

MATCZAK, Simon, NAMYSŁ, Maria, WOŹNIAK, Kinga, BIENIEK, Maciej, DACHOWSKA, Sandra, HARAJ, Jan, SOBKOWIAK, Marcin, and FALCZYŃSKA, Aleksandra. *Modern Solutions to Old Problems: A Review of Emerging Digital Technologies in Post-stroke Neurorehabilitation*. *Journal of Education, Health and Sport*. 2026;87:67605. eISSN 2391-8306.
<https://dx.doi.org/10.12775/JEHS.2026.87.67605>
<https://apcz.umk.pl/JEHS/article/view/67605>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences).
Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu).© The Authors 2024;
This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike.
(<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.
The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 18.12.2025. Revised: 28.12.2025. Accepted: 10.01.2026. Published: 11.01.2026.

Modern Solutions to Old Problems: A Review of Emerging Digital Technologies in Post-Stroke Neurorehabilitation

Simon Matczak¹

ORCID: <https://orcid.org/0009-0000-9191-6847>

szymon.matczak00@gmail.com

¹Poznan University of Medical Sciences

Fredry 10, 61-70, Poznan, Poland

Maria Namysł²

ORCID: <https://orcid.org/0009-0009-8682-1718>

missnamysl@gmail.com

²Poznan Clinical University Hospital

Przybyszewskiego 49, 60-355, Poznan, Poland

Kinga Woźniak³

ORCID: <https://orcid.org/0009-0008-0218-994X>

kwump85@gmail.com

¹Poznan University of Medical Sciences

Fredry 10, 61-701, Poznan, Poland

Maciej Bieniek⁴

ORCID: <https://orcid.org/0009-0008-2432-1980>

macijbieniek99@gmail.com

¹Poznan University of Medical Sciences

Fredry 10, 61-701, Poznan, Poland

Sandra Dachowska⁵

ORCID: <https://orcid.org/0009-0009-0828-3053>

san.dachowska@gmail.com

²Poznan Clinical University Hospital

Przybyszewskiego 49, 60-355, Poznan, Poland

Jan Haraj⁶

ORCID: <https://orcid.org/0009-0007-4847-6576>

jan.haraj.praca@gmail.com

³Independent Public Healthcare Institution of the Ministry of the Interior and Administration in Poznań

Prof. Ludwik Bierkowski Hospital, ul. Dojazd 34, 60-631, Poznan, Poland

Marcin Sobkowiak⁷

ORCID: <https://orcid.org/0009-0008-3053-5213>

sobkowiakkonin@gmail.com

¹Poznan University of Medical Sciences

Fredry 10, 61-701, Poznan, Poland

Aleksandra Fałczyńska⁸

ORCID: <https://orcid.org/0000-0002-4404-4764>

aleksandra.falczynska@gmail.com

¹Poznan University of Medical Sciences

Fredry 10, 61-701, Poznan, Poland

Corresponding author:

Aleksandra Fałczyńska, E-mail aleksandra.falczynska@gmail.com

ABSTRACT

Introduction. Stroke is one of the leading causes of chronic disability worldwide. Conventional rehabilitation frequently faces challenges regarding accessibility, high costs, and difficulties in sustaining patient motivation. These constraints often lead to insufficient training intensity, thereby limiting therapeutic efficacy. Consequently, exploring alternative therapeutic solutions is necessary to enhance clinical outcomes.

Aim. This review evaluates the effectiveness of Virtual Reality (VR), Augmented Reality (AR), Robotic-Assisted Training (RAT), and telerehabilitation in post-stroke recovery.

Methods. A search of PubMed, Web of Science, and Google Scholar was conducted. Included were randomized controlled trials, systematic reviews, and meta-analyses examining digital technologies in neurorehabilitation.

Results. VR and AR improve motor and cognitive functions via immersive feedback. RAT proves effective in delivering high-intensity practice, particularly for lower limb mobility in severe cases, though its superiority over conventional therapy for upper limbs remains inconclusive. Telerehabilitation offers accessibility comparable to face-to-face therapy but relies heavily on patient adherence.

Conclusions. Digital technologies address traditional limitations by enabling high-dosage, engaging training that facilitates functional recovery. Future research should focus on optimizing protocols and integrating these solutions into long-term plans.

Keywords: neurorehabilitation, stroke, virtual reality, robotic-assisted training, telerehabilitation

INTRODUCTION

Stroke remains one of the leading causes of mortality and chronic disability worldwide, affecting approximately 17 million individuals annually. (1) It is defined as an acute state of cerebral blood flow disruption that causes a sudden neurological impairment. Key risk factors include hypertension, obesity, diabetes, dyslipidemia, cardiac arrhythmias, a sedentary lifestyle, and nicotine use. (2–4) The complications of stroke are varied and involve motor skills disruptions, such as balance disorders, paresis, or hemiplegia, as well as cognitive disabilities manifesting as deficits in attention, memory, and executive functions. This urges the need for providing immediate and persistent

rehabilitation, considering that the first two months after the stroke are the most important in determining long-term therapeutic outcomes. (2,3,5)

Traditional neuropsychological rehabilitation, however, frequently faces challenges such as high costs, a shortage of specialists, and difficulties in sustaining patient motivation and long-term engagement. Conventional rehabilitation methods frequently lack personalization and may not fully address the unique needs of individual stroke survivors. Moreover, the reliance on therapist-led sessions often imposes logistical constraints, such as transportation difficulties for patients with severe mobility impairments, thereby limiting the frequency of crucial practice sessions. (6–8) The monotonous nature of traditional exercises can also contribute to adherence barriers due to decreased patient motivation and a lack of immediate feedback, making it difficult for patients to adjust training techniques and track progress effectively. (9,10) The inherent physical and financial burdens placed on both patients and the healthcare system necessitate the exploration of innovative technologies that could improve therapeutic outcomes. For instance, conventional rehabilitation often lacks the objective, quantitative metrics necessary to finely tune therapy intensity and measure subtle improvements in motor control, which are critical in the chronic recovery phase. (10,11)

In recent years, new digital solutions have emerged in modern neurorehabilitation, offering promising avenues to overcome the limitations of conventional therapy. These include robotic-assisted training (RAT), virtual reality (VR) and augmented reality (AR), and various telerehabilitation technologies. The digital nature of these tools allows for their integration with existing rehabilitation protocols to achieve better therapeutic outcomes. Specifically, these systems can provide gamified, engaging, and highly repetitive training environments, which are essential for neuroplasticity and functional recovery. (12,13) This review aims to provide a comprehensive summary of the clinical effectiveness of modern rehabilitation technologies in post-stroke patients.

METHODOLOGY

The study was conducted using PubMed, Web of Science, and Google Scholar based on searching the following keywords: “neurorehabilitation”, “telerehabilitation”, “virtual reality”, “augmented reality”, “artificial intelligence and rehabilitation”, “robotic-assisted rehabilitation”, “digital technologies in rehabilitation”. The search included randomized controlled trials, systematic reviews, and meta-analyses that examined the use of different digital rehabilitation strategies in post-stroke patients. Exclusion criteria eliminated non-English publications, case reports, and studies of low methodological quality.

RESULTS

1. Virtual Reality and Augmented Reality

VR and AR are technologies that emerged in the late 20th and early 21st centuries. Although they both use sensors to project an interactive image, they differ in a way that impacts their therapeutic utility. VR generally refers to a system that generates an immersive, fully artificial environment, while AR overlays digital images onto real-world surroundings. (14,15)

The most prominent area of research is the application of AR/VR technology to develop interactive motor training systems. These systems, based on well-established physiotherapeutic exercises, aim to create a comfortable, personalized, and rewarding therapeutic process. This may prove particularly beneficial for patients with cognitive impairment following a stroke, where traditional physiotherapy often requires intense supervision by professionals to be effective. (16) These technologies allow for immersive, task-specific training that is easier to comprehend, leading to enhanced motor learning and improved cognitive engagement that promotes neuroplasticity. (8,17) This heightened engagement is achieved through the integration of intuitive and interactive game elements designed to provide immediate, understandable feedback and allow for precise difficulty tailoring. This mechanism is crucial for maintaining patient motivation and adherence to training protocols. (18,19) Similar strategies have been used successfully in postoperative physiotherapy and in pediatric populations. (20)

VR can be useful in simulating complex activities of daily living, such as cooking and shopping, thus helping patients to regain functional independence in a safe and controlled environment. (21) A notable application, VR mirror therapy, leverages visual feedback in order to stimulate motor cortical areas, facilitating functional recovery in hemiparetic limbs post-stroke. (22) Meta-analyses of randomized controlled trials have established that VR interventions are effective for improving upper limb motor function and performance in daily activities, providing a small but significant benefit when combined with traditional methods. (23) For instance, a comparative study demonstrated that 84% of patients receiving immersive VR training achieved clinically relevant improvements in upper extremity function, significantly outperforming electromechanically assisted training, where only 50% showed similar gains. (24) Furthermore, evidence suggests that combining VR with non-invasive brain stimulation can lead to substantial improvements in upper limb motor function. (25) A systematic review and meta-analysis of VR interventions revealed

significant improvements across various motor function assessments, including the Fugl-Meyer Assessment of Upper Extremity, Action Research Arm Test, and Wolf Motor Function Test, as well as improvements in functional ambulation, balance, and daily living activities. (26) This comprehensive meta-analysis, involving 87 studies and 3540 participants, underscores the broad utility of VR in restoring diverse physical capabilities after stroke. A separate systematic review focusing on immersive VR with head-mounted displays also reported benefits in functional ability measures like the functional independence measure, Barthel Index, and improvements in strength and balance outcomes. (27) Research further distinguishes effectiveness between different VR modalities, with non-immersive gaming systems like Microsoft Kinect demonstrating superior efficacy in enhancing upper limb motor function compared to other non-immersive and immersive head-mounted devices. (28)

AR, while often considered more technologically intricate than VR, has shown considerable promise. Its application extends beyond the upper limbs, with systematic reviews confirming significant improvements in balance and gait function for stroke survivors. (29) A randomized controlled trial by Lin et al. highlighted that mirror therapy combined with AR was particularly beneficial for enhancing upper limb motor and sensory function, while AR alone proved more effective for improving balance and functional mobility. (30)

Emerging evidence from systematic reviews indicates that VR can also yield significant improvements in cognitive functions frequently affected by stroke, such as unilateral spatial neglect, attention, and higher executive functions. (1,31) Preliminary results from meta-analyses indicate small to medium effects for cognitive outcomes ($g = 0.41$; 95% CI: 0.28–0.55; $p < 0.01$). (1) Recent reviews further support VR's potential for cognitive rehabilitation across various neurological conditions, emphasising its immersive and interactive nature in addressing memory and attention deficits. (32) A pilot study by Jonsdottir et al. also described the effectiveness of VR for augmenting motor and cognitive abilities in the chronic phase of stroke, both in clinical settings and for long-term maintenance of functional mobility at home. (33) Moreover, studies suggest that VR may additionally reduce symptoms of anxiety and depression, frequently present in stroke patients. (8,19)

Current research suggests that these immersive systems are advantageous in activating key neural networks, such as the mirror neuron system, by providing varied, multisensory feedback to the patient. This, in turn, promotes a balanced, functional recovery. (1,34,35) This sensory experience can be enhanced through the integration of haptic devices. For example, an AR-based smart glove

system was found to be superior to time-matched conventional therapy for improving upper extremity motor function in chronic stroke patients. (36). Meta-analyses confirm that the combination of these technologies is more effective in upper limb function recovery than VR alone. (35)

The increasing affordability and decreasing technological barriers could facilitate the widespread clinical adoption of these solutions. Crucially, the adaptable nature of this technology brings vast possibilities in combination with other modern therapeutic solutions, such as robotics and telerehabilitation. This enables the delivery of supervised and accessible therapy directly to patients' homes, overcoming the mobility barriers affecting stroke survivors. (35)

2. Gait-Triggered Mixed Reality Treadmills

An innovative application of AR/VR technology involves combining it with sensor-equipped treadmills to create a single system. This solution integrates a physical treadmill with projected visual cues and virtual environments that react in real time to the patient's movements, thereby forming a powerful tool for individualized, task-specific training. Similar solutions have been used in the treatment of children with cerebral palsy with promising results. (37) Multiple randomized controlled trials have demonstrated that this form of augmented feedback, which can directly project virtual obstacles or foot placement targets onto the treadmill belt, is more effective than standard treadmill training for enhancing mobility. Specific benefits in chronic stroke patients included significant improvements in the Berg Balance Score, walking speed, and obstacle-crossing abilities. (38–41) Studies also suggest that combining VR with treadmill training may be more effective in improving cognitive outcomes compared to treadmill training alone, particularly regarding information processing speed, attention level, and verbal fluency. (42)

An additional benefit of these exercises, facilitated by stabilization belts and integrated safety features, is the creation of controlled environments where patients can comfortably train for the challenges they face in everyday life. This safe and repeated practice of complex walking tasks has been shown in landmark trials to improve real-world mobility and reduce the incidence of falls in populations with neurological deficits. (43) This solution is particularly adept at dual-task performance, as it requires the simultaneous management of motor functions and processing visual information. Systematic reviews show that this approach is more beneficial for training walking ability under cognitively demanding conditions. (44) The inclusion of error feedback can further

induce motor adaptation by compelling patients to correct gait deviations, such as step-length asymmetry, to navigate the virtual challenges successfully. (45)

Neuroimaging studies provide clues into the underlying mechanisms, with evidence from functional near-infrared spectroscopy demonstrating that multi-task performance during walking induces greater prefrontal cortex activation. As this area of the brain is crucial for executive functions and motor planning, its increased activation shows promise for further research and clinical implementation. (46) The gamified and interactive nature of these exercises enhances patient motivation and adherence, leading to more intensive training - a critical factor for improving therapeutic outcomes in stroke patients.

However, some studies suggest that VR treadmill training may not always be superior to non-VR methods, as comparable results are often reported for improving overall walking ability between the two groups. (29) This suggests that further research is needed to establish the optimal application of VR treadmill training in specific subgroups of post-stroke patients.

3. Robotic-Assisted Rehabilitation Devices

RAT has emerged as one of the most dynamically evolving tools of modern neurorehabilitation. It encompasses a range of devices, including ground exoskeletons, end-effector devices, and wearable exoskeletons, aimed at improving motor functions. (47) These devices produce precisely controlled motion exercises to the extremities, with the possibility of adjusting the speed, range, resistance, and difficulty level while providing continuous real-time feedback to the patient. This has a crucial meaning in improving neuroplasticity by enhancing neuronal reorganization. The main advantage of RAT is that it induces highly repetitive, precise movements with accurate control and prolonged endurance, which are frequently impossible to achieve via traditional neurorehabilitation alone due to decreased muscle strength in post-stroke patients. (48–52) It also requires a significantly lower engagement of the physiotherapist, making it possible for the patient to train independently, therefore being more cost-effective in the long term while maintaining therapeutic intensity. (52)

Robotic gait training devices have been developed to address lower extremity dysfunction and improve ambulatory function in stroke patients. End-effector systems, such as the Morning Walk device, provide knee, ankle, and pelvic movements through footplate trajectories and have proved to be effective in improving walking ability in subacute stroke patients. In a trial by Lee et al., the patients trained robotically achieved greater distances during therapeutic sessions, particularly those with severe mobility limitations. The average walking distance per session for the robotic group was

nearly three times greater than in the control group, where only conventional physiotherapy was used. (52) Another trial, which also examined the effects of RAT on post-stroke mobility using an overground robotic exoskeleton, showed comparable improvements in walking ability between RAT and conventional training. However, it also noted that the patients requiring continuous assistance during ambulation exhibited significantly greater results in overall mobility, highlighting the potential of RAT usage in this group. (53) A study conducted by Yu et al. observed that the group that received RAT exhibited increased motor-evoked potentials and improved sensorimotor function measured by the Fugl-Meyer Assessment scale compared to the control group, who only underwent conventional training. Importantly, this improvement was significantly greater in the active group, in which the movements were only partially assisted by the robots, in relation to the passive group, in which RAT fully replaced the patient's movements. This finding has substantial clinical significance, as it demonstrates that active engagement during robotic training optimizes neuroplastic changes. Additionally, neuroimaging revealed significantly enhanced brain activation in the affected motor cortex, specifically in the active training group, indicating favorable cortical reorganization that was not observed in the passive training modality. (54) Unilateral lower-limb exoskeleton robots have been specifically designed for patients with hemiplegia. A randomized controlled trial using a unilateral lower-limb exoskeleton RAT demonstrated significant improvements in balance and gait functions compared to traditional physiotherapy. Interestingly, analysis using near-infrared spectroscopy documented that RAT induced neural activation in the ipsilesional motor and prefrontal cortices that correlated with the improvements in motor skills. (51) Several randomized controlled trials have also reported the superiority of RAT over conventional rehabilitation for the lower limb in the group of acute or subacute stroke patients. (55,56) Further high-quality research is required to confirm the effectiveness of RAT in rehabilitation among specific subgroups of post-stroke patients.

Studies comparing the effectiveness of RAT and conventional training for upper limb rehabilitation in stroke patients often yield inconclusive results. Numerous randomized controlled trials show no statistically significant changes in the motor improvements of the arm between these methods, suggesting that they are comparable in effectiveness. (48,49,57) However, one of these trials found that RAT was superior to traditional rehabilitation in improving lower limb function. (48) A study by Takebayashi et al. additionally isolated and examined a group of participants remaining after excluding those who performed less than 80% of the scheduled training. This group had significant increases in motor capability after RAT in relation to the control group, who performed traditional rehabilitation solely. (57) In contrast, a randomized controlled trial involving over 300 patients using

a robotic hand exoskeleton demonstrated significant improvements in clinical motor outcomes accompanied by enhanced cortical excitability. The robotic-therapy group showed significantly greater improvements in Fugl-Meyer scale scores and wrist motor function compared to conventional therapy, implying that this may be attributed to improved neuroplasticity induced by RAT. (58) Despite these promising findings, the evidence on RAT's superiority over conventional therapy for upper limb motor function improvement remains inconclusive, requiring further research. (48,49,57)

4. Telerehabilitation

Telerehabilitation has emerged as a promising solution that utilizes information and communication technologies to provide rehabilitation care remotely. It uses a wide array of media, including telephone-based coaching, videoconferencing, or smartphone applications, via which rehabilitation can be provided to the patient. It also encompasses innovative devices based on VR, AR, or RAT. Telerehabilitation protocols usually consist of home-based structured programs that involve periodic contact with a clinician for progress monitoring and exercise instruction. This approach enhances the availability of rehabilitation for individuals with limited access to traditional face-to-face therapy, thereby addressing the shortage of rehabilitation therapists and long waiting times for appointments that may disrupt training regularity and consequently reduce its effectiveness. (5,37)

Recent randomized controlled trials have demonstrated that telerehabilitation offers comparable effectiveness to conventional face-to-face therapy in terms of improving balance, overall motor function, autonomy in daily activities, and upper limb function. (59–61) These interventions usually include monitoring the patient's training via videoconferencing, as well as VR, RAT, or computer game-assisted systems. (62) Dance therapy delivered through telerehabilitation platforms has also shown promise, with a pilot study reporting significant improvements in trunk control and balance in stroke patients. Importantly, regarding trunk improvement, the telerehabilitation-based dance therapy was non-inferior to conventional methods. (63) On the other hand, a randomized controlled trial by Saywell et al. indicated that telerehabilitation using readily available technology did not yield a statistically significant benefit in physical function compared to usual care. Furthermore, any modest improvements observed in the telerehabilitation group were not sustained at the 12-month follow-up. However, a per-protocol analysis, focusing on participants who adhered to more than 50% of the intervention, revealed a significant improvement in physical function. This discrepancy between the intention-to-treat and per-protocol analyses underscores the critical role of patient

adherence in determining the outcomes of telerehabilitation interventions, highlighting the importance of strategies to promote sustained patient motivation. (64)

Telerehabilitation has also proven effective in addressing cognitive impairments commonly observed after stroke. Current research suggests that it significantly increases memory, attention, promotes problem-solving capabilities and executive functions, and may bring a reduction in depressive symptoms, with results being similar to those achieved by traditional methods. (65–67)

An important consideration in terms of telerehabilitation is patient adherence. On one hand, the combination of technology, such as VR or exergames, with a familiar home environment can make the rehabilitation experience more enjoyable than conventional therapy, therefore improving patient compliance. (68–70) However, the absence of direct in-person supervision inherent in remote settings can pose significant challenges to maintaining patient motivation. (71) This necessitates proactive strategies such as regular virtual clinician-patient interactions, real-time feedback and dynamic adjustment of exercise difficulty to ensure compliance. (72) Moreover, the lack of technological familiarity, particularly among the elderly, can pose a barrier to their participation in telerehabilitation programs. Therefore, implementation of intuitive, elderly-friendly telerehabilitation systems is necessary to attempt their widespread adoption in this group of patients. (73)

5. Games and Their Effect on Neuroplasticity

The integration of game-based systems, including serious games and VR, into stroke rehabilitation protocols represents a significant advancement in leveraging neuroplasticity for motor recovery. (17) A primary mechanism through which these technologies aid neural reorganisation is by enhancing patient motivation and adherence, leading to a higher dosage of rehabilitative therapy than what is often achievable through conventional methods. (59)

This increased volume of practice is a fundamental driver for experience-dependent plasticity, the brain's intrinsic ability to reorganise itself by forming new neural connections in response to learning and activity. (74) Game-based interventions are uniquely designed to embed the core principles of motor learning - such as providing repetitive practice with clear goals, immediate feedback, and increasing levels of difficulty. (17,75) Evidence from neuropsychological and neuroimaging studies confirms that this form of enriched training can induce tangible plastic changes in the prefrontal cortex. (46) For instance, a preliminary video game-based rehabilitation

program for upper limbs in chronic stroke patients has been shown to produce significant changes in corticospinal excitability and promote a beneficial shift in the motor map topography within the affected hemisphere, which is a direct indicator of functional cortical reorganisation. (76) A study that investigated an interactive telerehabilitation system based on Kinect camera technology in chronic stroke survivors found significant improvements in Berg Balance Scale and Timed Up and Go test scores in the group using the telerehabilitation device compared to traditional face-to-face rehabilitation. This correlated with greater independence in mobility and a reduced risk of falling. (60) The effectiveness may be particularly pronounced when applied during a critical time window post-stroke, a period when the brain is most receptive to activity-dependent reorganization, though benefits can still be observed in a longer timeframe. (77) These systems incentivize high-volume, intensive practice of specific movements essential for re-establishing and strengthening neural pathways that were damaged or rendered inefficient by the stroke. (59) Therefore, game-based rehabilitation moves beyond being a mere motivational tool; it functions as a sophisticated delivery system for structured, intensive, and feedback-driven training designed to specifically target and harness the brain's capacity for use-dependent neuroplasticity, ultimately enhancing functional motor outcomes for stroke survivors. (17)

LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

Despite the promising advancements in digital therapeutics, the field faces significant limitations and safety concerns that must be addressed. Most importantly, these technologies frequently rely on expensive stationary equipment, which restricts their widespread clinical accessibility.

In the context of AR/VR, further research is needed to identify the most effective components of these systems. Although non-immersive systems like Microsoft Kinect have shown superior efficacy for upper limbs compared to some head-mounted displays, the rapid evolution of immersive technology may change this landscape. (28) Future studies should investigate the specific impact of immersion levels on cognitive load and motor learning, particularly in patients with post-stroke cognitive deficits. (16) Additionally, while VR treadmill training improves gait and dual-task performance, some trials report results comparable to non-VR methods. This points to a conclusion that the gamification element needs to be carefully designed so it does not become a distraction but remains a functional tool. (29,44) Moreover, considering that neuroimaging studies using functional near-infrared spectroscopy have shown promise in mapping prefrontal cortex activation during these tasks, future research should use these tools to provide an objective, biological marker of recovery during VR training. (46) Another important constraint related to the use of AR/VR is that patient

eligibility for these interventions may be restricted, as they often require specific cognitive capabilities or are designed exclusively for particular limb impairments. (78)

Regarding RAT, while evidence suggests its superiority in improving walking distance and mobility in patients with severe limitations, its advantage over conventional therapy for upper limb motor function remains inconclusive. (52,53,79,80) Future research should include large-scale, multicenter trials to determine whether these discrepancies depend on the specific types or robotic devices used, the intensity of the protocols, or the baseline impairment levels of the participants. Further studies should also focus on identifying specific patient subgroups most likely to benefit from robotic interventions. Current evidence suggests that patients requiring continuous assistance exhibit significantly greater results with RAT, but more data is needed to personalize therapy for those in the acute versus chronic phases. (53,77) Moreover, the distinction between active and passive training modes requires deeper exploration. Since studies indicate that active engagement during robotic training significantly enhances brain activation and cortical reorganization compared to passive movements, future technological development should prioritize devices that adaptively assist rather than replace patient effort. (54) This is directly linked to the need for precise dosage definitions. While it is known that high-volume, intensive practice is essential for neuroplasticity, the optimal "dose" of digital therapy remains to be standardized. (59,74)

The efficacy of telerehabilitation is highly dependent on patient adherence, as inconsistent compliance may undermine therapeutic outcomes. (64,81) Technical knowledge gaps among patients and limitations in internet access also pose significant challenges for its widespread implementation. (73) Lastly, safety concerns surrounding data protection and patient autonomy arise with unsupervised home use. (82) Future studies examining telerehabilitation interventions must employ strategies such as real-time feedback and dynamic difficulty adjustment, that would sustain patient motivation in the absence of direct therapist supervision. (72) Future research should also explore effective strategies to mitigate the digital divide among older adults, such as developing more intuitive interfaces and providing robust technical support and training, to enhance telerehabilitation accessibility and effectiveness. (73) Moreover, some evidence suggests that improvements gained via rehabilitation may not be sustained at 12-month intervals without continued intervention, which necessitates further long-term follow-up studies. (64)

Game-based programs, on the other hand, face challenges that include cognitive demands placed on patients or the need for therapists to set up and integrate complex systems. Moreover, there is

frequently a mismatch between game design focused on entertainment and the specific therapeutic outcomes required for effective neuromuscular training. (83) Successful widespread adoption of these devices requires a greater emphasis on cost-effectiveness and scalability to ensure equitable access. (84)

CONCLUSIONS

Digital technologies, specifically VR, AR, RAT and telerehabilitation, represent effective adjunctive modalities in post-stroke neurorehabilitation. The literature confirms that these interventions address critical limitations of conventional therapy by enabling intensive, engaging, and highly repetitive training, which is a fundamental driver of use-dependent neuroplasticity. The primary contribution of these modern solutions is their ability to increase therapy dosage and patient motivation, key determinants of functional recovery often constrained by traditional methods. Key findings indicate that VR/AR significantly improves both upper and lower limb motor function, balance, and cognitive outcomes by providing immediate feedback and stimulating the mirror neuron system. RAT is particularly beneficial for patients with severe mobility limitations, provided the training is structured to ensure active patient engagement. Telerehabilitation provides a crucial delivery mechanism, demonstrating effectiveness and improving access to treatment, although patient adherence remains a challenge. Future research must focus on optimizing training protocols by identifying which patient subgroups benefit most from specific technologies and establishing the ideal intensity and duration of these digital interventions. Emphasis should also be placed on the seamless integration of these technologies (e.g., combining home-based robotic devices with VR exergames delivered via telerehabilitation) to create cohesive, scalable, and personalized long-term rehabilitation plans. Addressing the current limitations surrounding evidence consistency for the use of these technologies will be a critical step toward widespread clinical adoption.

DISCLOSURES:

Authors' contribution:

Conceptualization: Simon Matczak, Maria Namysł

Methodology: Marcin Sobkowiak

Software: not applicable.

Check: Kinga Woźniak

Formal analysis: Simon Matczak, Sandra Dachowska

Investigation: Maria Namysł, Jan Haraj

Resources: Maria Namysł, Maciej Bieniek

Data curation: Jan Haraj, Aleksandra Fałczyńska

Writing - rough preparation: Maciej Bieniek, Kinga Woźniak

Writing - review and editing: Simon Matczak, Sandra Dachowska

Visualization: Marcin Sobkowiak, Aleksandra Fałczyńska

Supervision: Kinga Woźniak, Aleksandra Fałczyńska

Project administration: Simon Matczak

All authors have read and agreed with the published version of the manuscript.

Funding Statement: The study did not receive special funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflict of Interest: The authors declare no conflict of interest.

During the preparation of this work, the author(s) used Google's Chat Generative Pre-trained Transformer (Gemini 3) to support the editing process, including grammar, spelling, punctuation, and stylistic refinement. All content generated with AI assistance was carefully reviewed and revised by the author(s), who accept full responsibility for the accuracy, interpretation, and integrity of the final manuscript.

REFERENCES

1. Aminov A, Rogers JM, Middleton S, Caeyenberghs K, Wilson PH. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. *J Neuroengineering Rehabil.* 2018 Mar 27;15(1):29.
2. Żyga J. Current advances in ischemic stroke management. *J Educ Health Sport.* 2022 Aug 20;12(8):644–9.
3. Kheirollahzadeh M, Sarvghadi P, Bani Hani J, Azizkhani S, Monnin C, Choukou MA. Digital Health Technologies to Support At-Home Recovery of People with Stroke: A Scoping Review. *Appl Sci.* 2025 May 10;15(10):5335.

4. Macko A, Wojciechowska U, Łuniewski B, Nowicka I, Dziemianczuk J, Macedońska W, et al. Effect of Diabetes on Neurological and Cognitive Outcomes. *Qual Sport*. 2025 Nov 22;47:66715.
5. Senadheera I, Hettiarachchi P, Haslam B, Nawaratne R, Sheehan J, Lockwood KJ, et al. AI Applications in Adult Stroke Recovery and Rehabilitation: A Scoping Review Using AI. *Sensors*. 2024 Oct 12;24(20):6585.
6. Lin DJ, Backus D, Chakraborty S, Liew SL, Valero-Cuevas FJ, Patten C, et al. Transforming modeling in neurorehabilitation: clinical insights for personalized rehabilitation. *J NeuroEngineering Rehabil*. 2024 Feb 4;21(1):18.
7. Giles D, Foulon C, Pombo G, Ruffle JK, Xu T, Jäger HR, et al. Individualized prescriptive inference in ischaemic stroke. *Nat Commun*. 2025 Oct 16;16(1):8968.
8. Górnjak A, Kubas A, Widawski M, Gizińska N, Sobczyk A, Lewandowska P, et al. The Impact of Virtual Reality Training on Sport Injury Rehabilitation – a Literature Review. *Qual Sport*. 2025 Jun 2;42:60339.
9. Singh H, Nguyen T, Hahn-Goldberg S, Lewis-Fung S, Smith-Bayley S, Nelson MLA. A qualitative study exploring the experiences of individuals living with stroke and their caregivers with community-based poststroke services: A critical need for action. Lavorina L, editor. *PLOS ONE*. 2022 Oct 10;17(10):e0275673.
10. Bae S, Park HS. Development and validation of immersive hand rehabilitation system using a VR rhythm game with vibrotactile feedback: an fNIRS pilot study [Internet]. 2022 [cited 2025 Dec 8]. Available from: <https://www.researchsquare.com/article/rs-2054240/v1>
11. Balestra N, Sharma G, Riek LM, Busza A. Automatic Identification of Upper Extremity Rehabilitation Exercise Type and Dose Using Body-Worn Sensors and Machine Learning: A Pilot Study. *Digit Biomark*. 2021 Jul 2;5(2):158–66.
12. Tamayo-Serrano P, Garbaya S, Blazevic P. Gamified In-Home Rehabilitation for Stroke Survivors: Analytical Review. *Int J Serious Games* [Internet]. 2018 Mar 26 [cited 2025 Dec 8];5(1). Available from: <http://journal.seriousgamessociety.org/index.php/IJSG/article/view/224>
13. Brien JO. Virtual Reality to Improve Motor Function After Stroke: Past, Present, and Future. *Open Access J Neurol Neurosurg* [Internet]. 2019 Mar 18 [cited 2025 Dec 8];10(2). Available from: <https://juniperpublishers.com/oajnn/OAJNN.MS.ID.555785.php>
14. Kozlowski AJ, Fabian M, Lad D, Delgado AD. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study. *Arch Phys Med Rehabil*. 2017 Jul;98(7):1300–7.

15. Hunaepi H, Sudiatmika AAIAR, Fadly W. Augmented Reality in Education: A Meta-Analysis Of (Quasi-) Experimental Studies to Investigate the Impact. *Reflect J.* 2023 Dec 1;3(2):74–87.
16. Rost NS, Brodtmann A, Pase MP, Van Veluw SJ, Biffi A, Duering M, et al. Post-Stroke Cognitive Impairment and Dementia. *Circ Res.* 2022 Apr 15;130(8):1252–71.
17. Lohse KR, Hilderman CGE, Cheung KL, Tatla S, Van Der Loos HFM. Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-Analysis Exploring Virtual Environments and Commercial Games in Therapy. Quinn TJ, editor. *PLoS ONE.* 2014 Mar 28;9(3):e93318.
18. Faria AL, Andrade A, Soares L, I Badia SB. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. *J NeuroEngineering Rehabil.* 2016 Dec;13(1):96.
19. Zhang T, Zhang M, Luo J. Review Of The Application Of Artificial Intelligence (AI) Exercise Training In Improving Cognitive Function In The Elderly Population. *Qual Sport.* 2025 Feb 10;38:58019.
20. Janssen J, Verschuren O, Renger WJ, Ermers J, Ketelaar M, Van Ee R. Gamification in Physical Therapy: More Than Using Games. *Pediatr Phys Ther.* 2017 Jan;29(1):95–9.
21. Kim A, Schweigofer N, Finley JM. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. *J NeuroEngineering Rehabil.* 2019 Dec;16(1):113.
22. Jo S, Jang H, Kim H, Song C. 360° immersive virtual reality-based mirror therapy for upper extremity function and satisfaction among stroke patients: a randomized controlled trial. *Eur J Phys Rehabil Med [Internet].* 2024 Apr [cited 2025 Nov 10];60(2). Available from: <https://www.minervamedica.it/index2.php?show=R33Y2024N02A0207>
23. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Stroke Group, editor. *Cochrane Database Syst Rev [Internet].* 2017 Nov 20 [cited 2025 Nov 10];2018(1). Available from: <http://doi.wiley.com/10.1002/14651858.CD008349.pub4>
24. Lülsdorff K, Junker FB, Studer B, Wittenberg H, Pickenbrock H, Schmidt-Wilcke T. Neurorehabilitation of the upper extremity – immersive virtual reality vs. electromechanically assisted training. A comparative study. *Front Neurol.* 2023 Dec 21;14:1290637.
25. Shin S, Hwang G, Kim Y, Park E, Cho DR, Baik H, et al. Role of fully-immersive virtual reality for paretic arm recovery in stroke rehabilitation. *Front Neurol.* 2025 Sep 15;16:1653749.

26. Zhang B, Li D, Liu Y, Wang J, Xiao Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. *J Adv Nurs.* 2021 Aug;77(8):3255–73.
27. Patsaki I, Dimitriadi N, Despoti A, Tzoumi D, Leventakis N, Roussou G, et al. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review. *Front Syst Neurosci.* 2022 Sep 22;16:880447.
28. Zhang J, Liu M, Yue J, Yang J, Xiao Y, Yang J, et al. Effects of virtual reality with different modalities on upper limb recovery: a systematic review and network meta-analysis on optimizing stroke rehabilitation. *Front Neurol.* 2025 Apr 1;16:1544135.
29. De Rooij IJM, Van De Port IGL, Punt M, Abbink-van Moorsel PJM, Kortsmit M, Van Eijk RPA, et al. Effect of Virtual Reality Gait Training on Participation in Survivors of Subacute Stroke: A Randomized Controlled Trial. *Phys Ther.* 2021 May 4;101(5):pzab051.
30. Lin CJ, Lin K chung, Lau HY, Hsieh Y wei, Li Y chun, Chen WS, et al. Effects of Mirror Therapy Preceding Augmented Reality in Stroke Rehabilitation: A Randomized Controlled Trial [Internet]. 2024 [cited 2025 Dec 12]. Available from: <https://www.researchsquare.com/article/rs-5417696/v1>
31. Kraśnik W, Jankowska O, Kurzeja J, Piotrowicz K, Piotrowicz H, Bajkacz A, et al. The Benefits and challenges of virtual reality application in rehabilitation for chronic conditions. *J Educ Health Sport.* 2024 Dec 18;75:56379.
32. Quan W, Liu S, Cao M, Zhao J. A Comprehensive Review of Virtual Reality Technology for Cognitive Rehabilitation in Patients with Neurological Conditions. *Appl Sci.* 2024 Jul 19;14(14):6285.
33. Jonsdottir J, Baglio F, Gindri P, Isernia S, Castiglioni C, Gramigna C, et al. Virtual Reality for Motor and Cognitive Rehabilitation From Clinic to Home: A Pilot Feasibility and Efficacy Study for Persons With Chronic Stroke. *Front Neurol.* 2021 Apr 7;12:601131.
34. Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. *J NeuroEngineering Rehabil.* 2013;10(1):85.
35. Leong SC, Tang YM, Toh FM, Fong KNK. Examining the effectiveness of virtual, augmented, and mixed reality (VAMR) therapy for upper limb recovery and activities of daily living in stroke patients: a systematic review and meta-analysis. *J NeuroEngineering Rehabil.* 2022 Aug 24;19(1):93.
36. Shin S, Lee HJ, Chang WH, Ko SH, Shin YI, Kim YH. A Smart Glove Digital System Promotes Restoration of Upper Limb Motor Function and Enhances Cortical Hemodynamic

Changes in Subacute Stroke Patients with Mild to Moderate Weakness: A Randomized Controlled Trial. *J Clin Med.* 2022 Dec 10;11(24):7343.

- 37. Ochandorena-Acha M, Terradas-Monllor M, Nunes Cabrera TF, Torrabias Rodas M, Grau S. Effectiveness of virtual reality on functional mobility during treadmill training in children with cerebral palsy: a single-blind, two-arm parallel group randomised clinical trial (VirtWalkCP Project). *BMJ Open.* 2022 Nov;12(11):e061988.
- 38. Kim N, Park Y, Lee BH. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke. *J Phys Ther Sci.* 2015;27(3):655–8.
- 39. Han SH, Jang HJ, Lee JW, Cheong JW, Kim YD, Nam HS, et al. The effect of virtual reality-based treadmill gait training on functional mobility and balance in chronic stroke patients: a randomized controlled trial. *Front Neurol.* 2025 Jul 21;16:1603233.
- 40. Kim N, Hee Lee B, Kim Y, Min W. Effects of Virtual Reality Treadmill Training on Community Balance Confidence and Gait in People Post-Stroke: a randomized controlled trial. *J Exp Stroke Transl Med* [Internet]. 2017 [cited 2025 Nov 11];09(01). Available from: <http://www.openaccessjournals.com/articles/effects-of-virtual-reality-treadmill-training-on-community-balance-confidence-and-gait-in-people-poststroke-a-randomized-controlled-11899.html>
- 41. Yang H, Gao Z, Zhou Y, Liao Z, Song C, Mao Y. Effects of gait adaptation training on augmented reality treadmill for patients with stroke in community ambulation. *Int J Qual Health Care.* 2024 Feb 20;36(1):mzae008.
- 42. Galperin I, Mirelman A, Schmitz-Hübsch T, Hsieh KL, Regev K, Karni A, et al. Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: a randomized controlled trial. *J Neurol.* 2023 Mar;270(3):1388–401.
- 43. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. *The Lancet.* 2016 Sep;388(10050):1170–82.
- 44. Zhang B, Wong KP, Kang R, Fu S, Qin J, Xiao Q. Efficacy of Robot-Assisted and Virtual Reality Interventions on Balance, Gait, and Daily Function in Patients With Stroke: A Systematic Review and Network Meta-analysis. *Arch Phys Med Rehabil.* 2023 Oct;104(10):1711–9.
- 45. Lloréns R, Gil-Gómez JA, Alcañiz M, Colomer C, Noé E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. *Clin Rehabil.* 2015 Mar;29(3):261–8.

46. Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study. *Neurorehabil Neural Repair*. 2016 Jul;30(6):591–9.

47. Warutkar V, Dadgal R, Mangulkar UR. Use of Robotics in Gait Rehabilitation Following Stroke: A Review. *Cureus*. 2022 Nov;14(11):e31075.

48. Lin Y, Li QY, Qu Q, Ding L, Chen Z, Huang F, et al. Comparative Effectiveness of Robot-Assisted Training Versus Enhanced Upper Extremity Therapy on Upper and Lower Extremity for Stroke Survivors: A Multicentre Randomized Controlled Trial. *J Rehabil Med*. 2022 Aug 26;54:jrm00314.

49. Park JM, Park HJ, Yoon SY, Kim YW, Shin JI, Lee SC. Effects of Robot-Assisted Therapy for Upper Limb Rehabilitation After Stroke: An Umbrella Review of Systematic Reviews. *Stroke*. 2025 May;56(5):1243–52.

50. Bosomworth H, Rodgers H, Shaw L, Smith L, Aird L, Howel D, et al. Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement. *Clin Rehabil*. 2021 Jan;35(1):119–34.

51. Huo C, Shao G, Chen T, Li W, Wang J, Xie H, et al. Effectiveness of unilateral lower-limb exoskeleton robot on balance and gait recovery and neuroplasticity in patients with subacute stroke: a randomized controlled trial. *J Neuroengineering Rehabil*. 2024 Dec 5;21(1):213.

52. Lee J, Kim DY, Lee SH, Kim JH, Kim DY, Lim KB, et al. End-effector lower limb robot-assisted gait training effects in subacute stroke patients: A randomized controlled pilot trial. *Medicine (Baltimore)*. 2023 Oct 20;102(42):e35568.

53. Tam PK, Tang N, Kamsani NSB, Yap TY, Coffey-Aladdin I, Goh SM, et al. Overground robotic exoskeleton vs conventional therapy in inpatient stroke rehabilitation: results from a pragmatic, multicentre implementation programme. *J Neuroengineering Rehabil*. 2025 Jan 6;22(1):3.

54. Yu Y, Huang W, Tuerxun H, Zheng Y, Su L, Li X, et al. Enhanced neuroplasticity and gait recovery in stroke patients: a comparative analysis of active and passive robotic training modes. *BMC Neurol*. 2025 May 31;25(1):239.

55. Kim YH. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. *Precis Future Med*. 2019 Sep 30;3(3):103–15.

56. Meng G, Ma X, Chen P, Xu S, Li M, Zhao Y, et al. Effect of early integrated robot-assisted gait training on motor and balance in patients with acute ischemic stroke: a single-blinded randomized controlled trial. *Ther Adv Neurol Disord*. 2022 Jan;15:17562864221123195.

57. Takebayashi T, Takahashi K, Amano S, Goshio M, Sakai M, Hashimoto K, et al. Robot-Assisted Training as Self-Training for Upper-Limb Hemiplegia in Chronic Stroke: A Randomized Controlled Trial. *Stroke*. 2022 Jul;53(7):2182–91.

58. Singh N, Saini M, Kumar N, Srivastava MVP, Mehendiratta A. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. *J NeuroEngineering Rehabil*. 2021 May 6;18(1):76.

59. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Chapman M, et al. Virtual reality for stroke rehabilitation. Cochrane Central Editorial Service, editor. *Cochrane Database Syst Rev* [Internet]. 2025 Jun 20 [cited 2025 Nov 10];2025(6). Available from: <http://doi.wiley.com/10.1002/14651858.CD008349.pub5>

60. Chen SC, Lin CH, Su SW, Chang YT, Lai CH. Feasibility and effect of interactive telerehabilitation on balance in individuals with chronic stroke: a pilot study. *J NeuroEngineering Rehabil*. 2021 Dec;18(1):71.

61. Lin KH, Chen CH, Chen YY, Huang WT, Lai JS, Yu SM, et al. Bidirectional and multi-user telerehabilitation system: clinical effect on balance, functional activity, and satisfaction in patients with chronic stroke living in long-term care facilities. *Sensors*. 2014 Jul 11;14(7):12451–66.

62. Xing Y, Xiao J, Zeng B, Wang Q. ICTs and interventions in telerehabilitation and their effects on stroke recovery. *Front Neurol*. 2023;14:1234003.

63. Lee SJ, Lee EC, Kim M, Ko SH, Huh S, Choi W, et al. Feasibility of dance therapy using telerehabilitation on trunk control and balance training in patients with stroke: A pilot study. *Medicine (Baltimore)*. 2022 Sep 2;101(35):e30286.

64. Saywell NL, Vandal AC, Mudge S, Hale L, Brown P, Feigin V, et al. Telerehabilitation After Stroke Using Readily Available Technology: A Randomized Controlled Trial. *Neurorehabil Neural Repair*. 2021 Jan;35(1):88–97.

65. Cacciante L, Pietà CD, Rutkowski S, Cieślik B, Szczepańska-Gieracha J, Agostini M, et al. Cognitive telerehabilitation in neurological patients: systematic review and meta-analysis. *Neurol Sci*. 2022 Feb;43(2):847–62.

66. Federico S, Cacciante L, De Icco R, Gatti R, Jonsdottir J, Pagliari C, et al. Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study. *J Pers Med*. 2023 Dec 6;13(12):1692.

67. Maggio MG, Baglio F, Arcuri F, Borgnis F, Contrada M, Diaz MDM, et al. Cognitive telerehabilitation: an expert consensus paper on current evidence and future perspective. *Front Neurol*. 2024;15:1338873.

68. Bellomo RG, Paolucci T, Saggino A, Pezzi L, Bramanti A, Cimino V, et al. The WeReha Project for an Innovative Home-Based Exercise Training in Chronic Stroke Patients: A Clinical Study. *J Cent Nerv Syst Dis.* 2020;12:1179573520979866.

69. Allegue DR, Sweet SN, Higgins J, Archambault PS, Michaud F, Miller WC, et al. Lessons Learned From Clinicians and Stroke Survivors About Using Telerehabilitation Combined With Exergames: Multiple Case Study. *JMIR Rehabil Assist Technol.* 2022 Sep 15;9(3):e31305.

70. Maresca G, Maggio MG, De Luca R, Manuli A, Tonin P, Pignolo L, et al. Tele-Neuro-Rehabilitation in Italy: State of the Art and Future Perspectives. *Front Neurol.* 2020 Sep 30;11:563375.

71. Zaremba B, Gorecka A, Wysokińska O, Cholewa K, Milanowska J. New directions in treatment of the ischemic stroke. *J Educ Health Sport.* 2020 Jul 10;10(7):66–77.

72. Gelineau A, Perrochon A, Daviet JC, Mandigout S. Compliance with Upper Limb Home-Based Exergaming Interventions for Stroke Patients: A Narrative Review. *J Rehabil Med.* 2022 Nov 24;54:jrm00325.

73. Liu Y, Shan Y, Zhang M, Ji B, Zhou Y. Digital Divide in Smart Sports Applications for the Elderly and Its Mitigation. *Qual Sport.* 2025 Apr 14;40:60013.

74. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation: *Curr Opin Neurol.* 2006 Feb;19(1):84–90.

75. Lohse K, Shirzad N, Verster A, Hodges N, Van Der Loos HFM. Video Games and Rehabilitation: Using Design Principles to Enhance Engagement in Physical Therapy. *J Neurol Phys Ther.* 2013 Dec;37(4):166–75.

76. Jang SH, You SH, Hallett M, Cho YW, Park CM, Cho SH, et al. Cortical Reorganization and Associated Functional Motor Recovery After Virtual Reality in Patients With Chronic Stroke: An Experimenter-Blind Preliminary Study. *Arch Phys Med Rehabil.* 2005 Nov;86(11):2218–23.

77. Ballester BR, Maier M, Duff A, Cameirão M, Bermúdez S, Duarte E, et al. A critical time window for recovery extends beyond one-year post-stroke. *J Neurophysiol.* 2019 Jul 1;122(1):350–7.

78. De Crignis AC, Ruhnau ST, Hösl M, Lefint J, Amberger T, Dressnandt J, et al. Robotic arm training in neurorehabilitation enhanced by augmented reality – a usability and feasibility study. *J NeuroEngineering Rehabil.* 2023 Aug 12;20(1):105.

79. Gooch HJ, Hill JE, Jones SP, Stockley RC. The Effectiveness and Use of Digital Technology Interventions for Upper Limb Rehabilitation at Home in Acute and Subacute Stroke: A

Systematic Review and Meta-Analysis [Internet]. 2025 [cited 2025 Dec 8]. Available from: <http://medrxiv.org/lookup/doi/10.1101/2025.11.14.25340164>

80. Mehrholz J, Pollock A, Pohl M, Kugler J, Elsner B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. *J NeuroEngineering Rehabil.* 2020 Dec;17(1):83.

81. Huang Y, Yang B, Wong TWL, Ng SSM, Hu X. Personalized robots for long-term telerehabilitation after stroke: a perspective on technological readiness and clinical translation. *Front Rehabil Sci.* 2024 Jan 8;4:1329927.

82. Øra HP, Kirmess M, Brady MC, Sørli H, Becker F. Technical Features, Feasibility, and Acceptability of Augmented Telerehabilitation in Post-stroke Aphasia-Experiences From a Randomized Controlled Trial. *Front Neurol.* 2020;11:671.

83. Urbina J, Abarca VE, Elias DA. Integration of music-based game approaches with wearable devices for hand neurorehabilitation: a narrative review. *J NeuroEngineering Rehabil.* 2024 May 29;21(1):89.

84. Tosto-Mancuso J, Tabacof L, Herrera JE, Breyman E, Dewil S, Cortes M, et al. Gamified Neurorehabilitation Strategies for Post-stroke Motor Recovery: Challenges and Advantages. *Curr Neurol Neurosci Rep.* 2022 Mar;22(3):183–95.