

Journal of Education, Health and Sport. eISSN 2450-3118

Journal Home Page

<https://apcz.umk.pl/JEHS/index>

CYLS, Dawid, SCIEPURO, Radosław, TOCZEK, Martyna, RYSZKA, Paulina, BRODA, Damian, PŁUSA, Aleksandra, KOMISSAROVA, Daria, CIESIELSKA, Izabela, GLĄB, Łukasz and JANCZYLIK, Paulina. Non-pharmacological strategies in the management of arterial hypertension in the elderly: A review of dietary, probiotic, and physical activity interventions. *Journal of Education, Health and Sport. 2026;88:68247. eISSN 2391-8306.*

<https://doi.org/10.12775/JEHS.2026.88.68247>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences). Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2026; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 14.01.2026. Revised: 01.02.2026. Accepted: 04.02.2026. Published: 16.02.2026.

Non-pharmacological strategies in the management of arterial hypertension in the elderly: A review of dietary, probiotic and physical activity interventions

Dawid Cyłs, Radosław Sciepuro, Martyna Toczek, Paulina Ryszka, Damian Broda, Aleksandra Plusa, Daria Komissarova, Izabela Ciesielska, Łukasz Głab, Paulina Janczylik

Dawid Cyłs [DC]

ORCID: <https://orcid.org/0000-0002-5732-2655>

cylsdawid@gmail.com

**10th Military Clinical Hospital with Polyclinic in Bydgoszcz
ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland**

Radosław Sciepuro [RS]
ORCID: <https://orcid.org/0009-0006-6430-4398>
rdspscpr@gmail.com
Ludwik Rydygier Provincial Polyclinical Hospital in Toruń
ul. Św. Józefa 53-59, 87-100 Toruń, Poland

Martyna Toczek [MT]
ORCID: <https://orcid.org/0009-0006-2921-3175>
martynatoczek98@gmail.com
Jan Bizieli University Hospital No. 2 in Bydgoszcz
ul. Kornela Ujejskiego 75, 85-168 Bydgoszcz, Poland

Paulina Ryszka [PR]
ORCID: <https://orcid.org/0009-0008-6468-9165>
ryszka.paulina1@gmail.com
Jan Bizieli University Hospital No. 2 in Bydgoszcz
ul. Kornela Ujejskiego 75, 85-168 Bydgoszcz, Poland

Damian Broda [DB]
ORCID: <https://orcid.org/0009-0003-2825-2082>
damianbrodapl@gmail.com
10th Military Clinical Hospital with Polyclinic in Bydgoszcz
ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland

Aleksandra Plusa [AP]
ORCID: <https://orcid.org/0009-0009-4307-8899>
plusa.aleksandra22@gmail.com
Masovian Specialist Hospital
ul. Juliana Aleksandrowicza 5, 26-617 Radom, Poland

Daria Komissarova [DK]
ORCID: <https://orcid.org/0009-0008-8880-7787>
dashareka99@gmail.com
10th Military Clinical Hospital with Polyclinic in Bydgoszcz
ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland

Izabela Ciesielska [IC]
ORCID: <https://orcid.org/0009-0008-6577-4652>
izabela.bochniak99@gmail.com
Jan Bizieli University Hospital No. 2 in Bydgoszcz
ul. Kornela Ujejskiego 75, 85-168 Bydgoszcz, Poland

Łukasz Głęb [LG]
ORCID: <https://orcid.org/0009-0008-2828-7441>
lukasz.glab1998@gmail.com
10th Military Clinical Hospital with Polyclinic in Bydgoszcz
ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland

Paulina Janczylik [PJ]
ORCID: <https://orcid.org/0009-0000-8617-1238>
 paulina.janczylik@stud.umed.lodz.pl
Faculty of Medicine, Medical University of Lodz
Lodz, Poland

Abstract

Background: Arterial hypertension is one of the leading causes of cardiovascular diseases worldwide. While pharmacological therapy plays a central role in management, non-pharmacological interventions are often the first-line approach, particularly in older adults.

Aim: This article aims to review current evidence on the effectiveness of non-pharmacological interventions for managing arterial hypertension in older adults, focusing on diet, probiotic supplementation, and physical activity.

Material and Methods: Data were obtained from publicly available scientific sources, including PubMed, BioMed Central, Google Scholar, and ResearchGate

Results: The literature confirms the effectiveness of the DASH diet in lowering blood pressure and improving metabolic parameters, including insulin sensitivity and lipid profile. Reducing sodium and alcohol intake may delay or partially replace the need for pharmacological treatment. Probiotic supplementation exhibits antihypertensive effects by modulating gut microbiota and reducing inflammation, with minimal side effects. Regular physical activity, particularly aerobic exercise, contributes to significant reductions in blood pressure and improves functional capacity in older adults. The success of non-pharmacological interventions requires individual tailoring to each patient's needs.

Conclusions: A comprehensive approach combining the DASH diet, sodium and alcohol restriction, probiotic supplementation, and regular physical activity forms the cornerstone of effective non-pharmacological management of arterial hypertension in older adults. These strategies can reduce the need for pharmacotherapy, minimize drug-related adverse effects, and improve cardiovascular outcomes.

Key words: arterial hypertension, elderly, non-pharmacological therapy, DASH diet, physical activity, probiotics

Introduction

The progressive aging of society is one of the key health and social challenges of the modern world. In the first half of the 20th century, the average life expectancy was about 47 years, and the population of people aged 60 and over numbered approximately 200 million. Currently, average life expectancy has increased to about 65 years, and the number of people over the age of 60 exceeds 500 million worldwide. Demographic forecasts indicate that by 2050, average life expectancy will extend by another 10 years, which will be associated with a further increase in the number of elderly people and an increased demand for healthcare [1].

Demographic changes observed in most countries of the world have forced the necessity to develop and implement health strategies aimed at the prevention and treatment of chronic diseases, in particular cardiovascular diseases. These diseases remain the main cause of morbidity and premature deaths in the elderly population, and their frequency increases with age [2]. One of the most important health problems in this age group is arterial hypertension, recognized as the main modifiable risk factor for atherosclerotic cardiovascular disease and organ complications [3].

With the growth of the population and the extension of average life expectancy, a dynamic increase in the number of people with arterial hypertension is observed. The number of patients worldwide increased from 648 million in 1990 to 1.278 billion in 2019 [4]. The prevalence of hypertension increases significantly with age and affects about 30% of people under 60 years of age, nearly two-thirds of the population aged 60–79, and about three-quarters of people over 80 years of age [5].

This disease often has an asymptomatic character and an insidious course, which favors its late diagnosis. To make a diagnosis, multiple blood pressure measurements are necessary, performed on at least two different days at appropriate time intervals [6]. Particularly predisposed to the development of the disease are elderly, obese individuals leading a sedentary lifestyle and following an incorrect diet. Symptoms that may suggest arterial hypertension include, among others, headaches, nosebleeds, and visual disturbances [7].

Arterial hypertension is one of the most significant chronic diseases in elderly patients and should not be underestimated, as its ineffective treatment leads to numerous health complications, such as an increased risk of cardiovascular incidents, heart failure, or kidney damage [6–10]. Despite the high prevalence of the disease, insufficient patient awareness of arterial hypertension and non-compliance with recommended pharmacological treatment are still observed [8].

In recent years, increasing attention has been paid to the role of non-pharmacological methods in the treatment of arterial hypertension, especially in the elderly. Lifestyle modification, including changing dietary habits, increasing physical activity, weight reduction, and limiting risk factors, forms the basis of therapeutic management. It can be both a standalone form of treatment and an effective supplement to pharmacological therapy [2,6,9].

Pathophysiology

With advancing age, progressive aging of the vascular system occurs, leading to an increase in blood pressure and increased myocardial oxygen demand. The walls of large arteries stiffen as a result of smooth muscle cell proliferation, calcium deposition, and changes in collagen composition. Consequently, systolic pressure increases, the value of which depends on aortic compliance, elastin content, and stroke volume (SV). The reflected wave, overlapping with the forward wave, further intensifies the increase in systolic pressure, which makes isolated systolic hypertension the dominant form of hypertension in the elderly. Diastolic pressure remains relatively unchanged, leading to an increase in pulse pressure, defined as the difference between systolic and diastolic pressure [6–10].

In the pathophysiology of arterial hypertension in the elderly, the deterioration of renal function is also significant. A decrease in the number of active nephrons causes structural losses, mainly in the renal cortex. Post-mortem studies show that kidney mass in elderly women decreases by about 9%, and in men by as much as 19%. Lost structures are replaced by an increasing number of sclerotic glomeruli, resulting in a decrease in the glomerular filtration rate (GFR). A drop in GFR may impair the body's ability to compensate for excessive sodium load, leading to an increase in circulating blood volume [6,11,12,13].

In a properly functioning renin-angiotensin-aldosterone (RAA) system, an increase in blood pressure or excessive sodium supply causes a decrease in renin secretion, which allows for the excretion of excess sodium and the restoration of normal pressure. With age, the activity of the RAA system weakens, which disrupts the feedback mechanism and leads to impaired suppression of renin secretion. Elevated renin levels promote increased production of angiotensin with vasoconstrictive effects, causing a further increase in arterial pressure [2,9,12]. Additionally, sodium in the extracellular space can bind to glycosaminoglycans and proteoglycans of the skin, becoming osmotically inactive. This mechanism, called the "sodium buffer," shows less effectiveness in the elderly due to the reduced content of glycosaminoglycans and proteoglycans in the skin. The weakening of this compensatory

capacity leads to natremia disorders, excessive sodium load, an increase in plasma osmolarity, and an elevation of arterial pressure [6,11,13].

Diet

Arterial hypertension (HT) is one of the main risk factors for cardiovascular diseases, especially in the elderly population. In this group, isolated systolic hypertension, increased vascular sensitivity to sodium, and the co-occurrence of chronic diseases such as renal failure or diabetes are often observed [7,14,15]. Effective control of arterial pressure allows for the reduction of the risk of cardiovascular incidents, hospitalizations, and mortality [16,17]. In addition to pharmacotherapy, non-pharmacological interventions are of key importance, including modification of lifestyle and diet, which can be used independently in mild forms of HT or as a supplement to pharmacological treatment, increasing its effectiveness and limiting the need for higher doses of drugs [14,18,19,20].

The best-documented dietary strategy in the prevention and treatment of HT is the DASH (Dietary Approaches to Stop Hypertension) diet. This diet is based on increasing the consumption of vegetables, fruits, whole grains, legumes, nuts, and low-fat dairy products, ensuring an adequate supply of potassium, magnesium, and calcium [18-22]. At the same time, it limits the intake of saturated fats, cholesterol, red and processed meat, sweets, and refined carbohydrates [14,21,23].

Clinical studies have shown that following the DASH diet leads to a significant reduction in systolic and diastolic blood pressure values, especially in people with hypertension. After 2 weeks of use, a decrease in systolic pressure by 11.4 mmHg and diastolic pressure by 5.5 mmHg was recorded compared to baseline values [22]. Furthermore, the DASH diet favorably affects the lipid profile by lowering total cholesterol and LDL levels and increasing insulin sensitivity, which consequently reduces the estimated 10-year cardiovascular risk by approximately 13% [23,24]. Studies using 24-hour ambulatory blood pressure monitoring (ABPM) have shown a 24-hour pressure reduction, significant in the therapy of the elderly [7,25].

Reduction of sodium intake is another essential element of non-pharmacological treatment of HT. It is recommended to limit salt to 5–6 g/day [7,26]. Reducing sodium intake by 4–5 g per day over a period from several weeks to several months leads to a significant reduction in systolic and diastolic blood pressure values [27,28]. The combination of the DASH diet with sodium restriction yields a synergistic effect, leading to an even greater pressure reduction [21,29].

Limiting alcohol consumption in those who overconsume also brings a beneficial hemodynamic effect. Studies have shown that alcohol reduction leads to a decrease in both systolic and diastolic pressure. According to recommendations, alcohol consumption should not exceed two standard servings per day for men and one serving for women, where 1 serving corresponds to 14 g of ethyl alcohol. Sensitivity to alcohol may intensify its adverse effect on arterial pressure in the elderly [30,31,32].

The combination of the DASH diet, sodium restriction, moderate alcohol consumption, regular physical activity, and weight control leads to an additive reduction of systolic pressure by several to a dozen or so mmHg, which significantly increases the effectiveness of treatment and improves cardiovascular prognosis in the elderly population [29,30].

Probiotics

Probiotics are live microorganisms, mainly bacteria similar to those naturally occurring in the human digestive tract, which have been used for decades in the therapy of gastrointestinal disorders such as diarrhea, irritable bowel syndrome, constipation, or lactose intolerance [33]. Recent studies indicate that their beneficial effects may extend beyond the digestive system – an influence of probiotics on certain metabolic disorders, including arterial hypertension, is observed [33,34].

The mechanisms of the antihypertensive action of probiotics are complex and multifactorial. One of the significant mechanisms is the modulation of the gut microbiota – an ecosystem of bacteria, viruses, protozoa, and fungi whose composition affects metabolic homeostasis and cardiovascular system functioning. An altered microbiota may increase the translocation of lipopolysaccharides (LPS) into the circulation, leading to vascular endothelial dysfunction, inflammation, and an increase in blood pressure. Probiotic supplementation improves the composition of the microbiota, which limits inflammatory processes acting on the vessel walls [35,36,37].

Another mechanism is the increased biosynthesis of prostaglandins that relax blood vessels. Studies on spontaneously hypertensive rats showed that a polysaccharide-glycopeptide complex (SG L) isolated from *Lactobacillus casei* reduced vascular resistance and increased the excretion of the prostaglandin metabolite 6-keto PGF 1α , which translated into a reduction in pressure [38].

In clinical trials involving patients with arterial hypertension, results showed that consuming probiotics can significantly lower systolic pressure by 3.56 mmHg and diastolic pressure by

2.38 mmHg. The reduction is small; however, even a slight reduction in blood pressure can have significant public health benefits and consequences for the cardiovascular system [39,40]. The mechanisms of the influence of probiotics on pressure in humans have been confirmed in numerous randomized clinical trials and meta-analyses [40,41,42]. Systematic reviews and meta-analyses have shown that probiotics can moderately, but statistically significantly, lower systolic and diastolic pressure, especially in people with hypertension or type 2 diabetes. These effects can support other non-pharmacological strategies, such as the DASH diet, sodium restriction, and moderate alcohol consumption, in the comprehensive control of hypertension in the elderly.

In summary, probiotic supplementation constitutes a promising, safe, and well-tolerated method supporting arterial pressure control, especially in the elderly population with hypertension or metabolic disorders. However, further large, well-designed studies in the senior population are still needed to determine the optimal selection of strains, doses, and duration of therapy [41,42].

Physical Activity

Physical activity is one of the key elements of non-pharmacological management in the prevention and treatment of arterial hypertension in the elderly. Regular exercise, especially of an aerobic nature, is consistently recommended in guidelines as an effective lifestyle modification leading to a reduction in arterial blood pressure values and a reduction in cardiovascular risk [45–47]. The mechanisms of beneficial action include, among others, improvement of endothelial function, reduction of oxidative stress, and modulation of the autonomic nervous system activity [43,44,45].

One of the simplest and most frequently recommended forms of activity is walking, including nordic walking. It is a safe, inexpensive form of movement, engaging large muscle groups and possible to use in most elderly people. Studies have shown that regular nordic walking training improves exercise tolerance, promotes weight reduction, and lowers cardiovascular risk factors, although short-term interventions do not always lead to a significant reduction in arterial blood pressure values [46,47].

The effectiveness of aerobic exercise was also confirmed in studies on brisk walking. A twelve-week training program in elderly people with primary hypertension led to a significant reduction in systolic arterial pressure both at rest and during exercise of varying intensity, which may translate into a reduction in the risk of acute cardiovascular incidents. Beneficial effects were also observed in the case of low-intensity exercises such as Tai Chi, which, in addition to

reducing SBP and DBP, positively affect balance, coordination, and waist circumference, which is of particular importance in the geriatric population [48,49].

Another recommended form of physical activity is swimming, especially in elderly people with musculoskeletal diseases or obesity. Regular swimming training shows a hypotensive effect and improves the function of blood vessels, even in previously physically inactive patients with stage 1 hypertension [50].

There is also growing interest in dancing as a form of aerobic exercise. Dancing engages major muscle groups, improves cardiovascular fitness, balance, and coordination. Systematic reviews of studies indicate that dance programs can lead to a significant reduction in systolic and diastolic arterial pressure in middle-aged and elderly people with hypertension, constituting a valuable supplement to classic forms of aerobic training [51,52]. Meta-analyses showed an average reduction in SBP of about 5–10 mmHg and DBP of 2–5 mmHg after regular dance interventions lasting from several to a dozen or so weeks [51,53]. These effects are comparable to other forms of aerobic training recommended in the prevention and treatment of hypertension [54]. Additionally, dance positively affects psychological aspects, such as stress reduction, mood improvement, and quality of life, which may indirectly favor better control of arterial pressure [51,55]. Available studies indicate that dance and dance therapy programs lead to a significant reduction in systolic and diastolic blood pressure in people with hypertension, including the elderly population [51,52,56]. Meta-analyses showed an average reduction in SBP of about 5–10 mmHg and DBP of 2–5 mmHg after regular dance interventions lasting from several to a dozen or so weeks [51,53]. These effects are comparable to other forms of aerobic training recommended in the prevention and treatment of hypertension. Additionally, dance positively affects psychological aspects, such as stress reduction, mood improvement, and quality of life, which may indirectly favor better control of arterial pressure [51,54,55].

According to current recommendations, moderate aerobic physical activity lasting 20–45 minutes on most days of the week and performed at an intensity of 60–75% of maximum heart rate remains one of the most effective non-pharmacological strategies for treating hypertension in people over 65 years of age. Regular exercise significantly lowers arterial blood pressure values, reduces cardiovascular mortality, and improves the overall functional capacity of this population [54,57].

Discussion

The prevalence of arterial hypertension increases with age and constitutes a significant disease burden, especially in the elderly population. Therefore, non-pharmacological therapy strategies,

primarily including lifestyle changes, constitute the first intervention in treatment algorithms [58].

Diet plays a key role in controlling arterial pressure. Numerous studies confirm its effectiveness in lowering blood pressure values. Particular attention is drawn to the DASH diet, which is recommended not only to prevent hypertension or stop its development but also to reduce total cholesterol and LDL fraction concentrations and increase tissue sensitivity to insulin. Additionally, an important element in the diet is limiting sodium intake, which may delay the need to implement pharmacological treatment [19,20,22,23,29,59].

Probiotics constitute another significant intervention in the non-pharmacological treatment of hypertension. Studies show that probiotic supplementation has an antihypertensive effect through, among other things, modulation of the gut microbiota and reduction of inflammatory processes. The use of probiotics lowers blood pressure, and their great advantage is the fact that they work without the side effects typical of pharmacological drugs [36,37,38,60].

According to current guidelines, regular physical activity is recommended as an effective intervention in the prevention and treatment of hypertension and cardiovascular diseases. Studies confirm that physical exercise, especially of an aerobic nature, contributes to a significant reduction in blood pressure, especially systolic. For elderly people with hypertension, forms of movement such as brisk walking, dancing, or swimming are proposed, which, in addition to a beneficial effect on the cardiovascular system, improve performance and functional capacity [43,48,50,51].

There are many methods of non-pharmacological management in patients with hypertension that bring satisfactory clinical effects. However, it should be remembered that elderly people constitute a heterogeneous group with specific biological, psychological, and social characteristics. Therefore, planning treatment and medical care in this population requires an individual approach and particular caution.

Results

The aging of society will undoubtedly be one of the main social challenges in the coming years. The medical sector must therefore increasingly focus on treating the health problems of the elderly and, thus, on improving their quality of life. In the face of the growing number of patients, the use of non-pharmacological interventions becomes a key recommendation in the therapy of arterial hypertension in seniors.

Lifestyle modification through the DASH diet and limiting sodium and alcohol intake forms the basis of effective therapy. Such dietary changes allow for better control of pressure and

improvement of metabolic parameters. Additionally, probiotic supplementation becomes a safe tool supporting the vascular system through a beneficial effect on the gut microbiota.

An equally important element is regular physical activity of moderate intensity. Forms of movement such as nordic walking, swimming, or dancing not only lower blood pressure but also improve the efficiency and coordination of seniors. A comprehensive non-pharmacological approach can significantly limit the need for multiple medications and prevent cardiovascular complications.

Author's contribution:

Conceptualization: DC, RS, AP, DB; **Methodology:** DC, DK, IC, PJ; **Software:** LG, MT, PR; **Check:** RS, AP, DB, DK; **Formal analysis:** IC, PJ, LG; **Investigation:** DC, MT, PR, RS; **Resources:** DC, AP, DB, DK; **Data curation:** DC, IC, PJ, LG; **Writing - rough preparation:** DC, MT, PR, RS; **Writing - review and editing:** DC, RS, AP, DB, DK, IC, PJ, LG, MT, PR; **Visualization:** AP, DB, DK; **Supervision:** DC, IC, PJ, LG; **Project administration:** DC, MT, PR, RS.

Funding Statement: The study did not receive external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflict of Interest Statement: The authors declare no conflicts of interest.

All authors have read and agreed with the published version of the manuscript.

Declaration of the use of generative AI and AI-assisted technologies in the writing process.

In preparing this work, the authors used Gemini (Google) for the purpose of improving language and readability. After using this tool, the authors have reviewed and edited the content as needed and accept full responsibility for the substantive content of the publication.

Rerefences

1. Lipczyńska, A. (2015). Starzenie się społeczeństwa – przyczyny i skutki. *Spoleczeństwo i Edukacja. Miedzynarodowe Studia Humanistyczne*, 2(17), 277–283.
2. Tsai, H. Y., Chuang, H. J., Liao, W. H., Wang, Y. J., Li, P. H., Wang, W. T., ... & Lin, Y. H. (2025). Lifestyle modifications and non-pharmacological management in elderly hypertension. *Journal of the Formosan Medical Association*, 124(Suppl 1), S32–S41. <https://doi.org/10.1016/j.jfma.2024.10.022>
3. Hsu, R. Y., Lo, H. Y., Chen, C. H., Lin, S. J., Chang, S. H., & Wu, V. C. (2025). Blood pressure targets, medication considerations and special concerns in elderly hypertension. *Journal of the Formosan Medical Association*, 124(Suppl 1), S49–S54. <https://doi.org/10.1016/j.jfma.2024.10.024>
4. NCD Risk Factor Collaboration (NCD-RisC). (2021). Worldwide trends in hypertension prevalence from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. *The Lancet*, 398(10304), 957–980. [https://doi.org/10.1016/S0140-6736\(21\)01330-1](https://doi.org/10.1016/S0140-6736(21)01330-1)

5. Rajzer, M., Doroszko, A., Filipiak, K. J., Gąsowski, J., Szyndler, A., Wizner, B., ... & Grodzicki, T. (2022). Nadciśnienie tętnicze w wieku podeszłym — izolowane nadciśnienie skurczowe: Stanowisko Polskiego Towarzystwa Nadciśnienia Tętniczego. *Nadciśnienie Tętnicze w Praktyce*, 8(4), 161–181.
6. Grodzicki, T., Gryglewska, B., Tomasik, T., & Windak, A. (2012). Zasady postępowania w nadciśnieniu tętniczym w wieku podeszłym. *Gerontologia Polska*, 20(4), 119–147.
7. Lionakis, N., Mendrinos, D., Sanidas, E., Favatas, G., & Georgopoulou, M. (2012). Hypertension in the elderly. *World Journal of Cardiology*, 4(5), 135–147. <https://doi.org/10.4330/wjc.v4.i5.135>
8. Gorczyca-Michta, I., & Wożakowska-Kaplon, B. (2009). Leczenie nadciśnienia tętniczego u osób w podeszłym wieku. *Folia Cardiologica*, 4(5), 279–284.
9. Aronow, W. S., Fleg, J. L., Pepine, C. J., Artinian, N. T., Bakris, G. L., Brown, A. S., ... & American College of Cardiology Foundation/American Heart Association. (2011). ACCF/AHA 2011 expert consensus document on hypertension in the elderly. *Circulation*, 123(21), 2434–2506. <https://doi.org/10.1161/CIR.0b013e31821daaf6>
10. Chudek, J., Wikarek, T., & Więcek, A. (2013). Epidemia przewlekłej choroby nerek w populacji osób w podeszłym wieku jako nakładanie się procesu fizjologicznego starzenia i nabytych uszkodzeń nerek. *Renal Disease and Transplantation Forum*, 6(1), 1–8. <https://doi.org/10.5603/rdatf.33877>
11. Kwella, B., & Stompór, T. (2011). Nadciśnienie tętnicze u osób w podeszłym wieku — jak leczyć, aby nie pogorszyć czynności nerek? *Medycyna Wieku Podeszłego*, 1(2), 63–68.
12. Denic, A., Glasscock, R. J., & Rule, A. D. (2016). Structural and functional changes with the aging kidney. *Advances in Chronic Kidney Disease*, 23(1), 19–28. <https://doi.org/10.1053/j.ackd.2015.08.004>
13. Pizoń, T., Rajzer, M., & Kameczura, T. (2011). The role of renin–angiotensin–aldosterone system in etiology and pathogenesis of arterial hypertension. *Arterial Hypertension*, 15(6), 371–382.
14. Whelton, P. K., He, J., Appel, L. J., Cutler, J. A., Havas, S., Kotchen, T. A., ... & Karimbakas, J. (2002). Primary prevention of hypertension: Clinical and public health advisory from the National High Blood Pressure Education Program. *JAMA*, 288(15), 1882–1888. <https://doi.org/10.1001/jama.288.15.1882>
15. Borghi, C., Fogacci, F., Agnoletti, D., & Cicero, A. F. G. (2022). Hypertension and dyslipidemia: Combined approaches. *High Blood Pressure & Cardiovascular Prevention*, 29(3), 221–230. <https://doi.org/10.1007/s40292-022-00507-8>
16. Filippou, C. D., Tsiofis, C. P., Thomopoulos, C. G., Mihas, C. C., Dimitriadis, K. S., & Tousoulis, D. (2020). DASH diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis. *Advances in Nutrition*, 11(5), 1150–1160. <https://doi.org/10.1093/advances/nmaa041>

17. Saslow, L. R., Jones, L. M., Sen, A., Wolfson, J. A., Diez, H. L., O'Brien, A., ... & Richardson, C. (2023). Comparing very low-carbohydrate vs DASH diets for overweight or obese adults with hypertension and prediabetes or type 2 diabetes: A randomized trial. *Annals of Family Medicine*, 21(3), 256–263. <https://doi.org/10.1370/afm.2968>
18. Sacks, F. M., & Campos, H. (2010). Dietary therapy in hypertension. *New England Journal of Medicine*, 362(22), 2102–2112. <https://doi.org/10.1056/NEJMct0911013>
19. Steinberg, D., Bennett, G. G., & Svetkey, L. (2017). The DASH diet, 20 years later. *JAMA*, 317(15), 1529–1530. <https://doi.org/10.1001/jama.2017.1628>
20. Siervo, M., Lara, J., Chowdhury, S., Ashor, A. W., Oggioni, C., & Mathers, J. C. (2015). Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. *British Journal of Nutrition*, 113(1), 1–15. <https://doi.org/10.1017/S0007114514003341>
21. Soltani, S., Shirani, F., Chitsazi, M. J., & Salehi-Abargouei, A. (2016). The effect of the Dietary Approaches to Stop Hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. *Obesity Reviews*, 17(5), 442–454. <https://doi.org/10.1111/obr.12391>
22. Kwan, M. W., Wong, M. C., Wang, H. H., Liu, K. Q., Lee, C. L., Yan, B. P., Yu, C. M., & Griffiths, S. M. (2013). Compliance with the Dietary Approaches to Stop Hypertension (DASH) diet: A systematic review. *PLoS ONE*, 8(10), e78412. <https://doi.org/10.1371/journal.pone.0078412>
23. Chiu, S., Bergeron, N., Williams, P. T., Bray, G. A., Sutherland, B., Krauss, R. M., & Fletcher, B. (2016). Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids. *The American Journal of Clinical Nutrition*, 103(2), 341–347. <https://doi.org/10.3945/ajcn.115.123281>
24. Monsivais, P., Rehm, C. D., & Drewnowski, A. (2013). The DASH diet and diet costs among ethnic and racial groups in the United States. *JAMA Internal Medicine*, 173(20), 1922–1924. <https://doi.org/10.1001/jamainternmed.2013.9479>
25. Na, M., Wang, Y., Zhang, X., Wang, Z., Wang, H., & Zhang, B. (2022). DASH-style diet and 24-hour ambulatory blood pressure among elderly adults. *The Journal of Nutrition*, 152(7), 1755–1762. <https://doi.org/10.1093/jn/nxac086>
26. He, F. J., & MacGregor, G. A. (2018). Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. *Hypertension Research*, 41(5), 353–361. <https://doi.org/10.1038/s41440-017-0018-1>
27. Ibrahim, M. M., & Damasceno, A. (2012). Hypertension in developing countries. *The Lancet*, 380(9841), 611–619. [https://doi.org/10.1016/S0140-6736\(12\)60861-7](https://doi.org/10.1016/S0140-6736(12)60861-7)
28. Zhao, D., Qi, Y., Zheng, Z., Wang, Y., Zhang, X. Y., Liu, H. H., & Liu, J. (2011). Dietary factors associated with hypertension. *Nature Reviews Cardiology*, 8(8), 456–465. <https://doi.org/10.1038/nrcardio.2011.75>

29. Frisoli, T. M., Schmieder, R. E., Grodzicki, T., & Messerli, F. H. (2012). Salt and hypertension: Is salt dietary reduction worth the effort? *The American Journal of Medicine*, 125(5), 433–439. <https://doi.org/10.1016/j.amjmed.2011.10.023>
30. Roerecke, M., Kaczorowski, J., Tobe, S. W., Gmel, G., Hasan, O. S. M., Rehm, J., & Bacon, S. L. (2017). The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. *The Lancet Public Health*, 2(2), e108–e120. [https://doi.org/10.1016/S2468-2667\(17\)30003-8](https://doi.org/10.1016/S2468-2667(17)30003-8)
31. Van Horn, L., Carson, J. A. S., Appel, L. J., Burke, L. E., Economos, C., ... & Kris-Etherton, P. (2016). Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines. *Circulation*, 134(22), e505–e529. <https://doi.org/10.1161/CIR.0000000000000462>
32. Zhang, W. S., Jiang, C. Q., Cheng, K. K., Lam, T. H., Liu, B., Thomas, G. N., & Schooling, C. M. (2009). Alcohol sensitivity and hypertension in older Chinese men. *Hypertension Research*, 32(9), 741–747. <https://doi.org/10.1038/hr.2009.92>
33. Wilkins, T., & Sequoia, J. (2017). Probiotics for gastrointestinal conditions: A summary of the evidence. *American Family Physician*, 96(3), 170–178.
34. Lye, H. S., Kuan, C. Y., Ewe, J. A., Fung, W. Y., & Liong, M. T. (2009). The improvement of hypertension by probiotics: Effects on cholesterol, diabetes, renin, and phytoestrogens. *International Journal of Molecular Sciences*, 10(9), 3755–3775. <https://doi.org/10.3390/ijms10093755>
35. Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., & Bongiorno, A. I. (2018). Microbiota and metabolic diseases. *Endocrine*, 61(3), 357–371. <https://doi.org/10.1007/s12020-018-1605-5>
36. Grylls, A., Seidler, K., & Neil, J. (2021). Link between microbiota and hypertension: Focus on the LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. *Biomedicine & Pharmacotherapy*, 137, 111334. <https://doi.org/10.1016/j.biopha.2021.111334>
37. Kim, S., Goel, R., Kumar, A., Qi, Y., Lobaton, G., Hosaka, K., Mohammed, M., Handberg, E. M., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2018). Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. *Clinical Science*, 132(6), 701–718. <https://doi.org/10.1042/CS20180087>
38. Furushiro, M., Hashimoto, S., Hamura, M., Yokokura, T., & Mutai, M. (1993). Mechanism for the antihypertensive effect of a polysaccharide–glycopeptide complex from *Lactobacillus casei* in spontaneously hypertensive rats. *Bioscience, Biotechnology, and Biochemistry*, 57(6), 978–981. <https://doi.org/10.1271/bbb.57.978>
39. Adamczak, M., Surma, S., & Więcek, A. (2023). Czy niektóre probiotyki mają wpływ na ciśnienie tętnicze? *Nadciśnienie Tętnicze w Praktyce*, 9(2), 85–91.
40. Khalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials.

Hypertension, 64(4), 897–903.
<https://doi.org/10.1161/HYPERTENSIONAHA.114.03469>

41. Zhao, T. X., Zhang, L., Zhou, N., Sun, D. S., Xie, J. H., & Xu, S. K. (2023). Long-term use of probiotics for the management of office and ambulatory blood pressure: A systematic review and meta-analysis of randomized, controlled trials. *Food Science & Nutrition*, 11(1), 101–113. <https://doi.org/10.1002/fsn3.3069>
42. Sefidgari-Abrasi, S., Rahimiyan-Heravan, M., Amiran, V., Navval-Esfahlan, E., & Saghafi-Asl, M. (2025). The effects of probiotics consumption on blood pressure, lipid profile, glycemic indices, and inflammatory parameters in overweight and obese adults: A systematic review and meta-analysis of randomized controlled trials. *Food Science & Nutrition*, 13(8), e70434. <https://doi.org/10.1002/fsn3.70434>
43. Lee, L. L., Mulvaney, C. A., Wong, Y. K. Y., & Chan, E. S. (2021). Walking for hypertension. *Cochrane Database of Systematic Reviews*, 2, CD008823. <https://doi.org/10.1002/14651858.CD008823.pub2>
44. Korsager Larsen, M., & Matchkov, V. V. (2016). Hypertension and physical exercise: The role of oxidative stress. *Medicina*, 52(1), 19–27. <https://doi.org/10.1016/j.medici.2016.01.005>
45. Cornelissen, V. A., & Smart, N. A. (2016). Exercise training for blood pressure: A systematic review and meta-analysis. *Journal of the American Heart Association*, 5(1), e004473. <https://doi.org/10.1161/JAHA.112.004473>
46. Tschentscher, M., Niederseer, D., & Niebauer, J. (2013). Health benefits of Nordic walking: A systematic review. *American Journal of Preventive Medicine*, 44(1), 76–84. <https://doi.org/10.1016/j.amepre.2012.09.043>
47. Kucio, C., Narloch, D., Kucio, E., & Zegarski, W. (2017). The application of Nordic walking in the treatment of hypertension and obesity. *Family Medicine & Primary Care Review*, 19(2), 144–148. <https://doi.org/10.5114/fmpcr.2017.67870>
48. He, L. I., Wei, W. R., & Can, Z. (2018). Effects of 12-week brisk walking training on exercise blood pressure in elderly patients with essential hypertension. *Clinical and Experimental Hypertension*, 40(7), 673–679. <https://doi.org/10.1080/10641963.2018.1425416>
49. Lee, Y. M. (2017). The effects of Tai Chi on waist circumference and blood pressure in the elderly. *Journal of Physical Therapy Science*, 29(1), 172–175. <https://doi.org/10.1589/jpts.29.172>
50. Nualnim, N., Parkhurst, K., Dhindsa, M., Tarumi, T., Vavrek, J., Tanaka, H., & Cooke, W. (2012). Effects of swimming training on blood pressure and vascular function in adults over 50 years of age. *The American Journal of Cardiology*, 109(7), 1005–1010. <https://doi.org/10.1016/j.amjcard.2011.11.029>
51. Peng, X., Xu, X., Hu, P., Zhang, Y., & Liu, Y. (2024). The physical and psychological effects of dance therapy on middle-aged and older adults with arterial hypertension: A systematic review. *Helijon*, 10(23), e39930. <https://doi.org/10.1016/j.heliyon.2024.e39930>

52. Kaholokula, J. K. A., Look, M., Mabellos, T., Zhang, G., de Silva, M., Yoshimura, S., & Mau, M. K. (2018). Cultural dance program improves hypertension management for Native Hawaiians and Pacific Islanders. *Journal of Racial and Ethnic Health Disparities*, 5(1), 57–68. <https://doi.org/10.1007/s40615-015-0198-4>
53. Gao, W., Lv, M., & Huang, T. (2023). Effects of different types of exercise on hypertension in middle-aged and older adults: A network meta-analysis. *Frontiers in Public Health*, 11, 1194124. <https://doi.org/10.3389/fpubh.2023.1194124>
54. Henkin, J. S., Pinto, R. S., Machado, C. L. F., & Wilhelm, E. N. (2023). Chronic effect of resistance training on blood pressure in older adults with prehypertension and hypertension: A systematic review and meta-analysis. *Experimental Gerontology*, 177, 112193. <https://doi.org/10.1016/j.exger.2023.112193>
55. Stanton, R., Happell, B., & Reaburn, P. (2014). The mental health benefits of regular physical activity, and its role in preventing future depressive illness. *Nursing: Research and Reviews*, 4, 45–53. <https://doi.org/10.2147/NRR.S41956>
56. Reichert, T., Costa, R. R., Barroso, B. M., da Rocha, V. M. B., Delevatti, R. S., & Kruel, L. F. M. (2018). Aquatic training in upright position as an alternative to improve blood pressure in adults and elderly: A systematic review and meta-analysis. *Sports Medicine*, 48(7), 1727–1737. <https://doi.org/10.1007/s40279-018-0918-0>
57. Skrypnik, D., Pupek-Musialik, D., Skrypnik, K., & Bogdański, P. (2015). Nadciśnienie tętnicze u osób w podeszłym wieku — zasady postępowania. *Forum Leczenia Otyłości*, 6(4), 137–151.
58. Herrod, P. J. J., Doleman, B., Blackwell, J. E. M., O’Boyle, F., Williams, J. P., Lund, J. N., & Phillips, B. E. (2018). Exercise and other nonpharmacological strategies to reduce blood pressure in older adults: A systematic review and meta-analysis. *Journal of the American Society of Hypertension*, 12(4), 248–267. <https://doi.org/10.1016/j.jash.2018.01.008>
59. Łazarczyk, M., Grabańska-Martyńska, K., & Cymerys, M. (2016). Analiza spożycia soli kuchennej u pacjentów z nadciśnieniem tętniczym. *Forum Leczenia Otyłości*, 7(2), 84–92.
60. Aihara, K., Kajimoto, O., Hirata, H., Takahashi, R., & Nakamura, Y. (2005). Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. *Journal of the American College of Nutrition*, 24(4), 257–265. <https://doi.org/10.1080/07315724.2005.10719473>