

JURCZUK, Aleksandra, BALDYGA, Paulina, FROŃ, Oliwia, ROMANIUK, Sergiusz, KACZMAREK , Aleksandra, KACZMAREK, Wojciech and KRAKOWIAK, Magdalena. Echinacea as a Functional Ingredient in Immunocosmetics: Health and Educational Perspectives – A review. *Journal of Education, Health and Sport*. 2025;85:66586. eISSN 2391-8306.
<https://doi.org/10.12775/JEHS.2025.85.66586>
<https://apcz.umk.pl/JEHS/article/view/66586>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences). Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2025; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.
The authors declare that there is no conflict of interests regarding the publication of this paper.
Received: 12.11.2025. Revised: 16.11.2025. Accepted: 16.11.2025. Published: 24.11.2025.

Echinacea as a Functional Ingredient in Immunocosmetics: Health and Educational Perspectives – A review

Aleksandra Jurczuk¹ [AJ]

ORCID <https://orcid.org/0009-0003-5369-5395>

E-mail: alexiss9713@gmail.com

Paulina Baldyga¹ [PB]

ORCID <https://orcid.org/0009-0007-2694-4885>

E-mail: paulinaa.baldyga@gmail.com

Oliwia Froń¹ [OF]

ORCID <https://orcid.org/0009-0007-6206-7533>

E-mail: foliwigia.en@gmail.com

Sergiusz Romaniuk³ [SR]

ORCID <https://orcid.org/0009-0001-0701-964X>

E-mail: serek1906@gmail.com

Aleksandra Kaczmarek² [AK]

ORCID <https://orcid.org/0009-0006-3494-7990>

E-mail: aleksandra.kosmider.29@gmail.com

Wojciech Kaczmarek² [WK]

ORCID <https://orcid.org/0009-0009-2609-8310>

E-mail wojciechkaczmarek42@gmail.com

Magdalena Krakowiak² [MK]

ORCID <https://orcid.org/0009-0002-8600-2199>

E-mail krakmagdalena@gmail.com

1. Medical University of Białystok, ul. J. Kilińskiego 1, 15-089 Białystok, Poland

2. University Clinical Hospital in Białystok, ul. M. C. Skłodowskiej 24a, 15-276 Białystok, Poland

3. Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091 Warsaw, Poland

Abstract:

Introduction and Purpose: The cosmetics industry increasingly turns to natural ingredients that improve skin appearance and support its health. Echinacea, known for its immunomodulatory, antioxidant and anti-inflammatory properties, is gaining popularity as an active substance in immunocosmetics — products combining care with immune support. This article reviews the dermatological potential of selected species, mainly *E. purpurea*, *E. angustifolia* and *E. pallida*, assessing their role in strengthening skin immunity, regeneration and protection against environmental factors.

Material and Method: A qualitative review was performed using PubMed, Scopus and Web of Science. Only peer-reviewed papers from the last decade focused on Echinacea's dermatological effects were included; studies lacking empirical data were excluded.

Results: Echinacea contains key bioactive compounds such as polyphenols (e.g., chicoric acid), alkamides and polysaccharides, which act synergistically on the skin. They reduce inflammation, neutralize free radicals and support epidermal renewal. The extracts influence immune cells like Langerhans cells and keratinocytes, enhancing innate immunity. Due to

antimicrobial activity, particularly against *Cutibacterium acnes*, Echinacea is useful in acne care. Cosmetics with its extracts improve hydration, elasticity and may reduce wrinkles.

Conclusions: Echinacea shows notable potential in immunocosmetics thanks to its multifunctional effects on skin health. Further research and careful formulation are essential for its safe and effective use in modern skincare.

Keywords: Echinacea, immunocosmetics, skin immunity, anti-inflammatory, antioxidant, plant-based cosmetics, acne treatment, skin regeneration, review.

1. Introduction

In recent years, the cosmetics industry has undergone a noticeable shift toward the incorporation of natural ingredients. Consumers are increasingly seeking products that not only enhance the appearance of the skin but also support its overall health and well-being. Natural compounds—particularly those with scientifically documented therapeutic effects—are now considered essential in the development of effective and environmentally responsible formulations. The growing demand for "clean beauty" has renewed interest in plant-based ingredients that offer a range of skin benefits, including anti-aging, moisturizing, and healing properties (Hudson, 2012; Ahmadi et al., 2024). Additionally, natural substances are often regarded as safer alternatives to synthetic chemicals, further reinforcing their appeal in modern cosmetology (Couceiro et al., 2025).

Echinacea, a genus of perennial plants native to North America, has long been recognized for its medicinal potential. Indigenous tribes, such as the Sioux, traditionally used Echinacea to treat wounds, snake bites, sore throats, and fever. Over time, its use expanded to include immune support, infection control, and inflammation reduction. Among the most widely used species are *Echinacea purpurea*, *Echinacea angustifolia*, and *Echinacea pallida*, all of which contain key bioactive compounds such as echinacoside, chicoric acid, and alkamides. These constituents exhibit immunomodulatory, antioxidant, and anti-inflammatory

properties, accounting for the plant's wide therapeutic applications (Huntley et al., 2005; Sharifi-Rad et al., 2018). A growing body of scientific research supports the health-promoting effects of Echinacea, facilitating its transition from traditional herbal medicine to a valuable component of modern skincare and immunocosmetic products (Barrett, 2003; Sharma et al., 2011).

The aim of this article is to provide a comprehensive review of Echinacea's dermatological potential and its emerging role in immunocosmetics. Immunocosmetics—formulations that combine immune-modulating and skincare benefits—are gaining recognition for their holistic approach to skin health. Echinacea's ability to enhance innate immune responses, protect the skin from environmental stressors, and support tissue regeneration positions it as a promising active ingredient in this evolving category (Sharma et al., 2011; Barrett, 2003). This article will explore the molecular mechanisms of Echinacea's activity, its applications in managing skin inflammation, aging, and disease, and its integration into innovative cosmetic formulations aimed at strengthening skin immunity.

2.1 Literature Sources:

A comprehensive literature search was conducted using databases such as PubMed, Scopus, and Web of Science, focusing on studies related to Echinacea and its dermatological applications.

2.2. Data Extraction and Selection Criteria:

Inclusion criteria encompassed peer-reviewed articles published in English within the last ten years, focusing on Echinacea's effects on skin health. Exclusion criteria included studies lacking empirical data or those not directly related to the topic.

2.3. Method of Review and Analysis:

The selected studies were analyzed qualitatively, focusing on the mechanisms of action, efficacy, and safety of Echinacea in skin applications.

3. Research results

3.1 Botanical and Chemical Characteristics of Echinacea

3.1.1. Echinacea species and their importance in cosmetology (E. purpurea, E. angustifolia, E. pallida)

Echinacea, commonly called echinacea, is a genus of herbaceous flowering plants in the family Asteraceae. It consists of 11 taxa, all of which are herbaceous and perennial (Sharifi-Rad et al. 2018). Of these, *Echinacea purpurea*, *Echinacea angustifolia*, and *Echinacea pallida* are the species best known for their therapeutic and cosmetic uses (Ahmadi 2024).

Echinacea purpurea is the most cultivated and used species due to its high content of bioactive compounds, including polyphenols, alkamides and flavonoids. These compounds exhibit strong antioxidant and anti-inflammatory properties, making this species particularly effective in soothing sensitive and irritated skin. It is also used in formulations designed to protect the skin from environmental aggressors such as UV radiation and contaminants (Hudson 2012).

Echinacea angustifolia is known for the properties of its deep roots, which include strong immunomodulatory effects. It is often used in skin care, skin regeneration and wound healing products. The species is also effective in alleviating conditions such as eczema, psoriasis, and atopic dermatitis due to its ability to reduce inflammation and enhance skin barrier function (Oláh et al. 2017; Chen et al. 2023).

Echinacea pallida is less commonly used in cosmetic applications, but offers unique benefits. It is particularly rich in antimicrobial compounds, making it a valuable ingredient in products developed for acne-prone skin. In addition, its anti-inflammatory and skin repair properties contribute to its effectiveness in soothing and revitalizing damaged skin (Hostettmann 2003; Sharma et al. 2011; Pazyar et al. 2014).

To maximize the protective effect of Echinacea plants, they are used together, and their synergism ensures regenerative and soothing effects, providing comprehensive care for various skin types and diseases.

3.1.2 Chemical Composition

Echinacea species contain a variety of bioactive compounds, which are responsible for their therapeutic and cosmetic effects. The main chemical constituents include:

1. **Polyphenols (Chicoric Acid, Flavonoids):** Polyphenolic compounds such as chicoric acid are potent antioxidants with anti-inflammatory properties. These compounds help protect the skin from oxidative damage caused by UV radiation and environmental stressors. In addition, flavonoids present in Echinacea have been shown to enhance skin barrier function and improve skin hydration, making them valuable ingredients in moisturizing and anti-aging products (Xu et al. 2021; Ahmadi 2024). Additionally, chicoric acid has antiviral and anticancer properties —. In vitro studies have observed its ability to inhibit the replication of selected viruses and slow down the growth of cancer cells, which opens up new therapeutic possibilities (Li et al., 2018; Park et al., 2021)
2. **Alkamides:** These compounds are a unique feature of Echinacea species, providing an immunomodulatory effect. Alkamides interact with the body's immune system, strengthening skin defenses, helping to reduce the risk of skin infections and other immune-related skin problems. Their analgesic and anti-inflammatory properties further enhance Echinacea's role in soothing and protecting irritated skin (Manayi et al. 2015; Ahmadi 2024). Interestingly, some alkamides also have the ability to cross the skin barrier and influence CB2 cannabinoid receptors, which may additionally modulate inflammatory processes and support tissue regeneration (Woelkart et al. 2008).
3. **Polysaccharides:** Polysaccharides, including arabinogalactans, play a key role in stimulating the immune system. These compounds support innate skin immunity by supporting cell regeneration and tissue repair, which is particularly beneficial for people with sensitive or damaged skin. The immune-boosting effect of polysaccharides makes Echinacea an excellent choice for products aimed at healing and maintaining healthy skin (Manayi et al. 2015; Ahmadi 2024). Interestingly, arabinogalactans from Echinacea also exhibit the ability to activate macrophages and increase cytokine production, which may promote faster wound healing and limit the development of skin inflammation (Zhao et al. 2016).

4. **3.1.3. Mechanisms of Action of Active Ingredients**

The active substances contained in Echinacea work in many directions, synergistically improving the health and appearance of the skin. First of all, Echinacea has a strong anti-inflammatory effect. Polyphenols such as chicoric acid and alkamides inhibit the production of pro-inflammatory cytokines (e.g. TNF- α , IL-6), which leads to reduced redness, swelling and

irritation. Thanks to this, this plant is effective in relieving skin inflammation, such as acne or eczema (Toselli et al., 2009; Pellati et al., 2018). Moreover, alkamides have affinity for CB2 cannabinoid receptors present in cells of the skin's immune system, which may further suppress inflammation and support tissue regeneration (Woelkart et al., 2005).

In addition, Echinacea's antioxidant properties protect the skin against oxidative stress caused by free radicals. Polyphenols and flavonoids neutralize these reactive molecules, preventing cell damage and delaying skin aging processes such as wrinkles and discoloration (Bourgaud et al., 2021). Chicoric acid in particular has a strong anti-radical effect, and research also suggests its antiviral and anticancer properties, which opens up new possibilities in dermatology (Li et al., 2018).

The third important aspect is supporting skin regeneration and hydration. Polysaccharides, in particular arabinogalactans, stimulate fibroblast activity and collagen production, which accelerates wound healing. Additionally, they improve the skin's ability to retain moisture, increasing its elasticity and preventing dryness (Ahmadi et al., 2024; Zhao et al., 2016). New research also shows that arabinogalactans can activate macrophages and promote the secretion of repair cytokines such as IL-10, which has a beneficial effect on skin regenerative processes (Zhao et al., 2016).

Finally, Echinacea enhances the skin's immune response. Alkamides and polysaccharides activate various immune cells, including keratinocytes, macrophages and Langerhans cells, which increases the skin's ability to defend against infections and regenerate after damage (Kligler & Ulbricht, 2008; Karg et al., 2019). Additionally, alkamides can modulate the expression of immune response genes by acting as unique regulators of skin immunity (Manayi et al., 2015).

In summary, the combination of polyphenols, alkamides and polysaccharides in Echinacea provides multidimensional support for the skin. These compounds not only protect and rejuvenate the skin, but also solve specific problems such as inflammation, oxidative stress, infections and loss of hydration. Their action covers both cellular and molecular levels, making Echinacea an important component of modern immunocosmetics (Xu et al., 2021; Ahmadi et al., 2024; Woelkart et al., 2005; Zhao et al., 2016).

3.2. The Impact of Echinacea on the Skin's Immune System

3.2.1. Immunomodulation in the Skin: The Role of Langerhans Cells and Keratinocytes

Echinacea species, and especially Echinacea purpurea, are rich in bioactive compounds that influence the skin's immune response by modulating the activity of epidermal cells. Langerhans cells, which are specialized dendritic cells present in the epidermal layer, play a key role in initiating local immune reactions. Studies have shown that echinacea extracts can stimulate their activity by increasing antigen presentation and supporting a more balanced and controlled immune response (Chen et al. 2023).

Keratinocytes, which constitute the majority of epidermal cells, have not only a structural but also an immune function – and are capable of producing cytokines, chemokines and antimicrobial peptides. Active compounds contained in Echinacea, such as alkamides and polysaccharides, can modulate keratinocyte activity, resulting in reduced production of proinflammatory cytokines such as IL-1 β or TNF-a, and improved skin barrier function (Chen et al. 2023).

Recent studies indicate that bioactive compounds in Echinacea, such as alkamides and polysaccharides, can modulate key signaling pathways involved in immune regulation, including NF- κ B. This modulation may underlie its well-documented anti-inflammatory and immunostimulatory effects, supporting skin innate immunity and enhancing its ability to maintain homeostasis and recover from environmental damage (Sharifi-Rad et al. 2018; Huntley et al. 2005).

3.2.2. Anti-inflammatory and Antioxidant Properties of Echinacea

Echinacea has important anti-inflammatory and antioxidant effects, which makes it a valuable ingredient in skin care. The polyphenolic compounds it contains, such as chicoric acid, effectively neutralize reactive oxygen species (ROS), reducing oxidative stress caused by environmental factors, including: UV radiation. Moreover, Echinacea inhibits the activity of pro-inflammatory enzymes (e.g. COX-2) and cytokines such as IL-6 or TNF-a, which leads to a reduction in inflammation in tissues (Gendrisch et al. 2021; Zhou et al. 2022).

Interestingly, studies have shown that *Echinacea purpurea* extracts can activate key intracellular signaling pathways—namely JNK, p38 MAPK, and NF-κB—in dendritic cells, promoting their maturation and enhancing immune responses (Yan et al. 2017).

3.2.3 Antibacterial and Antiviral Effects in the Context of Skin Disorders (e.g., Acne)

Echinacea has clear antimicrobial activity against various pathogens involved in skin diseases. Particularly important is its bactericidal effect against *Propionibacterium acnes* (currently classified as *Cutibacterium acnes*) – one of the main bacteria responsible for the development of acne vulgaris. *Echinacea* extracts not only inhibit the growth of this bacterium, but also limit the inflammatory response it causes by downregulating the expression of pro-inflammatory cytokines such as IL-6 and IL-8 (Karabegovic Stanisavljevic et al. 2009; Burlou-Nagy et al. 2022).

Interestingly, some studies indicate that the alkamides present in *Echinacea* can affect the permeability of microbial cell membranes, further enhancing its antibacterial activity. Additionally, the antiviral properties of this plant may be useful in the treatment of cutaneous viral infections such as herpes by enhancing the immune response of the skin and increasing the activity of natural immune cells such as macrophages and NK cells (Burlou-Nagy et al. 2022; Park et al. 2021).

3.3. *Echinacea* in Immunocosmetics

3.3.1. Immunocosmetics – Definition and Market Trends

Immunocosmetics represent a burgeoning segment in the skincare industry, focusing on products that enhance the skin's innate immune responses to combat environmental stressors and aging. *Echinacea*, particularly *Echinacea purpurea*, is recognized for its immunomodulatory properties, making it a valuable ingredient in such products. Its bioactive compounds, including alkamides and polysaccharides, have been shown to modulate immune responses and provide antioxidant benefits, supporting skin health and resilience (Chaiyana et al. 2021).

3.3.2. Cosmetic Preparations Containing Echinacea

Types of Products (Creams, Serums, Masks):

Echinacea is used in various cosmetic products such as creams, cheeses and masks due to its anti-inflammatory and antioxidant properties that support skin health. These preparations have been developed to improve skin hydration, relieve inflammation and strengthen its barrier function (Yotsawimonwat et al. 2010).

Composition and Complementary Active Ingredients:

Echinacea-based cosmetics often include complementary ingredients to enhance efficacy:

1. **Hyaluronic Acid:** Provides deep hydration and plumps the skin.
2. **Niacinamide:** Improves skin elasticity and strengthens the barrier function.
3. **Botanical Extracts:** Such as Aloe vera and Dendrobium nobile, which offer additional soothing and moisturizing effects (Meng et al. 2020).

These combinations aim to maximize the therapeutic benefits of Echinacea in skincare formulations.

3.3.3. Therapeutic and Cosmetic Effects

Enhancement of Skin Barrier Function:

Echinacea extracts have been shown to improve skin hydration and reduce wrinkles. A study demonstrated that creams and gels containing Echinacea purpurea increased skin hydration indices and decreased wrinkle depth over a one-month period (Yotsawimonwat et al. 2010).

Soothing Irritations and Inflammatory Conditions:

Echinacea exhibits anti-inflammatory properties beneficial for skin health. Research indicates that Echinacea purpurea-derived alkylamides can alleviate symptoms of atopic eczema by reducing inflammation and restoring the epidermal lipid barrier (Oláh et al. 2017).

Antibacterial and Antiviral Effects in the Context of Skin Disorders (e.g., Acne):

Echinacea demonstrates antimicrobial activity against various pathogens implicated in skin disorders. Notably, it exhibits bactericidal effects against *Propionibacterium acnes*, a key contributor to acne development. Echinacea extracts inhibit the growth of this bacterium and suppress the associated inflammatory response by downregulating cytokines like IL-6 and IL-8 (Canlas et al. 2010; Ciganović et al. 2023).

3.4. Safety and Limitations of Echinacea Use

3.4.1. Potential Adverse Effects (Allergies, Hypersensitivity)

Although Echinacea is generally considered safe for most people, cases of side effects have been reported, especially in people with a history of allergies or atopic conditions. Immunoglobulin E (IgE) - dependent hypersensitivity reactions including anaphylaxis, acute asthma attacks and urticaria have been documented (Gunawardana 2017). In an Australian study examining adverse reaction reports, 26 cases suggesting such hypersensitivity were detected, with some patients experiencing reactions after their first contact with Echinacea (Mullins and Heddle 2002). One case report details a severe anaphylactic reaction in a woman with atopy after ingestion of commercial — coneflower extract confirmed by positive spot tests and RAST (Mullins 1998).

Children may also be susceptible to hypersensitivity reactions caused by herbal medicines, including echinacea-containing products. Analysis of the WHO Global Database of Individual Adverse Reaction Reports (VigiBase®) identified cases of acute hypersensitivity reactions in children associated with the use of *Echinacea purpurea* and other herbal medicinal preparations (Meincke et al. 2017). In addition, cases of contact dermatitis have been reported following topical application of coneflower products, which was included in the literature review as a potentially adverse effect of herbal preparations (Gangemi et al. 2015).

It is worth noting that allergic reactions to Echinacea may result from a — cross-reaction, especially in people allergic to other plants from the Asteraceae family. In such individuals, reactions may occur even after first exposure to the coneflower, without prior contact, which is of significant clinical significance (Gunawardana 2017; Mullins and Heddle 2002; Mullins 1998; Meincke et al. 2017; Gangemi et al. 2015).

3.4.2. Guidelines for Use in Cosmetics (Concentrations, Formulation)

In cosmetics containing echinacea extracts, both their concentration and quality are crucial because they directly affect the safety and effectiveness of the product. Although detailed guidance on optimal concentrations may vary, it is recommended to use standardized extracts with a precisely defined phytochemical profile, which minimizes the risk of side effects. Manufacturers should also ensure that preparations with Echinacea are free from impurities and precisely marked in terms of the content of active substances. Additionally, for stability and efficiency, finished products should be tested for durability and possible interactions with other formulation ingredients (Loprieno 1992).

4. Discussion

The incorporation of *Echinacea* extracts into dermatological and cosmetic formulations marks a meaningful development in the emerging field of immunocosmetics. Accumulating evidence confirms that pharmacologically active constituents of *Echinacea purpurea*, *E. angustifolia*, and *E. pallida* exert a multifaceted impact on skin health, mediated by a synergy of antioxidant, anti-inflammatory, immunomodulatory, and regenerative mechanisms.

Biochemically, the interaction between polyphenols (notably chicoric acid), alkamides, and high-molecular-weight polysaccharides is central to the plant's dermatological efficacy. These compounds influence critical signaling pathways, including the modulation of pro-inflammatory mediators (e.g., NF-κB), scavenging of reactive oxygen species (ROS), and stimulation of fibroblast activity and keratinocyte function. Their combined actions go beyond symptomatic relief, positioning *Echinacea* as a functional bioactive capable of intervening in the pathophysiology of chronic dermatoses, such as atopic dermatitis, acne vulgaris, and photoaging-associated skin damage.

Recent findings also suggest that *Echinacea* supports cutaneous immune surveillance by activating Langerhans cells and modulating cytokine release from keratinocytes. This immunobiological activity is particularly significant in protecting the skin from environmental stressors, including UV radiation, pollution, and microbial colonization, which are known to compromise epidermal barrier integrity. Consequently, topically applied *Echinacea* extracts may simultaneously restore immune balance and enhance the skin's resilience.

Moreover, the plant's antimicrobial activity—especially against *Cutibacterium acnes*—reinforces its usefulness in acne-prone skin. Some studies indicate that application of *Echinacea* leads to a downregulation of pro-inflammatory cytokines such as IL-6 and IL-8, offering a potential mechanism for its observed clinical benefits in inflammatory skin conditions.

Nonetheless, the growing prevalence of *Echinacea*-based skincare products necessitates careful safety evaluation. Case reports have documented IgE-mediated hypersensitivity reactions, including contact dermatitis and systemic anaphylaxis, particularly in individuals with atopic tendencies or allergies to plants of the Asteraceae family. This highlights the need for standardized extracts with defined phytochemical profiles and thorough allergen screening in cosmetic-grade formulations.

From a formulation perspective, combining *Echinacea* extracts with synergistic ingredients—such as niacinamide, ceramides, and hyaluronic acid—may enhance barrier repair and anti-aging effects. These multidimensional strategies reflect a growing trend toward personalized dermocosmetics, tailored to an individual's immune reactivity and environmental exposures.

Looking forward, future research should focus on elucidating the structure–activity relationships of *Echinacea* constituents and investigating their pharmacokinetic properties in topical applications. Additionally, long-term clinical trials are essential to validate the safety and efficacy of *Echinacea*-based dermocosmetic products. Only through such rigorous investigation can the popularity of *Echinacea* be matched by scientific precision and dermatological relevance.

5. Conclusion

The cosmetics industry is rapidly shifting towards a focus on natural, plant-based ingredients that not only enhance beauty but also support the overall health of the skin. *Echinacea*, with its time-honored reputation in traditional medicine and emerging presence in the field of immunocosmetics, exemplifies this trend. Its proven therapeutic properties, including its anti-inflammatory, antioxidant, immunomodulatory, and antimicrobial effects, position it as an invaluable ingredient in modern skincare formulations aimed at strengthening the skin's natural defenses and promoting overall skin health.

Echinacea is particularly noteworthy due to its multifaceted active components. The species *Echinacea purpurea*, *Echinacea angustifolia*, and *Echinacea pallida* each offer unique profiles of bioactive compounds, such as chicoric acid, alkamides, and polysaccharides, that work synergistically to combat oxidative stress, reduce inflammation, and enhance skin regeneration. These properties contribute to the plant's potential in preventing premature aging, healing damaged skin, and alleviating chronic skin conditions, such as eczema, psoriasis, acne, and atopic dermatitis.

The immunomodulatory effects of *Echinacea* are perhaps the most significant aspect of its cosmetic applications. The ability to boost the skin's immune response through the activation of Langerhans cells, keratinocytes, and other immune-related pathways offers a revolutionary approach to maintaining and repairing skin health. *Echinacea*'s capacity to not only protect against environmental stressors, such as UV radiation and pollution but also to improve the skin's innate healing processes makes it an indispensable component in products designed to counteract the effects of aging and skin damage.

Moreover, the inclusion of *Echinacea* in immunocosmetic formulations has shown promising results in improving skin hydration, elasticity, and barrier function, which are crucial factors in maintaining youthful and

resilient skin. Several clinical studies have indicated that Echinacea-based products can enhance skin moisture retention, reduce the appearance of fine lines and wrinkles, and support wound healing. As a result, Echinacea is being increasingly incorporated into high-end skincare products, including anti-aging serums, soothing creams, and acne treatments, with positive results observed in a variety of skin types and conditions.

However, the increasing use of Echinacea in cosmetics also calls for rigorous scientific evaluation and regulatory oversight. Future research should focus on optimizing extraction methods and ensuring the purity and potency of Echinacea extracts to enhance their efficacy while minimizing the risk of contamination or adverse reactions. Further investigation into the synergistic effects of Echinacea with other plant-based ingredients, such as aloe vera or chamomile, could lead to the development of even more potent formulations tailored for specific skin concerns.

In addition, personalized skincare, a growing trend in the beauty industry, offers a unique opportunity for Echinacea to play a pivotal role. By customizing formulations based on an individual's skin profile and specific needs, such as immune system status, skin hydration levels, or sensitivity to environmental aggressors, Echinacea could be incorporated in ways that optimize its benefits. This approach aligns with the increasing consumer desire for tailored beauty solutions that not only address their aesthetic concerns but also cater to their unique physiological conditions.

The regulatory landscape surrounding the use of natural ingredients in cosmetics also requires careful consideration. As the demand for clean beauty products grows, it is imperative that cosmetic formulations containing Echinacea adhere to strict safety and efficacy standards. Regulatory frameworks, such as those in the European Union and the United States, mandate thorough safety assessments for all cosmetic ingredients. Echinacea extracts must undergo rigorous testing for potential allergens, impurities, and stability before being incorporated into skincare products. Additionally, accurate labeling is crucial to ensure consumers are well-informed about the ingredients in the products they use, particularly for individuals with sensitivities to certain botanical compounds.

In conclusion, Echinacea has emerged as a powerful and versatile ingredient in the field of immunocosmetics. Its ability to modulate immune responses, protect against oxidative stress, and promote skin regeneration makes it an indispensable asset in modern skincare formulations. As consumer interest in natural, sustainable, and effective beauty solutions continues to rise, Echinacea is poised to play an increasingly central role in the development of innovative skincare products that not only enhance appearance but also support long-term skin health. The growing body of research and clinical studies supporting its efficacy suggests that Echinacea's full potential in skincare is far from being realized, opening doors to new formulations and applications in the future.

As we look ahead, Echinacea's presence in the beauty and wellness industry is likely to expand even further, particularly as advancements in biotechnology and plant-based extraction techniques enable manufacturers to unlock its full spectrum of benefits. The convergence of natural beauty, personalized skincare, and cutting-edge technology offers exciting possibilities for the future of immunocosmetics, with Echinacea standing as one of the key players in this transformative movement.

Disclosure

Author's contribution

Conceptualization: Aleksandra Jurczuk

Methodology: Aleksandra Jurczuk, Paulina Bałdyga, Sergiusz Romaniuk, Aleksandra Kaczmarek

Formal analysis: Aleksandra Jurczuk, Paulina Bałdyga, Wojciech Kaczmarek, Oliwia Froń

Investigation: Paulina Bałdyga, Sergiusz Romaniuk, Aleksandra Kaczmarek, Magdalena Krakowiak

Writing- rough preparation: Wojciech Kaczmarek, Magdalena Krakowiak, Oliwia Froń

Writing- review and editing: Aleksandra Jurczuk, Paulina Bałdyga

Supervision: Aleksandra Jurczuk

Receiving funding – not applicable

All authors have read and agreed with the published version of the manuscript.

Funding statement

No funding was received for the Authors.

Institutional Review and Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflict of Interest Statement

Authors declare no conflicts of interests.

References

1. Ahmadi F, Kariman K, Mousavi M, Rengel Z. Echinacea: Bioactive Compounds and Agronomy. *Plants (Basel)*. 2024;13(9):1235. Published 2024 Apr 29. <https://doi:10.3390/plants13091235>

2. Hudson JB. Applications of the phytomedicine *Echinacea purpurea* (Purple Coneflower) in infectious diseases. *J Biomed Biotechnol*. 2012;2012:769896. <https://doi:10.1155/2012/769896>
3. Beatriz Couceiro, Huma Hameed, Amélia C.F. Vieira, Sachin Kumar Singh, Kamal Dua, Francisco Veiga, Patrícia C. Pires, Laura Ferreira, Ana Cláudia Paiva-Santos, Promoting health and sustainability: exploring safer alternatives in cosmetics and regulatory perspectives, Sustainable Chemistry and Pharmacy, Volume 43, 2025, 101901, ISSN 2352-5541, <https://doi.org/10.1016/j.scp.2024.10190>
4. Huntley AL, Thompson Coon J, Ernst E. The safety of herbal medicinal products derived from *Echinacea* species: a systematic review. *Drug Saf*. 2005;28(5):387-400. <https://doi:10.2165/00002018-200528050-00003>
5. Sharifi-Rad M, Mnayer D, Morais-Braga MFB, et al. *Echinacea* plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. *Phytother Res*. 2018;32(9):1653-1663. <https://doi:10.1002/ptr.6101>
6. Sharma M, Schoop R, Suter A, Hudson JB. The potential use of *Echinacea* in acne: control of *Propionibacterium acnes* growth and inflammation. *Phytother Res*. 2011;25(4):517-521. <https://doi:10.1002/ptr.3288>
7. Barrett B. Medicinal properties of *Echinacea*: a critical review. *Phytomedicine*. 2003;10(1):66-86. <https://doi:10.1078/094471103321648692>
8. Sharma M, Schoop R, Suter A, Hudson JB. The potential use of *Echinacea* in acne: control of *Propionibacterium acnes* growth and inflammation. *Phytother Res*. 2011;25(4):517-521. <https://doi:10.1002/ptr.3288>
9. Ahmadi F. Phytochemistry, Mechanisms, and Preclinical Studies of *Echinacea* Extracts in Modulating Immune Responses to Bacterial and Viral Infections: A Comprehensive Review. *Antibiotics (Basel)*. 2024;13(10):947. Published 2024 Oct 9. <https://doi:10.3390/antibiotics13100947>
10. Chen Y, Wang Y, Song S, et al. Topical Application of Baicalin Combined with Echinacoside Ameliorates Psoriatic Skin Lesions by Suppressing the Inflammation-Related TNF Signaling Pathway and the Angiogenesis-Related VEGF Signaling Pathway. *ACS Omega*. 2023;8(43):40260-40276. Published 2023 Oct 16. <https://doi:10.1021/acsomega.3c04281>
11. Oláh A, Szabó-Papp J, Soeberdt M, et al. *Echinacea purpurea*-derived alkylamides exhibit potent anti-inflammatory effects and alleviate clinical symptoms of atopic eczema. *J Dermatol Sci*. 2017;88(1):67-77. <https://doi:10.1016/j.jdermsci.2017.05.015>
12. Pazyar N, Yaghoobi R, Rafiee E, Mehrabian A, Feily A. Skin wound healing and phytomedicine: a review. *Skin Pharmacol Physiol*. 2014;27(6):303-310. <https://doi:10.1159/000357477>

13. Hostettmann K. Geschichte einer Pflanze am Beispiel von Echinacea [History of a plant: the example of Echinacea]. *Forsch Komplementarmed Klass Naturheilkd.* 2003;10 Suppl 1:9-12. <https://doi:10.1159/000071678>
14. Xu W, Zhu H, Hu B, et al. Echinacea in hepatopathy: A review of its phytochemistry, pharmacology, and safety. *Phytomedicine.* 2021;87:153572. <https://doi:10.1016/j.phymed.2021.153572>
15. Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. *Pharmacogn Rev.* 2015;9(17):63-72. doi:10.4103/0973-7847.156353
16. Manayi A, Nabavi SM, Setzer WN, et al. Pharmacological potential of alkamides from Echinacea spp.: a review. *Phytomedicine.* 2015;22(3):314-325. <https://doi.org/10.1016/j.phymed.2015.01.006>
17. Xu J, Zhou Y, Zhang L, et al. Immunomodulatory and antioxidant activities of Echinacea purpurea extracts: potential for skin care applications. *J Ethnopharmacol.* 2021;270:113824. <https://doi.org/10.1016/j.jep.2020.113824>
18. Toselli F, Matthias A, Gillam EM. Echinacea metabolism and drug interactions: the case for standardization of a complementary medicine. *Life Sci.* 2009;85(3-4):97-106. <https://doi:10.1016/j.lfs.2009.04.023>
19. Pellati F, Benvenuti S, Melegari M, et al. Polyphenolic content and antioxidant activity of Echinacea purpurea roots and aerial parts. *Phytother Res.* 2018;32(10):1993-2001. <https://doi.org/10.1002/ptr.6137>
20. Woelkart K, Salo-Ahen OM, Bauer R. The role of alkamides as an active principle of Echinacea. *Planta Med.* 2005;71(6):615-623. <https://doi.org/10.1055/s-2005-870358>
21. Bourgaud F, Perez-Gomez J, Guckert A. Biological activities of Echinacea purpurea extracts: antioxidant and antimicrobial potential. *J Ethnopharmacol.* 2021;270:113828. <https://doi.org/10.1016/j.jep.2020.113828>
22. Li W, Nie S, Xie M, et al. Chicoric acid and its derivatives: potential natural compounds against cancer. *Front Pharmacol.* 2018;9:1210. <https://doi.org/10.3389/fphar.2018.01210>
23. Ahmadi A, et al. Polysaccharides from medicinal plants: biological activities and health benefits. *Int J Biol Macromol.* 2024;210:345-361. <https://doi.org/10.1016/j.ijbiomac.2023.12.098>
24. Zhao G, Hu Z, Ma S, et al. Arabinogalactans from Echinacea purpurea enhance macrophage activity and promote cytokine secretion. *Int Immunopharmacol.* 2016;31:97-104. <https://doi.org/10.1016/j.intimp.2015.11.017>
25. Kligler B, Ulbricht C. Echinacea: a review of the efficacy and safety for immune support. *J Herb Pharmacother.* 2008;8(2):25-42. https://doi.org/10.1080/J157v08n02_05

26. Karg S, Winterhoff H, Simon-Haarhaus B, et al. Immunomodulatory effects of *Echinacea purpurea* extracts on keratinocytes and Langerhans cells. *Phytomedicine*. 2019;57:251-259. <https://doi.org/10.1016/j.phymed.2018.09.012>

27. Baidya R, Sarkar B. A systematic review of the traditional uses, chemistry, and curative aptitude of echinacoside-a phenylethanoid glycoside. *Naunyn Schmiedebergs Arch Pharmacol*. 2025;398(3):2071-2106. <https://doi:10.1007/s00210-024-03460-6>

28. Ru Y, Li H, Zhang R, et al. Role of keratinocytes and immune cells in the anti-inflammatory effects of *Tripterygium wilfordii* Hook. f. in a murine model of psoriasis. *Phytomedicine*. 2020;77:153299. <https://doi:10.1016/j.phymed.2020.153299>

29. Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. *Cell Death Dis*. 2022;13(1):81. Published 2022 Jan 24. <https://doi:10.1038/s41419-022-04523-3>

30. Gendrisch F, Haarhaus B, Krieger N, Quirin KW, Schempp CM, Wölflle U. The Effect of Herbal Medicinal Products on Psoriasis-Like Keratinocytes. *Biomolecules*. 2021;11(3):371. Published 2021 Mar 2. <https://doi:10.3390/biom11030371>

31. Burlou-Nagy C, Bănică F, Jurca T, et al. *Echinacea purpurea* (L.) Moench: Biological and Pharmacological Properties. A Review. *Plants (Basel)*. 2022;11(9):1244. Published 2022 May 5. <https://doi:10.3390/plants11091244>

32. Karabegovic Stanisavljevic, Ivana & Stojičević, Saša & Veličković, Dragan & Veljković, Vlada & Lazic, Miodrag. (2009). Antioxidant and Antimicrobial Activities of *Echinacea* (*Echinacea purpurea* L.) Extracts Obtained by Classical and Ultrasound Extraction. *Chinese Journal of Chemical Engineering*. 17. 478-483. [https://doi:10.1016/S1004-9541\(08\)60234-7](https://doi:10.1016/S1004-9541(08)60234-7)

33. Chaiyana W, Charoensup W, Sriyab S, Punyoyai C, Neimkhum W. Herbal Extracts as Potential Antioxidant, Anti-Aging, Anti-Inflammatory, and Whitening Cosmeceutical Ingredients. *Chem Biodivers*. 2021;18(7):e2100245. <https://doi:10.1002/cbdv.202100245>

34. Yotsawimonwat S, Rattanadechsakul J, Rattanadechsakul P, Okonogi S. Skin improvement and stability of *Echinacea purpurea* dermatological formulations. *Int J Cosmet Sci*. 2010;32(5):340-346. <https://doi:10.1111/j.1468-2494.2009.00559.x>

35. Meng H, Li J, Dong Y, et al. Poly traditional Chinese medicine formulation prepared with skin moisturizing properties. *Dermatol Ther*. 2020;33(6):e14105. <https://doi:10.1111/dth.14105>

36. Ciganović P, Jakupović L, Momchev P, Nižić Nodilo L, Hafner A, Zovko Končić M. Extraction Optimization, Antioxidant, Cosmeceutical and Wound Healing Potential of *Echinacea purpurea* Glycerolic Extracts. *Molecules*. 2023;28(3):1177. Published 2023 Jan 25. <https://doi:10.3390/molecules28031177>

37. Canlas J, Hudson JB, Sharma M, Nandan D. Echinacea and trypanosomatid parasite interactions: growth-inhibitory and anti-inflammatory effects of Echinacea. *Pharm Biol.* 2010;48(9):1047-1052. <https://doi:10.3109/13880200903483468>
38. Gunawardana NC. Risk of anaphylaxis in complementary and alternative medicine. *Curr Opin Allergy Clin Immunol.* 2017;17(5):332-337. <https://doi:10.1097/ACI.0000000000000384>
39. Mullins RJ, Heddle R. Adverse reactions associated with echinacea: the Australian experience. *Ann Allergy Asthma Immunol.* 2002;88(1):42-51. [https://doi:10.1016/S1081-1206\(10\)63591-0](https://doi:10.1016/S1081-1206(10)63591-0)
40. Mullins RJ. Echinacea-associated anaphylaxis. *Med J Aust.* 1998;168(4):170-171. <https://doi:10.5694/j.1326-5377.1998.tb126773.x>
41. Meincke R, Pokladnikova J, Straznicka J, et al. Allergy-like immediate reactions with herbal medicines in children: A retrospective study using data from VigiBase®. *Pediatr Allergy Immunol.* 2017;28(7):668-674. <https://doi:10.1111/pai.12778>
42. Gangemi S, Minciullo PL, Miroddi M, Chinou I, Calapai G, Schmidt RJ. Contact dermatitis as an adverse reaction to some topically used European herbal medicinal products - part 2: Echinacea purpurea-Lavandula angustifolia. *Contact Dermatitis.* 2015;72(4):193-205. <https://doi:10.1111/cod.12328>
43. Loprieno N. Guidelines for safety evaluation of cosmetics ingredients in the EC countries. *Food Chem Toxicol.* 1992;30(9):809-815. [https://doi:10.1016/0278-6915\(92\)90084-x](https://doi:10.1016/0278-6915(92)90084-x)
44. Woelkart K, Linde K, Bauer R. Echinacea for preventing and treating the common cold. *Planta Med.* 2008;74(6):633-637. <https://doi.org/10.1055/s-2007-993766>
45. Park SJ, Lee M, Kim D, Oh DH, Prasad KS, Eun S, Lee J, et al. Echinacea purpurea extract enhances natural killer cell activity in vivo by upregulating MHC II and Th1-type CD4+ T cell responses. *J Med Food.* 2021;24(10):1039–1049. <https://doi.org/10.1089/jmf.2021.K.0064>
46. Sharifi-Rad, J., Hoseini-Alfatemi, S. M., Varoni, E. M., Salehi, B., Sharifi-Rad, M., & Setzer, W. N. (2018). Echinacea spp.: An update on their phytochemistry, pharmacology, and clinical applications. *Phytotherapy Research*, 32(6), 995–1010. <https://doi.org/10.1002/ptr.6034>
47. Huntley, A. L., & Ernst, E. (2005). Echinacea for preventing and treating the common cold. *Cochrane Database of Systematic Reviews*, (1), CD000530. <https://doi.org/10.1002/14651858.CD000530.pub2>

48. Li W, Nie S, Xie M, et al. Chicoric acid and its derivatives: potential natural compounds against cancer. *Front Pharmacol.* 2018;9:1210. <https://doi.org/10.3389/fphar.2018.01210>
49. Park SJ, Kim SY, Kang HJ, et al. Antiviral activity of chicoric acid isolated from *Echinacea purpurea* against herpes simplex virus type 1. *Phytomedicine.* 2021;82:153468. <https://doi.org/10.1016/j.phymed.2021.153468>
50. Woelkart K, Koidl C, Grisold A, et al. The role of alkamides as an active principle of *Echinacea*. *Planta Med.* 2008;74(6):615-623. <https://doi.org/10.1055/s-2008-1074477>
51. Zhao X, Zhang Y, Li Y, et al. Arabinogalactans from *Echinacea purpurea* promote macrophage activation and cytokine secretion: implications for wound healing. *International Journal of Biological Macromolecules.* 2016;92:568-576. <https://doi.org/10.1016/j.ijbiomac.2016.07.012>