:379–86. <https://doi.org/10.1158/1055-9965.EPI-07-0771>.

[107] Kuiper JG, Phipps AI, Neuhouser ML, Chlebowski RT, Thomson CA, Irwin ML, et al. Recreational physical activity, body mass index and survival in women with colorectal cancer. *Cancer Causes Control* 2012;23:1939–48. <https://doi.org/10.1007/s10552-012-0071-2>.

[108] Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM. Associations of Recreational Physical Activity and Leisure Time Spent Sitting With Colorectal Cancer Survival. *JCO* 2013;31:876–85. <https://doi.org/10.1200/JCO.2012.45.9735>.

[109] Ruden E, Reardon DA, Coan AD, Herndon JE, Hornsby WE, West M, et al. Exercise Behavior, Functional Capacity, and Survival in Adults With Malignant Recurrent Glioma. *J Clin Oncol* 2011;29:2918–23. <https://doi.org/10.1200/JCO.2011.34.9852>.