

Journal of Education, Health and Sport. eISSN 2450-3118

Journal Home Page

<https://apcz.umk.pl/JEHS/index>

MALON, Paulina, ŚLIWA, Karol, PIEŃKOWSKA, Anita, TROJAŃSKA, Aleksandra, GEWORKIAN, Nel, HARIASZ, Natalia, PIETZ, Martyna and SZYMAŃSKA, Anita. Dynapenia syndrome in geriatrics – clinical characteristics, distinction from sarcopenia, and contemporary therapeutic approaches. *Journal of Education, Health and Sport. 2026;88:68065. eISSN 2391-8306.*
<https://doi.org/10.12775/JEHS.2026.88.68065>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences).
Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2026;
This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.
The authors declare that there is no conflict of interests regarding the publication of this paper.
Received: 08.01.2026. Revised: 01.02.2026. Accepted: 04.02.2026. Published: 14.02.2026.

Dynapenia syndrome in geriatrics – clinical characteristics, distinction from sarcopenia, and contemporary therapeutic approaches

Paulina Malon

Nicolaus Copernicus University in Toruń, Collegium Medicum,
Bydgoszcz <https://orcid.org/0009-0008-9311-001X>

Karol Śliwa

University of Warmia and Mazury in Olsztyn, Collegium Medicum, ul. Oczapowskiego 2,
10-719 Olsztyn, Poland <https://orcid.org/0009-0006-4181-9778>

Anita Pieńkowska

Independent Physician, Białystok, Poland <https://orcid.org/0009-0008-9903-007X>

Aleksandra Trojańska

University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań,
Poland <https://orcid.org/0009-0005-9659-875X>

Nel Geworkian

University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań,
Poland; <https://orcid.org/0009-0008-2248-6052>

Natalia Hariasz

4th Military Clinical Hospital in Wrocław, Rudolfa Weigla 5, 50-981
Wrocław <https://orcid.org/0009-0000-5397-0324>

Martyna Pietz

University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań,
Poland; <https://orcid.org/0009-0003-7628-9517>

Anita Szymańska

Independent Physician, Poznań, Poland <https://orcid.org/0009-0005-9762-3347>

Abstract**Introduction**

Dynapenia is an age-related loss of muscle strength despite preserved muscle mass, leading to functional decline, loss of independence, falls, and higher mortality. Its development is influenced by neuromuscular, endocrine, and metabolic changes, compounded by chronic inflammation, low activity, and inadequate nutrition.

Results

Resistance training is the most effective strategy to mitigate strength loss, enhancing neuromuscular function and physical performance. Aerobic exercise improves endurance and mobility. Adequate protein intake (1.0–1.2 g/kg) and supplementation with vitamin D, creatine,

leucine, and omega-3 fatty acids support training adaptations. Early detection via handgrip strength allows timely interventions.

Discussion

Combining targeted exercise with optimal nutrition and supplementation maintains strength and independence in older adults. Interventions should be individualized based on health and functional status. Emerging molecular and gene-based therapies are experimental but may complement lifestyle approaches.

Conclusion

Dynapenia is not inevitable with aging. Early recognition, regular training, and proper nutrition can slow strength loss, reduce fall risk, and improve well-being.

Materials and methods

A review of scientific articles from PubMed, Google Scholar, and Dove Press Medical focused on dynapenia, muscle aging, and physical and nutritional interventions in older adults.

Keywords: dynapenia, muscle aging, resistance training, supplementation, protein, vitamin D, functional capacity in older adults, fall prevention.

Introduction

Dynapenia is a reduction in muscle strength arising with age despite relatively stable muscle mass [1]. Clinically, this decline translates into poorer mobility, functional limitations in daily tasks, and an increased rate of falls and related injuries [2]. In older adults, dynapenia often coexists with chronic diseases, which can exacerbate disability and worsen clinical outcomes [3–5].

Unlike sarcopenia defined by low muscle mass, dynapenia captures the dimension of reduced strength specifically [4,5]. Contemporary recommendations emphasize the central role of structured resistance exercise and adequate nutrient intake, particularly dietary protein and vitamin D [6–9].

Definition and clinical significance of dynapenia

Dynapenia is characterized as a gradual, age-related weakening of muscular strength that cannot be attributed to acute neurological or musculoskeletal pathology [10]. It typically presents as reduced neuromuscular performance despite preserved, or only slightly diminished, muscle mass [1,2]. Clark and Manini introduced the term in 2008 to distinguish it conceptually from sarcopenia [1].

Strength loss in older adults has important clinical implications: it impairs physical functioning, contributes to dependency, and is associated with increased rates of falls, hospitalization, and death [2,11]. Prevalence estimates vary, with reports indicating notable occurrence in individuals over 60 years old (roughly 10% in Japanese cohorts) [12]. As such, early detection enables more effective preventative strategies.

1. Pathophysiology

1.1. Neuromuscular adaptations

Dynapenia develops through multifactorial biological processes. Progressive denervation, reduced motor unit numbers, atrophy of type II fibers, and accumulation of intramuscular fat are among the principal neuromuscular contributors [13]. Degenerative changes at the neuromuscular junction and impaired neural activation further diminish strength.

1.2. Hormonal insufficiency

Declining concentrations of anabolic hormones such as testosterone, growth hormone, and IGF-1 limit muscle protein synthesis and contribute to strength loss [14,15].

1.3. Chronic inflammation and oxidative damage

Persistent systemic inflammation and oxidative stress also have important roles in the degradation of muscle tissue [16,17].

1.4. Physical inactivity

Additionally, sedentary behavior accelerates functional decline via disuse-related atrophy [1,18].

1.5. External modifying factors

External factors including long-term glucocorticoid therapy, certain antihypertensive medications, and inadequate dietary intake: low protein, vitamin D, and omega-3 fatty acids may worsen these processes [7–9]. The cumulative effect is a measurable decline in muscle quality and performance capacity.

Clinical Presentation and Diagnostics

Patients typically describe a generalized sense of weakness or difficulty executing strength-dependent activities such as stair climbing or rising from a seated position. Objective assessments reveal impaired functional performance and reduced movement efficiency. Handgrip strength (HGS) remains a widely adopted, reliable method for detecting decreased muscle strength [11,19].

Diagnosis relies on identifying low muscle strength with no concurrent criteria for sarcopenia based on muscle mass. Clinical tools commonly employed include the Sit-to-Stand (STS) test, Timed Up and Go (TUG), and Short Physical Performance Battery (SPPB) [20,21]. Suggested thresholds for dynapenia include HGS <30 kg in men and <20 kg in women, though no universal standard has been established [22]. Body composition assessment via DXA may provide supportive data but cannot differentiate dynapenia from sarcopenia [23].

Neurological evaluation is indicated when neuromuscular pathology must be excluded.

Differentiation from sarcopenia

Although both disorders emerge with aging, dynapenia and sarcopenia refer to distinct physiological phenomena. Sarcopenia encompasses both low muscle mass and impaired muscle function, while dynapenia pertains solely to strength decline with relatively maintained mass [1,24,25].

Clinically, assessing both strength and mass is necessary. Sarcopenia is diagnosed when both parameters are reduced; dynapenia is diagnosed when only strength falls below thresholds [26]. According to AWGS criteria, dynapenia may be identified exclusively with low HGS values (26-28 kg in men, <18 kg in women) regardless of measured muscle mass [27].

Mechanisms underlying strength loss often differ from those causing mass loss for example, reduced central neural drive or qualitative changes in muscle tissue [10,17,28]. Proper differentiation allows clinicians to tailor interventions more effectively.

Impact on functioning of geriatric patients

Dynapenia has marked consequences for the daily lives of older adults. It limits autonomy, complicates routine self-care tasks, and contributes to overall declines in physical activity [2,11]. It is associated with slower gait speed, poorer balance, and diminished mobility. Elevated fall risk is among the most serious outcomes: studies indicate that individuals with dynapenia may experience up to a twofold higher likelihood of falling compared with peers with preserved

strength [29]. Beyond physical injury, this contributes to anxiety, fear of falling, and reduced quality of life, particularly in older women [26,29].

Weakness also correlates with increased prevalence of metabolic and cardiovascular disorders and higher all-cause mortality [3-5,30,31]. Therefore, maintaining muscular strength is a cornerstone of preventive geriatric care.

2. Treatment Strategies

2.1 Exercise

The primary approach to treating dynapenia is structured exercise. Resistance training performed at least 2-3 times weekly is strongly supported by evidence for improving strength, neuromuscular control, and balance, while reducing fall risk [6,32].

2.2. Nutrition

Dietary optimization is essential. Older adults are generally encouraged to consume 1.0-1.2 g/kg/day of high-quality protein, along with a nutrient-dense diet supporting anabolic processes [35].

2.3. Micronutrient and Supplement

Vitamin D and calcium supplementation are commonly recommended, with vitamin D doses of 800-1000 IU/day showing modest benefits for muscle strength, although results remain mixed [36].

Creatine, leucine, and omega-3 fatty acids have shown promising effects but require additional large trials for definitive recommendations [8].

2.4. Hormonal and anabolic therapies

Pharmacological options remain largely experimental. Testosterone therapy, growth hormone, and SARMs have been investigated but are limited by safety considerations [8,37–39]. Future therapies may act on specific signaling pathways, but for now, exercise and management of comorbidities remain the pillars of treatment.

Fall-prevention components such as balance training and home modifications should also be routinely incorporated [1,40].

Prevention and Future Research Directions

Preventive strategies should emphasize lifelong physical activity and proper diet. Maintaining regular resistance training, meeting protein requirements, and ensuring adequate vitamin D status can considerably slow age-related strength loss [1,6–9].

Handgrip strength is emerging as a simple, cost-effective screening tool for identifying early declines in function.

Current research explores personalized interventions based on genetic and phenotypic factors, the discovery of molecular biomarkers, and pharmacological targets such as AMPK or ATF4, as well as the potential role of gut microbiota modulation [41].

Experimental approaches include cellular and gene-based therapies, such as myostatin inhibition [42,43]. Advances in telemedicine and artificial intelligence may further improve early detection of dynapenia and support the development of personalized exercise and nutrition programs [44].

Conclusion

Although dynapenia progresses gradually, its long-term impact on mobility, independence, and fall risk can be profound. Importantly, strength loss is modifiable: resistance training is the most powerful intervention available, and nutritional optimization (including adequate protein intake and targeted supplementation) can significantly enhance training outcomes. The combination of exercise and diet provides a realistic means to slow or partially reverse age-related declines in muscle strength, promoting sustained functional independence in older adults.

Author's contribution

Conceptualization: Paulina Malon **Methodology:** Karol Śliwa

Software: not applicable;

Formal analysis: Anita Pieńkowska

Research: Nel Geworkian Resources: Martyna Pietz Writing- rough preparation: Natalia Hariasz Writing- review and editing: Anita Szymańska Visualization: Karol Śliwa

Project administration: Paulina Malon **Funding**

acquisition: not applicable.

All authors have read and agreed with the published version of the manuscript.

Founding Statement: The study did not receive funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflict of Interest Statement: The authors declare no conflicts of interest.

Acknowledgments: Not applicable

During the preparation of this work, the authors used AI for the purpose of language and text formatting. After using this tool, the authors reviewed and edited the content as needed and took full responsibility for the substantive content of the publication.

References:

- [1] Clark BC, Manini TM. What is dynapenia? *Nutrition*. 2012 May;28(5):495-503. doi: 10.1016/j.nut.2011.12.002.
- [2] Jung H, Tanaka S, Kataoka S, Tanaka R. Association of sarcopenia, pre-sarcopenia, and dynapenia with the onset and progression of locomotive syndrome in Japanese older adults: a cross-sectional study. *J Physiol Anthropol*. 2023 Aug 3;42(1):16. doi: 10.1186/s40101-023-00334-3.
- [3] Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. *Diabetol Int*. 2019 Jun 19;10(3):183-187. doi: 10.1007/s13340-019-00400-1.
- [4] Huang CY, Hwang AC, Liu LK, Lee WJ, Chen LY, Peng LN, Lin MH, Chen LK. Association of Dynapenia, Sarcopenia, and Cognitive Impairment Among Community-Dwelling Older Taiwanese. *Rejuvenation Res*. 2016 Feb;19(1):71-8. doi: 10.1089/rej.2015.1710.
- [5] Rechinelli AB, Marques IL, de Moraes Viana ECR, da Silva Oliveira I, de Souza VF, Petarli GB, Rocha JLM, Guandalini VR. Presence of dynapenia and association with anthropometric variables in cancer patients. *BMC Cancer*. 2020 Oct 19;20(1):1010. doi: 10.1186/s12885-020-07519-4.
- [6] Law TD, Clark LA, Clark BC. Resistance exercise to prevent and manage sarcopenia and dynapenia. *Annu Rev Gerontol Geriatr* 2016;36:205–28. DOI:10.1093/ageing/afac003 [7]

Treuil M, Mahmudovic M, Di Patrizio P, Nguyen-Thi PL, Quilliot D. Assessment of dynapenia and undernutrition in primary care, a systematic screening study in community medicine. *Clin Nutr ESPEN* 2023;57:561–8. doi: 10.1016/j.clnesp.2023.08.003.

[8] Sivritepe R. The relationship between dynapenia and vitamin D level in geriatric women with type 2 diabetes mellitus. *North Clin Istanb* 2022;9:64–73. doi: 10.14744/nci.2021.28009.

[9] Tessier AJ, Chevalier S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. *Nutrients* 2018;10:1099. doi: 10.3390/nu10081099.

[10] Manini TM, Clark BC. Dynapenia and aging: an update. *J Gerontol A Biol Sci Med Sci*. 2012 Jan;67(1):28-40. doi: 10.1093/gerona/glr010.

[11] Sivritepe R, Siyer OK, Tiril SM, Basat SU. Do we know about dynapenia? *North Clin Istanb*. 2024 Nov 22;11(6):593-599. doi: 10.14744/nci.2024.48642.

[12] Jung H, Tanaka S, Tanaka R. Body Composition Characteristics of Community-Dwelling Older Adults With Dynapenia or Sarcopenia. *Front Nutr*. 2022 Apr 25;9:827114. doi: 10.3389/fnut.2022.827114. Erratum in: *Front Nutr*. 2022 Dec 20;9:1107965. doi: 10.3389/fnut.2022.1107965.

[13] Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. *Exp Gerontol* 2013;48:492–8. doi: 10.1016/j.exger.2013.02.012. [14] Gungor O, Ulu S, Hasbal NB, Anker SD, Kalantar-Zadeh K. Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do? *J Cachexia Sarcopenia Muscle* 2021;12:1380–92. doi: 10.1002/jcsm.12839. [15] Gupta P, Kumar S. Sarcopenia and endocrine ageing: are they related? *Cureus* 2022;14:e28787. doi: 10.7759/cureus.28787.

[16] Ribeiro JC, Duarte JG, Gomes GAO, Costa-Guarisco LP, de Jesus ITM, Nascimento CMC, et al. Associations between inflammatory markers and muscle strength in older adults according to the presence or absence of obesity. *Exp Gerontol* 2021;151:111409. doi: 10.1016/j.exger.2021.111409.

[17] Diaz-Morales N, Rovira-Llopis S, Escribano-Lopez I, Bañuls C, Lopez-Domenech S, Falcón R, et al. Role of oxidative stress and mitochondrial dysfunction in skeletal muscle in type 2 diabetic patients. *Curr Pharm Des* 2016;22:2650–6. doi: 10.2174/1381612822666160217142949.

[18] Rezuş E, Burlui A, Cardoneanu A, Rezuş C, Codreanu C, Pârvu M, et al. Inactivity and skeletal muscle metabolism: a vicious cycle in old age. *Int J Mol Sci* 2022;21:592. doi:

10.3390/ijms21020592.

- [19] Bohannon RW. Grip strength: an indispensable biomarker for older adults. *Clin Interv Aging* 2019;14:1681–91. doi: 10.2147/CIA.S194543.
- [20] Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. *J Am Geriatr Soc* 1991;39:142– 8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
- [21] Treacy D, Hassett L. The short physical performance battery. *J Physiother* 2018;64:61. doi: 10.1016/j.jphys.2017.04.002.
- [22] Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. *Age Ageing* 2010;39:412–23. doi: 10.1093/ageing/afq034.
- [23] DeVita MV, Stall SH. Dual-energy X-ray absorptiometry: a review. *J Ren Nutr* 1999;9:178–81. doi: 10.1016/s1051-2276(99)90030-4.
- [24] Cruz-Jentoft AJ, Sayer AA. Sarcopenia. *Lancet*. 2019 Jun 29;393(10191):2636-2646. doi: 10.1016/S0140-6736(19)31138-9. Epub 2019 Jun 3. Erratum in: *Lancet*. 2019 Jun 29;393(10191):2590. doi: 10.1016/S0140-6736(19)31465-5.
- [25] Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. *Age Ageing*. 2019 Jan 1;48(1):16-31. doi: 10.1093/ageing/afy169. Erratum in: *Age Ageing*. 2019 Jul 1;48(4):601. doi: 10.1093/ageing/afz046.
- [26] Yoo, K., Park, Y.S. & Kim, H.J. Handgrip strength, dynapenia, and health-related quality of life in older Korean adults. *BMC Geriatr* 25, 627 (2025). doi: 10.1186/s12877-025-06218-8.
- [27] Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. *J Am Med Dir Assoc*. 2020 Mar;21(3):300-307.e2. doi:

10.1016/j.jamda.2019.12.012.

[28] Chainy GBN, Sahoo DK. Hormones and oxidative stress: an overview. *Free Radic Res* 2020;54:1–26. doi: 10.1080/10715762.2019.1702656.

[29] Ghorbanzadeh M, Bakhtiari A, Hajian-Tilaki K, Abbaszadeh-Amirdehi M. Association of multidimensional frailty and dynapenia with fall risk in older adults. *BMC Geriatr.* 2025 Jul 2;25(1):442. doi: 10.1186/s12877-025-06097-z.

[30] da Costa Pereira JP, Queiroz Júnior JRA, Medeiros LC, Araújo Bezerra GK, Porto IVP, Cabral PC, Luz MCLD, Pinho CPS, Romero RA. Sarcopenia and dynapenia is correlated to worse quality of life perception in middle-aged and older adults with Parkinson's disease. *Nutr Neurosci.* 2024 Apr;27(4):310–318. doi: 10.1080/1028415X.2023.2190246. [31] Alexandre Tda S, Duarte YA, Santos JL, Wong R, Lebrão ML. Sarcopenia according to the European Working Group on Sarcopenia in Older People (EWGSOP) versus dynapenia as a risk factor for mortality in the elderly. *J Nutr Health Aging.* 2014;18(8):751–6. doi: 10.1007/s12603-014-0540-2.

[32] de Mello RGB, Dalla Corte RR, Gioscia J, Moriguchi EH. Effects of physical exercise programs on sarcopenia management, dynapenia, and physical performance in the elderly: a systematic review of randomized clinical trials. *J Aging Res.* 2019;2019:1959486. doi: 10.1155/2019/1959486.

[33] Vincent KR, Braith RW, Feldman RA, Magyari PM, Cutler RB, Persin SA, et al. Resistance exercise and physical performance in adults aged 60 to 83. *J Am Geriatr Soc.* 2002;50:1100–7. doi: 10.1046/j.1532-5415.2002.50267.x.

[34] Crowley E, Harrison AJ, Lyons M. The impact of resistance training on swimming performance: a systematic review. *Sports Med.* 2017;47:2285–307. doi: 10.1007/s40279-017-0730-2.

[35] Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. *Clin Nutr.* 2014;33:929–36. doi: 10.1016/j.clnu.2014.04.007. [36] Halfon M, Phan O, Teta D. Vitamin D: a review on its effects on muscle strength, the risk of fall, and frailty. *Biomed Res Int.* 2015;2015:953241. doi: 10.1155/2015/953241. [37] Ganesan K, Rahman S, Zito PM. Anabolic steroids. In: *StatPearls.* Treasure Island, FL: StatPearls Publishing; 2023.

[38] Olarescu NC, Gunawardane K, Hansen TK, Møller N, Jørgensen JOL. Normal physiology of growth hormone in adults. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, eds. *Endotext*. South Dartmouth, MA: MDText.com, Inc.; 2000. [39] Barbonetti A, D'Andrea S, Francavilla S. Testosterone replacement therapy. *Andrology* 2020;8:1551–66. doi: 10.1111/andr.12774.

[40] Clark BC, Manini TM. Sarcopenia =/= dynapenia. *J Gerontol A Biol Sci Med Sci*. 2008 Aug;63(8):829-34. doi: 10.1093/gerona/63.8.829.

[41] Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. *FASEB J*. 2018 Apr;32(4):1741-1777. doi: 10.1096/fj.201700442R.

[42] Wong RSY, Cheong SK. Therapeutic potential of mesenchymal stem cells and their derivatives in sarcopenia. *Malays J Pathol* 2022;44:429– 42.

[43] Maricelli JW, Bishaw YM, Wang B, Du M, Rodgers BD. Systemic SMAD7 gene therapy increases striated muscle mass and enhances exercise capacity in a dose-dependent manner. *Hum Gene Ther* 2018;29:390–9. doi: 10.1089/hum.2017.158.

[44] An J, Ryu HK, Lyu SJ, Yi HJ, Lee BH. Effects of preoperative telerehabilitation on muscle strength, range of motion, and functional outcomes in candidates for total knee arthroplasty: a single-blind randomized controlled trial. *Int J Environ Res Public Health* 2021;18:6071. doi: 10.3390/ijerph18116071.

[45]