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ABSTRACT: The inverse relationship between High Density Lipoproteins (HDL) level and 

risk of ischaemic heart disease was proved by many epidemiological studies. Although the 

main mechanism of antiatherogenic activity of HDL is a reverse transport of cholesterol from 

peripheral tissues to the liver, HDL additionally carries some antioxidative enzymes like 

Paraoxonase 1 (PON1) which protects LDL and HDL lipoproteins from oxidative 

modification. A lot of antiatherogenic activities of HDL depends on PON1 activity. 
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INTRODUCTION: The inverse relationship between High Density Lipoproteins (HDL) 

level and risk of ischaemic heart disease was proved by many epidemiological studies. In 

Framingham Heart Study low HDL level (<35mg/dl) was the strongest lipid ischaemic heart 

disease risk factor, even stronger than increase of Low Density Lipoproteins (LDL) or total 

cholesterol level or high triglycerides level (1). The main mechanism of antiatherogenic 

activity of HDL is a reverse transport of cholesterol from peripheral tissues to the liver, where 

cholesterol is excreted together with bile. However HDL is proved to act also as anti-

inflammatory and antithrombotic agent. HDL particles additionally carry some antioxidative 

enzymes as Paraoxonase 1 (PON1), Paraoxonas 3 (PON3) or Platelet-activating factor 

acetylhydrolase (PAF-AH), which protect LDL and HDL lipoproteins from oxidative 

modification. A lot of antiatherogenic activities of HDL depends on PON1 activity(2). 
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BIOCHEMISTRY & MECHANISM OF ACTION 

PON1 is a glycoprotein of 354 amino acids and approximate molecular mass of 43 KDa. It is 

the member of a multigene family also containing PON2 and PON3, the genes for which are 

located adjacent to each other on chromosome 7. The gene for PON1 is located between q21.3 

and q22.1 on the long arm of chromosome 7 in humans (chromosome 6 in mice)(3). PON1 is 

an enzyme, for which main substrates appear to be lactones. PON1 presents also activity of 

arylesterase and can hydrolyse aromatic esters.  However the active site of PON1 enzyme 

seems to be more specific for lactones than for aromatic esters or organophosphorus 

compounds (4). Therefore PON1 ability to hydrolyse lactones is its primary enzymatic 

activity, while  arylesterase activity as well as paraoxonase activity are additional enzymatic 

features (5). All paraoxonases – PON1, PON2, PON3 have ability to act as lactonase or 

arylesterase, however arylesterase activity of PON 2 and PON 3 is very low. On the other site 

ability to hydrolyse organophosphorus compounds is characteristic only for PON1(6).  

Several studies of organophosphorus compounds exposed agricultural workers have indicated 

that individuals with PON1 genotypes associated with low activity (Q/M) had a greater 

frequency of various indices of organophosphorus compounds toxicity (chronic toxicity, 

genotoxicity, impaired thyroid function)(7–9). Hydrolytic activity of PON1 in relation to 

phospho-organic compounds and aromatic esters is dependent on the presence of calcium 

ions. However, the removal of calcium ions by chelating compounds (EDTA) does not cause 

loss of PON1 antioxidative capacity(10). PON1 presents also activity of tiolactonase and is 

able to hydrolyse proatherogenic homocysteine thiolactone(11,12). All three paraoxonases -

PON1, PON2, PON3,- protect plasma lipoproteins and cell membranes from oxidative 

modification(13), by reduction of lipid hydroperoxides(14).  What is interesting, PON1 and 

PON3 are predominantly located in the plasma associated with HDL while PON2 is not found 

in the plasma but has a wide cellular distribution(13). 

 

PON1 paraoxonase, esterase and lactonase activity depends on the same site of the active 

enzyme, however different amino acid residues are responsible for the hydrolysis of different 

substrates(15). Histidine residues His115 and His 134 are responsible for the lactonase and 

aryl-esterase activity of the enzyme, whereas phenylalanine in position 222 (Phe222) is 

essential for paraoxonase activity(16,17). Peroxidase activity of the enzyme depends on a 

different active site and is conditioned by the presence of a cysteine residue at position 

283(18).  

 

PON1, synthesized in the liver, is secreted to the circulation, where it binds to the HDL 

lipoproteins containing apoA-I and apoJ(19). Probably scavenger receptor class B type 

1 (SRB1) identified as receptors for HDL, are involved in this process(20). In vitro studies 

have proven that HDL molecules are not only the main acceptor, but also a potent stimulator 

of hepatocyte secretion of PON1(21). ApoA-I and phospholipids are necessary for stabilizing 

the activity of the secreted enzyme(21,22). In addition to HDL, small amounts of PON1 are 

also transported in postprandial chylomicrons and with the VLDL fraction(13). PON1 is not 

found in the LDL lipoprotein fraction. 

 

ANTI-ATHEROGENIC ACTIVITY 

Low PON1 activity is observed in conditions conducive to atherosclerosis, such as 

hypercholesterolemia, diabetes(23,24), obesity(25) and insulin resistance(26). It has been 

proven that there is an inverse relationship between PON1 activity in plasma and the risk of 

developing cardiovascular diseases(27). Low PON1 concentration predicts also 

cardiovascular mortality in haemodialysis patients(28). 

https://en.wikipedia.org/wiki/Lactones
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PON1 protects LDL and HDL lipoproteins from oxidative modification induced by reactive 

oxygen species, that are generated during oxidative stress(29).Oxidative modification of LDL 

accumulated in vessel wall plays significant role in initiation and progression of 

atherogenesis.  Polyunsaturated fatty acids that are part of phospholipids in LDL molecules, 

undergo oxidation resulting in development of peroxides of these compounds that are capable 

of oxidizing further fatty acid molecules. Oxidized polyunsaturated acids eventually 

disintegrate into small fragments, so-called advanced products of lipid peroxidation, e.g. 

malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE), which bind to ApoB and make it 

recognizable by macrophage receptors. This leads to uncontrollable, excessive cholesterol 

uptake by macrophages in the vascular wall and foam cell formation(30). 

 

Under conditions of oxidative stress that takes place in the atherosclerotic vascular wall, HDL 

lipoprotein also undergoes oxidation(31). In the HDL molecule, both lipid and protein 

components are oxidatively modified(31). The result of HDL oxidation is the accumulation of 

lipid peroxidation products and the change in the physico-chemical properties of HDL 

particles and, consequently, the formation of so-called dysfunctional HDL, characterized by 

reduced ability to reverse cholesterol transport(32), acting cytotoxically(33) and exhibiting 

weaker ability to protect LDL and cell membranes from oxidation(34). The concept of 

dysfunctional HDL first arose from observations that some individuals with high or normal 

HDL-C but low PON1 activity were susceptible to Coronary Heart Disease (CHD) 

development, while others with low HDL-C but high PON1 activity were not(35). 

 

It has been demonstrated that purified human PON1 can reduce the accumulation of lipid 

peroxides and substances reactive with thiobarbituric acid (TBARS, thiobarbituric acid 

reactive substances) in LDL molecules, during incubation of LDL with copper ions in 

vitro(36). 

Anti-atherogenic activity of PON1, except from hydrolysis of oxidized phospholipids and 

cholesterol ester that are generated during oxidative modification of serum lipoproteins(13), 

include: enhancing cholesterol efflux from macrophages, restraining LDL oxidation induced 

by macrophages, restraining oxLDL uptake by macrophages(37). 

It has been proven that macrophages isolated from mice with damaged PON1 gene have 

higher NADPH oxidase activity, have greater LDL oxidation capacity and lipid peroxide 

accumulation, and synthesize higher amounts of cholesterol when stimulated by oxidative 

stress than macrophages isolated from control mice(38). It was also confirmed that HDL 

lipoproteins isolated from transgenic mice overexpressing the PON1 gene, much more 

strongly stimulate the outflow of cholesterol from macrophages in the mechanism dependent 

on the ABCA1 protein carrier than HDL from mice with damaged PON1 gene(13). 

Furthermore, in the in vitro study, purified PON1 inhibits, depending on the dose, the 

synthesis of cholesterol in isolated macrophages.(39) 

In 2006, in vitro studies demonstrated a strong relationship between the antiatherogenic 

effects of PON1 and its ability to catalyze lactones. The weakening of the lactone function of 

PON1 reduces the ability of the enzyme to protect LDL from peroxidation, both in a cell-free 

system, i.e. induced by copper ions, and before oxidation stimulated by activated 

macrophages. PON1 lactonase activity also determines the ability of the enzyme to induce the 

outflow of cholesterol from macrophages(40).  

Many data suggest that lipophilic lactones are the main natural substrates for PON1(41). 

Since many of the biologically active derivatives of fatty acids have a structure similar to 

lactones, it is suggested that the lipolactonase activity of PON1 can regulate the metabolism 

of these compounds and, as a result, modify the course of the inflammatory process and 

atherogenesis(42). 



136 

 

Anti-atherogenic effects of PON1 have also been confirmed in in vivo experiments. It has 

been shown that in apoE-damaged mice (apoE mice) in which severe atherosclerotic lesions 

develop in the vessels, additional damage to the PON1 gene enhances the development of 

these lesions(43). In contrast, the transfer of the human PON1 gene in apoE mice reduces the 

development of atheromatic changes(13). 

 

Clinical trials also confirm the antiatherogenic effect of PON1. For example, a negative 

correlation was found between PON1 activity in plasma and the thickness of the IMT 

complex (initima media thickness)(44). It is generally believed that the value of the IMT 

complex in the carotid arteries correlates with the degree of atherosclerosis in the coronary 

arteries. The cardiovascular risk, mainly the incidence of heart attacks and strokes, increases 

with the thickness of the IMT complex(45). The inverse relationship between thiolactonase 

PON1 activity and IMT complex value was also proven(46). PON1 immunoreactivity was 

found in the wall of atherogenic-changed arteries(47) and it was proven that purified PON1 

has the ability to hydrolyze lipid peroxides in homogenates prepared from atheromatic 

changes of the carotid and coronary arteries(48). 

 

MODULATION OF PON1 ACTIVITY 

 

GENETICS:  Both genetic and environmental factors can modify PON1 activity in plasma. 

Although many nutritional, life-style and pharmaceutical modulators of PON1 are 

known(49,50), the biggest effect on PON1 activity levels has PON1 genetic 

polymorphisms(21). Over 160 PON1 polymorphisms have been described, both in the coding 

region as well as in the introns or in the regulatory region of the gene. For example the coding 

region PON1-Q192R polymorphism determines a substrate dependent effect on activity. 

Some substrates e.g. paraoxon are hydrolysed faster by the R-isoform while others such as 

diazoxon are hydrolysed more rapidly by the Q-isoform(21). The PON1-Q192R 

polymorphism also determines the efficacy with which PON1 inhibits LDL oxidation with the 

Q isoform being the most efficient and the R isoform least efficient(10,51).  

 

It is worth mentioning that the distribution of the PON1 polymorphisms varies with ethnicity. 

The frequency of the PON1-192R allele increases the further from Europe a population 

originates, the frequency in Caucasians of 15–30% increases to 70–90% in Far Eastern 

Oriental and Sub-Saharan African populations. These ethnic differences in Single Nucleotide 

Polimorphism (SNP) distribution can lead to large activity differences between 

populations(52).  

 

ENVIRONMENTAL FACTORS: Although environmental factors do not influence PON1 

activity as much as genetic polymorphisms,  life-style, nutritional and pharmaceutical factors 

are still important PON1 modulators. Smoking has been shown to reduce plasma PON1 

activity(53). Consumption of small amounts of alcohol in various forms increases the activity 

of PON1, while people who drink large amounts of alcohol have a reduced enzyme 

activity(54). A beneficial effect on PON1 activity is a diet rich in olive oil and in vitamins C 

and E(55), although some studies do not confirm the positive correlation between vitamin 

intake and PON1 activity in plasma(56). Polyphenolic flavonoids contained in red wine 

protect PON1 activity(57). Pomegranate juice rich in these antioxidants has a similar 

effect(58). Other dietary factors such as curcumin, betanin, isothiocyanates are also inducers 

of PON1, by mechanisms awaiting discovery(49,50,59). The lifestyle can also modulate 

PON1 activity, eg increase in physical activity increases PON1 activity(60). 



137 

 

PATHOLOGICAL FACTORS: 
Paraoxonase 1 is an antioxidant enzyme, however, under oxidative stress conditions, free 

oxygen radicals as well as oxidized phospholipids and cholesterol esters generated during the 

oxidation of lipoproteins and lysophosphatidylcholine may inactivate PON1(61). In vitro, a 

positive correlation was found between HDL oxidation and loss of PON1 hydrolytic activity 

and its ability to protect LDL against oxidation(62).  

Currently, the increase in the level of nitrotyrosine in plasma is considered as a prognostic 

factor for the development of atherosclerotic lesions and the occurrence of cardiac events(63). 

Nitration of ApoA-I is also one of the mechanisms leading to the creation of the so-called 

dysfunctional, pro-atherogenic HDL(64). Nitration, like the oxidation of amino acid residues 

in apoA-I, causes conformational changes in the protein and weakens the binding and activity 

of enzymes transported by HDL molecules, including PON1 activity(65). 

Incubation of HDL in a high concentration of glucose results in the accumulation of advanced 

glycation end products and substances reactive with thiobarbituric acid (TBARS) in HDL 

molecules and a decrease in PON1 activity against paraoxone(66). In diabetic patients there is 

an increase in the concentration of glycated LDL and HDL in the serum(67), which is 

dependent on the level of HbA1c(68). Moreover, a negative correlation was demonstrated 

between plasma PON1 activity and accumulation of advanced glycation end products in 

circulation(69). PON1 isolated from the plasma of patients with type 2 diabetes, is 

characterized by a higher glycation rate and decreased ability to mobilize lipid 

hydroperoxides from cell membranes in vitro(70). 

Pro-inflammatory cytokines  like IL-6, TNF-alpha, are responsible for the synthesis of acute-

phase proteins including SAA. In the circulation, HDL is the main carrier of SAA. It has been 

proven that SAA can displace ApoA-I and PON1 from HDL molecules(71). Incubation of 

HDL with SAA may reduce the activity of PON1(72). 

 

PHARMACOLOGICAL FACTORS:  
Due to its anti-atherosclerotic effects, PON1 is an interesting target for pharmacotherapy. In 

vitro studies have shown that HMG-CoA reductase inhibitors (3-hydroxy-3-methylglutaryl-

CoA) - statins, such as pravastatin, simvastatin and fluvastatin, reduce the enzyme activity 

and reduce the expression of PON1 mRNA in hepatoma cells(73). 

In rodents in vivo, fluvastatin and cerivastatin also inhibited plasma PON1 activity in rats 

with normal lipid profiles(74,75), and pravastatin did not affect PON1 activity in these 

animals(75). In clinical trials, atorvastatin(76) and fluvastatin(77), in addition to beneficial 

effects on the lipid profile, increased the activity of PON1.  

Fibrates also have a varied effect on PON1 activity. The use of ciprofibrate for 3 months in 

patients with metabolic syndrome resulted in a decrease in triglycerides, an increase in HDL 

cholesterol and an increase in PON1 activity, as well as a significant reduction in serum 

oxLDL(78). In contrast, gemfibrozil and bezafibrate in patients with hyperlipidemia did not 

affect the enzyme activity(79). In rodents, fenofibrate reduced the activity of PON1 in 

normolipidemic rats(80). Similar results were obtained using gemfibrozil(81). On the other 

hand, in vitro fenofibrate increased the activity and expression of PON1 mRNA in human 

hepatocytes(73). 

The beneficial effects on the activity and concentration of PON1 were corrected for 

aspirin(82). 

Streptozocin-induced diabetic rats have been shown to have significantly reduced 

paraoxonase activity. Administration of metformin to streptozocin-induced diabetic rats for 4 

weeks, significantly increases the hydrolytic activity of PON1, both for paraoxone and for 

phenyl acetate(83). On the other side, in streptozotocin-induced diabetic rats as well as in 
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normal rats glimepiride and glibenclamide have no beneficial effects on circulating PON1 

activity, but both drugs increase PON1 activity in the liver(84). 

 

CONCLUSION: Clearly, it appears that serum PON1 contributes to the atheroprotective 

function of HDL by decreasing lipid peroxidation in a variety of diseases with an 

inflammatory component. Paraoxonase may be considered as a new therapeutic target while 

looking for new antiatherogenic drugs. Since complications of atherosclerosis like myocardial 

infercts or strokes are the main cause of deaths in industrialized countries, more research in 

this field is definitely needed. 
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