

SKIBICKA, Katarzyna, WESOŁOWSKA, Weronika, JAŚNIAK, Albert and BUJAK, Robert. From VICTORIA to VICTOR: Where Vericiguat Fits in HFrEF Care. Journal of Education, Health and Sport. 2025;84:65624. eISSN 2391-8306.
<https://doi.org/10.12775/JEHS.2025.84.65624>
<https://apcz.umk.pl/JEHS/article/view/65624>

The journal has had 40 points in Minister of Science and Higher Education of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 05.01.2024 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical culture sciences (Field of medical and health sciences); Health Sciences (Field of medical and health sciences). Punkty Ministerialne 40 punktów. Załącznik do komunikatu Ministra Nauki i Szkolnictwa Wyższego z dnia 05.01.2024 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2025; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 02.07.2025. Revised: 30.08.2025. Accepted: 20.09.2025. Published: 24.09.2025.

From VICTORIA to VICTOR: Where Vericiguat Fits in HFrEF Care

Katarzyna Skibicka <https://orcid.org/0009-0001-3192-9301>

Weronika Wesolowska <https://orcid.org/0009-0006-0873-5492>

Albert Jaśniak <https://orcid.org/0000-0002-4270-1425>

Robert Bujak <https://orcid.org/0000-0003-1425-4688>

ABSTRACT

Background. Vericiguat, an oral soluble guanylate cyclase stimulator, augments impaired NO-sGC-cGMP signaling in heart failure with reduced ejection fraction (HFrEF). The pivotal VICTORIA trial enrolled high-risk patients with recent worsening heart failure (WHF) and showed a reduction in the composite of cardiovascular (CV) death or first HF hospitalization, whereas the subsequent VICTOR trial tested ambulatory, clinically stable HFrEF without recent WHF and did not meet its primary endpoint.

Objective. To synthesize contemporary evidence on vericiguat after VICTORIA and VICTOR, clarify patient selection and optimal timing and position the drug within guideline-directed medical therapy.

Methods. Narrative review of randomized trials (VICTORIA, VICTOR), prespecified and post-hoc subgroup and pooled patient-level analyses, pharmacology studies, drug-label information, and major guideline documents, covering literature through September 13, 2025. Outcomes of interest were CV death, HF hospitalization (first and recurrent), safety/tolerability and practical implementation.

Results. In VICTORIA (n≈5,050), vericiguat reduced the primary composite of CV death or first HF hospitalization versus placebo on top of contemporary therapy with acceptable safety and small increases in hypotension and anemia. VICTOR (n≈6,100) did not meet its primary composite in stable ambulatory HFrEF without recent WHF, secondary analyses signaled lower CV and all-cause mortality. A pooled patient-level analysis across VICTORIA+VICTOR (≈11,000 patients) suggested a significant reduction in the composite outcome across a broader risk spectrum. Guidelines continue to recommend vericiguat primarily after recent WHF despite optimized foundational therapy.

Conclusion. Vericiguat remains most compelling for high-risk HFrEF after recent worsening, in stable ambulatory patients, evidence indicates a possible mortality signal but the overall effect on the composite outcome is uncertain and may depend on baseline risk. Careful selection (recent WHF, SBP \geq 100 mmHg, on quadruple therapy), dose uptitration with food, and attention to anemia, hypotension, pregnancy risk, and PDE-5 interactions optimize real-world value.

Keywords. vericiguat; HFrEF; worsening heart failure; VICTORIA; VICTOR; soluble guanylate cyclase; cGMP; cardiovascular death.

Slowa kluczowe. vericiguat; niewydolność serca z obniżoną frakcją wyrzutową (HFrEF); pogorszenie HF; VICTORIA; VICTOR; stymulator sGC; cGMP; śmiertelność sercowo-naczyniowa.

INTRODUCTION

Despite major advances, many patients with HFrEF continue to experience recurrent hospitalization and premature death, especially in the months following a recent worsening heart-failure event (WHF). This residual risk reflects, in part, endothelial dysfunction and impairment of the NO-sGC-cGMP pathway - biology not directly targeted by the four foundational drug classes (ARNI/ACEi/ARB, β -blockers, MRAs, SGLT2 inhibitors) [5–7]. Guidelines therefore highlight therapies that complement GDMT by addressing alternative mechanisms, including sGC stimulation.

Vericiguat is the first oral sGC stimulator approved for adults with symptomatic chronic HFrEF following a recent WHF event. The VICTORIA trial established clinical benefit for vericiguat in high-risk patients soon after WHF [1]. The subsequent VICTOR trial enrolled stable ambulatory HFrEF without recent WHF and was neutral on its primary composite, though secondary analyses indicated lower CV and all-cause mortality with vericiguat [3]. A pooled individual-participant analysis across VICTORIA and VICTOR suggests reduction in CV death or HF hospitalization across \approx 11,155 patients [3,4]. This review synthesizes these data to guide patient selection, timing, and expectations for vericiguat in practice.

This narrative review summarizes the clinical evidence, clarifies patient selection and timing, and briefly outlines the mechanistic basis for sGC stimulation in HFrEF with practical implications for integration alongside foundational therapy.

MATERIALS AND METHODS

Search Strategy

A structured literature search was conducted in PubMed, Embase, and the Cochrane Library for publications from January 2015 through September 13, 2025. Search strings combined keywords and MeSH/Emtree terms related to the intervention and disease area, including: *vericiguat, soluble guanylate cyclase, sGC stimulator, cyclic GMP, nitric oxide, heart failure with reduced ejection fraction, HFrEF, worsening heart failure*, and trial identifiers (*VICTORIA, VICTOR, SOCRATES-REDUCED*). Boolean operators AND/OR were used; filters limited results to human studies and English-language publications. Conference

abstracts and society press communications were screened to capture late-breaking trial readouts; such sources were treated as supportive signals and described with cautious language (e.g., *signal, suggests, indicates*), not as definitive proof.

Inclusion Criteria

Study designs: randomized controlled trials (phase 2/3), pooled individual-participant analyses, prespecified/post-hoc subgroup/secondary analyses, pharmacology/chemistry and PK/PD papers, major guidelines/consensus, real-world eligibility/uptake studies, and health-economic evaluations.

Population: adults with HFrEF; for context, we allowed related sGC or HF phenotypes when informative (e.g., preserved EF program) provided the link to clinical positioning was explicit.

Intervention: vericiguat on top of guideline-directed medical therapy.

Outcomes: cardiovascular death, heart-failure hospitalization (first and recurrent), composite outcomes, safety/tolerability (e.g., hypotension, anemia), and implementation/value endpoints.

Exclusion Criteria

- Animal or in-vitro work; pediatric populations.
- Case reports/series, editorials, or commentaries without original data.
- Studies lacking relevant clinical endpoints or with inaccessible full text in English.
- Preprints or congress materials without peer-review were not used for firm estimates; when cited, findings are labeled as exploratory signals.

Study Selection Process

1. **Identification:** database searches and citation chaining identified records meeting the strategy above.
2. **Deduplication:** duplicate entries were removed.
3. **Screening:** two reviewers independently screened titles/abstracts for relevance to vericiguat in HFrEF.
4. **Eligibility:** full texts were assessed against inclusion/exclusion criteria; disagreements were resolved by consensus.
5. **Inclusion:** 25 sources were included in the qualitative synthesis (matching the reference list), spanning: randomized trials (n=3), pooled IPD (n=1), subgroup/secondary analyses ($\approx n=6$), guidelines/consensus (n=3), pharmacology/chemistry ($\approx n=3$), real-world eligibility/uptake ($\approx n=3$), health-economic modeling (n=1), and additional context articles related to the sGC class or phenotype ($\approx n=5$).

Data Extraction

Two reviewers independently extracted: study design, setting, population criteria, background therapy, endpoints (CV death, HF hospitalization - first and **recurrent**), effect estimates (e.g., HRs with 95% CIs), safety outcomes (hypotension, anemia, renal parameters) and implementation/value signals. For pharmacology/chemistry, we collected mechanism and PK/PD features relevant to clinical use. Differences in extraction were reconciled by discussion.

Quality Assessment

Randomized trials: assessed with Cochrane RoB 2 domains (randomization, deviations from intended interventions, missing data, outcome measurement, reporting).

Observational/real-world studies: assessed with the Newcastle–Ottawa Scale.

Guidelines/consensus and economic evaluations: appraised for methodological transparency and consistency with source data (e.g., CHEERS elements for economic models).

Certainty of evidence: key clinical outcomes were summarized using GRADE concepts (high/moderate/low/very low). Findings from congress press releases or late-breaking presentations were explicitly labeled as exploratory and interpreted as signals rather than definitive evidence.

MECHANISM OF ACTION

Endothelial dysfunction and oxidative stress in HFrEF reduce nitric-oxide (NO) bioavailability and desensitize/oxidize the heme of sGC, lowering intracellular cGMP and impairing protein kinase G (PKG) signaling. Vericiguat binds and directly stimulates sGC while increasing its sensitivity to endogenous NO, restoring cGMP generation. This is distinct from PDE-5 inhibition, which slows cGMP degradation. Downstream, enhanced cGMP–PKG signaling promotes vasodilation/afterload reduction, improves lusitropy, and may counteract adverse remodeling - complementing foundational therapies [8,9,24].

Table 1. The NO-sGC-cGMP pathway in HFrEF and the role of vericiguat

Problem in HFrEF	Biological change	What vericiguat does	Why this matters	Evidence
Endothelial dysfunction and oxidative stress	↓ NO bioavailability; heme-oxidized sGC → low cGMP	Direct sGC stimulation and NO sensitization → more cGMP	Improves vascular tone and myocardial relaxation; may counter remodeling	Mechanistic/translational, discovery chemistry, clinical PK/PD.
Residual risk after WHF	High near-term risk despite GDMT	Targets a non-RAAS, non-sympatholytic pathway	Complements foundational therapy	Guideline positioning as add-on in selected patients.
Safety considerations	Vasodilators may lower BP; small Hb drops reported	Monitor for symptomatic hypotension and mild anemia	Generally well tolerated in trials	VICTORIA safety and focused analyses.

CLINICAL EVIDENCE

Phase 2: SOCRATES-REDUCED

In stabilized patients within weeks of WHF, SOCRATES-REDUCED (n=456) was overall neutral for 12-week NT-proBNP change but showed dose-response signals and acceptable tolerability, informing risk-enriched phase-3 design [2].

VICTORIA: high-risk HFrEF after recent WHF

VICTORIA randomized 5,050 patients with HFrEF (LVEF <45%) and recent WHF (HF hospitalization or outpatient IV diuretics) to vericiguat or placebo on top of contemporary care [1]. Over \approx 11 months, vericiguat reduced CV death or first HF hospitalization (HR 0.90, 95% CI 0.83–0.98). Absolute benefit was greatest in those at highest baseline risk, symptomatic hypotension and anemia were slightly more frequent than with placebo [1,10–16,18].

Subgroup/secondary insights (VICTORIA).

- NT-proBNP: attenuation at the very highest levels; strongest proportional benefit at “high but not extreme” concentrations [11,16]
- Diabetes: relative effects were similar regardless of type-2 diabetes [13].
- Recurrent events: benefits extended to recurrent HF hospitalizations [14].
- Safety: small average BP effects; mild hemoglobin reductions without progressive decline [10,18].

VICTOR: stable ambulatory HFrEF without recent WHF

VICTOR enrolled 6,105 ambulatory, clinically stable HFrEF patients on robust GDMT and no recent WHF [3]. The primary composite of CV death or HF hospitalization was neutral (HR 0.93, 95% CI 0.83–1.04). Secondary analyses signaled lower CV death (HR 0.83, 95% CI 0.71–0.97) and all-cause death (HR 0.84, 95% CI 0.74–0.97) with vericiguat, safety was consistent with VICTORIA [3].

Pooled individual-participant analysis: VICTORIA + VICTOR

Across \approx 11,155 participants spanning recent-WHF to stable ambulatory HFrEF, pooled IPD analysis indicates a statistically significant reduction in CV death or HF hospitalization (HR 0.91, 95% CI 0.85–0.98). While statistically significant, these findings should be viewed as supportive signals that align with VICTORIA and the mortality signal from VICTOR rather than stand-alone proof of efficacy outside the post-WHF setting. [4].

Table 2. Pivotal trials of vericiguat in HFrEF

Trial	Population	N	Primary endpoint	Key results (HR, 95% CI)	Notes
SOCRATES-REDUCED (2015)	Stabilized HFrEF within 4 wks of WHF	456	NT-proBNP change	Neutral overall; dose-response signals	Informed dose/risk enrichment
VICTORIA (2020)	HFrEF with recent WHF	5,050	CV death or first HF hospitalization	0.90 (0.83–0.98)	Greatest absolute benefit in higher-risk pts; small ↑ hypotension/anemia
VICTOR (2025)	Stable ambulatory HFrEF, no recent WHF	6,105	CV death or HF hospitalization	0.93 (0.83–1.04) (neutral); CV death 0.83 (0.71–0.97); all-cause death 0.84 (0.74–0.97)	Safety consistent with VICTORIA
Pooled IPD (2025)	Broad HFrEF spectrum	≈11,155	CV death or HF	0.91 (0.85–0.98)	Benefit across spectrum; largest yield post-WHF

			hospitalization	
--	--	--	-----------------	--

SAFETY AND TOLERABILITY

Across trials, vericiguat was generally well tolerated. Symptomatic hypotension and anemia were more frequent than with placebo but rarely led to discontinuation, hemoglobin changes were modest without progressive decline [1,10,18]. Caution is warranted with concomitant vasodilators and conditions predisposing to low blood pressure. Pregnancy is contraindicated (embryo-fetal risk) [6,17].

PLACE IN THERAPY AND GUIDELINES

Guidelines position vericiguat as an add-on for symptomatic HFrEF after recent WHF on optimized GDMT (class of recommendation varies by document and context) [5–7]. In stable ambulatory HFrEF without recent WHF, the neutral primary outcome in VICTOR supports selective, individualized use in high-risk profiles, acknowledging that the mortality and pooled-analysis findings are signals rather than definitive proof. [3,4]. Health-economic analyses suggest intermediate value that improves with higher baseline risk, consistent with the VICTORIA phenotype [25].

PRACTICAL IMPLICATIONS

Best-fit patients now: those with recent WHF at elevated risk despite foundational GDMT - often with high (but not extreme) NT-proBNP, recurrent hospitalizations and adequate blood pressure [1,5–7,11,14–16].

Stable ambulatory patients: consider selectively in high-risk individuals after shared decision-making that explicitly discusses VICTOR's neutral primary endpoint and the supportive mortality/pooling signals [3,4].

Monitoring: focus on blood pressure, symptoms of hypotension, and hemoglobin during early follow-up [1,10,18].

HEALTH-ECONOMIC CONSIDERATIONS

Modeling based on VICTORIA suggests that vericiguat delivers intermediate value overall, becoming more attractive as baseline risk and event rates rise - precisely the post-WHF context where absolute risk reduction is greatest [25]. Budget-impact and equity considerations will vary by health-system pricing and GDMT penetration.

LIMITATIONS

This review summarizes published trials and high-quality analyses, but several boundaries apply. Evidence is strongest after a recent WHF event (VICTORIA, median follow-up \approx 11 months), applicability to lower-risk stable outpatients is less certain because VICTOR was neutral for its primary composite [1,3]. Treatment effect appears risk-dependent and may attenuate at very high NT-proBNP levels [11,16]. Trials did not start therapy at SBP $<$ 100 mmHg, excluded pregnancy and prohibited PDE-5 inhibitors/other sGC stimulators, limiting generalizability in those settings [6,17]. Subgroup findings are exploratory and the mortality signal in VICTOR needs confirmation with longer follow-up and across health systems [3]. Finally, cost-effectiveness is sensitive on baseline risk, event rates and local pricing [25].

CONCLUSIONS

Vericiguat provides a mechanistically distinct means to reduce clinical events in HFrEF by restoring NO-sGC-cGMP signaling. The most robust evidence comes from VICTORIA in patients after recent WHF, where the drug reduced the composite of CV death or first HF hospitalization on top of contemporary therapy [1]. In stable ambulatory HFrEF, VICTOR was neutral for the primary composite but signaled lower CV and all-cause mortality. Taken together with the pooled IPD indicates a reduction in the composite across the broader spectrum, yet these findings should be considered supportive rather than definitive [3,4].

In practice, vericiguat is best positioned as an add-on to four-pillar GDMT for patients recently worsened or otherwise at elevated risk, implemented within structured post-discharge pathways and monitored for symptomatic hypotension and mild anemia [5–7,10,18]. Its value is maximized when patient selection is deliberate, expectations are calibrated to risk and follow-up targets blood pressure, hemoglobin, and clinical status - helping clinicians deploy this therapy precisely and equitably across the HFrEF spectrum. [1–7,10–16,18–22,25].

Author Contributions: All authors contributed to the preparation of this manuscript. All authors have read and approved the final version of the manuscript.

Funding: No external funding was received for this study.

Institutional Review Board Statement: Not applicable

Conflicts of Interest: The authors declare no conflicts of interest.

REFERENCES

1. Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction. *N Engl J Med.* 2020;382(20):1883-1893. doi:10.1056/NEJMoa1915928
2. Gheorghiade M, Greene SJ, Butler J, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. *JAMA.* 2015;314(21):2251-2262. doi:10.1001/jama.2015.15734
3. Butler J, Anstrom KJ, Blaustein RO, et al. Vericiguat for patients with heart failure and reduced ejection fraction: the VICTOR trial. *Lancet.* 2025;400(10304):-. doi:10.1016/S0140-6736(25)01665-4
4. Zannad F, Young R, Anstrom KJ, et al. Vericiguat across the heart-failure spectrum: pooled patient-level analysis of VICTORIA and VICTOR. *Lancet.* 2025;400(10304):—. doi:10.1016/S0140-6736(25)01682-4
5. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. *Circulation.* 2022;145(18):e895-e1032. doi:10.1161/CIR.0000000000001063
6. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur Heart J.* 2021;42(36):3599-3726. doi:10.1093/eurheartj/ehab368
7. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused update of the 2021 ESC heart failure guidelines. *Eur Heart J.* 2023;44(37):3627-3639. doi:10.1093/eurheartj/ehad195
8. Trujillo M, Ayala-Somayajula S, Blaustein RO, Gheys F. Vericiguat, a novel sGC stimulator: mechanism of action, clinical, and translational science. *Clin Transl Sci.* 2023;16(12):2458-2466. doi:10.1111/cts.13677
9. Fritsch A, Meyer M, Blaustein RO. Clinical pharmacokinetics and pharmacodynamics of vericiguat. *Clin Pharmacokinet.* 2024;63(6):751-771. doi:10.1007/s40262-024-01384-1

10. Ezekowitz JA, Zheng Y, Cohen-Solal A, et al. Hemoglobin and clinical outcomes in the VICTORIA study. *Circulation*. 2021;144(18):1489-1499. doi:10.1161/CIRCULATIONAHA.121.056797
11. Ezekowitz JA, O'Connor CM, Troughton RW, et al. N-terminal pro-B-type natriuretic peptide and clinical outcomes: Vericiguat HFrEF study. *JACC Heart Fail*. 2020;8(11):931-939. doi:10.1016/j.jchf.2020.08.008
12. Armstrong PW, Zheng Y, Troughton RW, et al. Sequential evaluation of NT-proBNP in heart failure: insights into clinical outcomes and efficacy of vericiguat. *JACC Heart Fail*. 2022;10(9):677-688. doi:10.1016/j.jchf.2022.04.015
13. Khan MS, Butler J, Young R, et al. Vericiguat and cardiovascular outcomes in heart failure by baseline diabetes status: insights from VICTORIA. *JACC Heart Fail*. 2024;12(10):1750-1759. doi:10.1016/j.jchf.2024.05.007
14. Mentz RJ, Stebbins A, Butler J, et al. Recurrent hospitalizations and response to vericiguat in HFrEF. *JACC Heart Fail*. 2024;12(5):839-846. doi:10.1016/j.jchf.2023.12.005
15. Lam CSP, Giczevska A, Śliwa K, et al. Clinical outcomes and response to vericiguat according to index heart-failure event: insights from VICTORIA. *JAMA Cardiol*. 2021;6(6):706-712. doi:10.1001/jamacardio.2020.6455
16. Senni M, López-Sendón J, Cohen-Solal A, et al. Vericiguat and NT-proBNP in patients with HFrEF: analyses from VICTORIA. *ESC Heart Fail*. 2022;9(6):3791-3803. doi:10.1002/ehf2.14050
17. Saldarriaga C, Atar D, Stebbins A, et al. Vericiguat in patients with coronary artery disease and HFrEF. *Eur J Heart Fail*. 2022;24(5):782-790. doi:10.1002/ejhf.2468
18. Lam CSP, Anstrom KJ, Butler J, et al. Blood pressure and safety events with vericiguat in VICTORIA. *J Am Heart Assoc*. 2021;10(22):e021094. doi:10.1161/JAHA.121.021094
19. Butler J, Usman MS, Anstrom KJ, et al. Soluble guanylate cyclase stimulators in HFrEF across the risk spectrum. *Eur J Heart Fail*. 2022;24(11):2029-2036. doi:10.1002/ejhf.2720
20. Oh J, Lee CJ, Park JJ, et al. Real-world eligibility for vericiguat in decompensated HFrEF. *ESC Heart Fail*. 2022;9(2):1492-1495. doi:10.1002/ehf2.13837
21. Nguyen NV, Savarese G, Carrero JJ, et al. Eligibility for vericiguat in a real-world heart-failure population according to trial, guideline and label criteria: data from the Swedish Heart Failure Registry. *Eur J Heart Fail*. 2023;25(8):1418-1428. doi:10.1002/ejhf.2939
22. Okami S, Ohlmeier C, Takeichi M, et al. Vericiguat use in patients with heart failure in real-world settings during the first year after authorization in Japan. *J Clin Med*. 2024;13(11):3222. doi:10.3390/jcm13113222

23. Pieske B, Maggioni AP, Lam CSP, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction (SOCRATES-PRESERVED). *Eur Heart J.* 2017;38(15):1119-1127. doi:10.1093/eurheartj/ehw593
24. Follmann M, Ackerstaff J, Redlich G, et al. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. *J Med Chem.* 2017;60(12):5146-5161. doi:10.1021/acs.jmedchem.7b00449
25. Chew DS, Cowper PA, Bigelow R, et al. Cost-effectiveness of vericiguat in patients with heart failure with reduced ejection fraction: the VICTORIA randomized clinical trial. *Circulation.* 2023;148(14):1087-1098. doi:10.1161/CIRCULATIONAHA.122.063602