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Abstract 

Down syndrome (DS), or trisomy 21, is the most common chromosomal disorder, 

characterized by intellectual disability, congenital anomalies, and an increased risk of 

neurodegenerative diseases. This review synthesizes current knowledge on the etiology, clinical 

presentation, and modern therapeutic strategies for DS, including early intervention, medical 

management, and psychosocial support. Particular emphasis is placed on the revolutionary 

potential of CRISPR-Cas gene-editing technology as a tool for future treatment strategies. 

Drawing upon findings from many scientific publications, the article discusses the mechanism 

of CRISPR, its current medical applications, and its experimental use in silencing the extra 

chromosome 21 or correcting DS-associated genes. Technical, ethical, and delivery-related 

limitations are explored, alongside speculative but promising research directions, including 

base editing, prime editing, and cerebral organoids. The article concludes with a reflection on 

whether societal perceptions of genetic diversity should evolve alongside scientific innovation, 

highlighting that the greatest breakthrough may come not from altering genomes, but from 

fostering inclusion and understanding. 
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Introduction 

Down syndrome (DS), or trisomy 21, remains the most prevalent chromosomal aneuploidy 

diagnosed at birth, characterized by a broad spectrum of physical, cognitive, and developmental 

features. The growing life expectancy and societal integration of individuals with DS have 

prompted an increased focus on early diagnosis, targeted therapeutic interventions, and genetic 

research aimed at alleviating or modifying the condition’s manifestations. 

The objective of this review is to present a comprehensive, interdisciplinary overview of the 

current understanding of Down syndrome - from its genetic etiology and clinical features, 

through contemporary approaches in care and rehabilitation, to the emerging frontiers of gene-

editing technologies, particularly CRISPR-Cas systems. A special focus is placed on evaluating 

the experimental and potential therapeutic applications of CRISPR in DS models, including 

chromosomal silencing, correction of gene dosage effects, and targeting symptom-related 

genes. 

This article is based on an extensive review of scientific literature published between 2015 and 

2025. The sources were retrieved using major academic search engines and medical databases, 

including PubMed, Google Scholar, ScienceDirect, Scopus, and the Cochrane Library. 

Selection criteria included peer-reviewed articles, clinical guidelines, preclinical studies on 

animal and cellular models, and systematic reviews addressing Down syndrome and CRISPR-

related therapies. Additionally, official recommendations and epidemiological data from global 

health organizations were considered to support the clinical context. 

Methodologically, the work employs a narrative literature review approach, structured 

thematically. The analysis synthesizes findings from 35 key academic papers, offering a 

consolidated perspective on diagnosis, care standards, molecular mechanisms, and genetic 

interventions in DS. 

The results of this synthesis confirm significant progress in multidisciplinary management of 

DS, from early developmental support to preventive medical protocols. At the same time, it 

highlights how CRISPR-Cas gene-editing systems, though not yet clinically applied to DS, 

offer groundbreaking potential. Experimental studies have demonstrated the ability to silence 

the extra chromosome 21 or modulate expression of overactive genes such as DYRK1A and 

APP, restoring cellular functions in vitro and in murine models. 

This work ultimately underscores the dual role of science — to innovate responsibly and to 

inspire deeper reflection on how we, as a society, value human diversity in the genomic era. 
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1.Down Syndrome – Etiology, Risk Factors, and Susceptible Groups 

Down syndrome (DS), or trisomy 21, is the most prevalent chromosomal disorder among live 

births, characterized by a spectrum of phenotypic manifestations including intellectual 

disability, congenital malformations, and neurodegenerative changes. This review synthesizes 

current knowledge on the genetic basis, clinical features, diagnostic methods, and management 

strategies associated with DS. 

First described by John Langdon Down in 1866, and genetically defined in 1959, Down 

syndrome remains a model disorder for studying aneuploidy and its systemic consequences. It 

affects approximately 1 in 700 live births globally [1]. While advances in prenatal diagnostics 

and medical care have improved outcomes, DS continues to pose lifelong challenges for 

individuals and caregivers. This review integrates current data to provide a detailed picture of 

the condition. 

DS is most commonly caused by nondisjunction leading to full trisomy 21 (95% of cases), with 

less frequent causes including Robertsonian translocations (~4%) and mosaicism (~1%) [1]. 

The majority of nondisjunction events are maternal in origin and increase in frequency with 

maternal age [2]. Genetic testing techniques, including karyotyping and FISH, are Advanced 

maternal age remains the single most significant risk factor. For example, the risk increases 

from 1 in 1,250 at age 25 to 1 in 100 by age 40 [2] (Table 1). Other potential contributors such 

as paternal age, environmental exposures, and polymorphisms in meiotic genes have been 

studied but remain inconclusive. 

Maternal Age Risk (1 in ...) 

20 1,500 

25 1,250 

30 1,000 

35 350 

40 100 

45 30 

>45 20 

Table 1. Maternal Age and Risk of Down Syndrome [Source: own elaboration based on 2] 
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Typical physical traits include brachycephaly, upslanting palpebral fissures, epicanthal folds, 

flat nasal bridge, and hypotonia. Short stature and joint laxity are common, while congenital 

heart defects occur in ~50% of individuals, especially atrioventricular septal defects (AVSD) 

[1,3]. 

Individuals with DS display varying degrees of intellectual disability, generally in the mild to 

moderate range. MRI studies reveal altered brain morphology, including reduced cerebellar and 

hippocampal volumes [1]. By middle age, nearly all individuals show neuropathological 

features of Alzheimer’s disease, linked to the triplication of the APP gene [1,4]. 

Medical Comorbidities 

DS is associated with a wide array of comorbidities: 

• Cardiovascular: AVSD and ventricular septal defects. 

• Gastrointestinal: Duodenal atresia, Hirschsprung disease. 

• Endocrine: Hypothyroidism (congenital or autoimmune). 

• Hematologic: Higher incidence of leukemia (ALL and AMKL), especially in infancy 

[1,4]. 

• Immunologic: Increased susceptibility to infections, autoimmune disorders. 

• Sensory: Hearing loss (often from otitis media), visual problems including cataracts [3]. 

Diagnostic Advances 

Prenatal Screening 

Modern prenatal diagnostic approaches for Down syndrome focus on maximizing detection 

while minimizing invasiveness. Non-invasive prenatal testing (NIPT) based on analysis of cell-

free fetal DNA in maternal plasma has emerged as the most accurate screening tool, with 

sensitivity and specificity exceeding 99% [5,19]. NIPT is routinely offered to pregnant 

individuals, especially those of advanced maternal age or with high-risk first-trimester 

screening results. Since June 5, 2024, it has also been offered to all pregnant women in Poland 

as part of standard prenatal care. 

In addition to NIPT, combined first-trimester screening, which evaluates nuchal translucency 

via ultrasound along with serum markers (PAPP-A and free β-hCG), remains a widely used 

method [19]. In the second trimester, the quadruple test (AFP, hCG, estriol, and inhibin-A) 

offers further risk assessment. (Table 2) 
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Method Invasive Gestational Age (weeks) Accuracy 

First-trimester screening No 11–13 ~85% 

Non-Invasive Prenatal Test (NIPT) No From 10 >99% 

Amniocentesis Yes 15–20 ~100% 

Chorionic Villus Sampling (CVS) Yes 10–13 ~100% 

Table 2. Prenatal Diagnostic Methods for Down Syndrome [Source: own elaboration based 

on 5,19,20] 

 

Definitive prenatal diagnosis requires invasive techniques: chorionic villus sampling (CVS) 

typically performed at 10–13 weeks, or amniocentesis conducted after 15 weeks of gestation. 

Chromosomal abnormalities are confirmed via karyotyping, fluorescence in situ hybridization 

(FISH), or quantitative fluorescent PCR (QF-PCR) [19,20]. 

Genetic Counseling and Risk Evaluation 

Genetic counseling is essential following a DS diagnosis. Counseling addresses recurrence risk, 

options for ongoing pregnancy, and potential medical and developmental challenges. In 

families with Robertsonian translocations, carrier testing of parents is crucial due to increased 

recurrence risk in future pregnancies [5]. Prenatal screening has been revolutionized by non-

invasive prenatal testing (NIPT) using cell-free fetal DNA, offering detection rates >99% [5]. 

Confirmation is achieved by invasive procedures such as chorionic villus sampling or 

amniocentesis followed by cytogenetic analysis. 

Postnatal diagnosis is usually based on clinical features and confirmed by karyotype. Early 

diagnosis allows for prompt evaluation of organ systems and planning for multidisciplinary 

care. 

Management and Intervention 

A comprehensive, multidisciplinary approach is the cornerstone of optimal care for individuals 

with Down syndrome. Management should begin shortly after diagnosis and continue through 

all life stages. 
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Medical Management 

Besides early surgical correction of congenital defects, standardized surveillance protocols 

guide follow-up of thyroid function, vision, hearing, hematologic profiles, and growth [3,21]. 

Immunization according to national schedules is crucial due to immunological vulnerability. 

Preventive care also includes annual ophthalmologic and audiologic evaluations, sleep apnea 

screening, and regular dental checks. 

Gastrointestinal anomalies such as duodenal atresia or Hirschsprung disease require timely 

surgical intervention. Endocrinologic issues like hypothyroidism are managed with lifelong 

thyroxine replacement. Hematological surveillance is particularly important in infancy and 

early childhood given increased leukemia risk [20,21]. 

Developmental and Educational Support 

Early intervention programs (starting as early as infancy) offer physical, occupational, and 

speech therapy to maximize developmental potential. Interdisciplinary centers coordinate 

therapy and evaluate progress. These services improve motor skills, communication abilities, 

and school readiness [4]. 

Educational support includes special education accommodations, inclusion strategies, and 

individualized education programs (IEPs). Vocational training and supported employment 

options help young adults with DS transition into semi-independent living. 

Psychosocial and Community-Based Care 

Parental support, mental health resources, and community advocacy groups play a vital role in 

quality of life for families. Social workers and developmental pediatricians help coordinate 

access to benefits, services, and inclusive education pathways. Comprehensive care recognizes 

not just the medical but also the emotional and social needs of individuals with DS and their 

families. 

Medical Management 

Cardiac and gastrointestinal anomalies are typically corrected surgically. Regular screening for 

thyroid function, hearing, vision, and hematologic abnormalities is critical. Immunization 

schedules should be rigorously followed [3]. 
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Developmental and Educational Support 

Early intervention programs including physical, occupational, and speech therapy significantly 

improve outcomes. Educational integration and individualized learning plans foster cognitive 

and social development [4]. 

Future Directions 

Recent transcriptomic studies have deepened understanding of gene dosage effects on cellular 

homeostasis in DS. Data suggest that oxidative stress, chronic inflammation, and mitochondrial 

dysfunction play pivotal roles in neural and systemic phenotypes [18]. Specific dysregulation 

of antioxidant defense genes like SOD1 and GPX1 leads to a redox imbalance contributing to 

neurodegeneration and cellular senescence [18,22]. 

Neuroimaging and connectivity studies have identified altered brain structure and white matter 

pathways that correlate with cognitive decline and early Alzheimer-like pathology in DS 

[26,27]. These findings support a shift toward integrated diagnostic frameworks combining 

imaging, biomarkers, and genetic profiling. 

Organoid-based models and iPSC-derived neurons from individuals with DS now offer 

unprecedented opportunities to model disease progression and screen therapeutic compounds 

in a patient-specific manner [24,25]. These systems can recapitulate aspects of cortical 

development and synaptic signaling defects seen in DS brains, facilitating discovery of 

neuroprotective strategies. 

Advances in prenatal screening, particularly the use of cfDNA and high-throughput molecular 

assays, have increased diagnostic sensitivity while reducing the need for invasive procedures 

[19]. Molecular karyotyping and QF-PCR provide rapid confirmation and enable detection of 

mosaicism and translocations, which are critical for accurate prognosis and genetic counseling 

[19,20]. Recent advances in genomics, including transcriptomic and proteomic profiling, are 

enhancing understanding of DS pathophysiology. There is growing interest in targeting specific 

pathways, such as oxidative stress and inflammation, with pharmacological agents [5]. The 

potential of gene therapy and CRISPR technology, while theoretical at present, opens new 

avenues for research. 

2. Therapeutic Strategies and Rehabilitation in Down Syndrome 

While there is no cure for Down syndrome (DS), therapeutic and rehabilitative strategies have 

significantly evolved to enhance quality of life and promote functional independence across the 
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lifespan. This chapter presents an integrative view based on comprehensive findings from 

studies [1–35]. 

Early Intervention and Developmental Therapies 

Early childhood is a critical window for neurodevelopment. Evidence consistently shows that 

early intervention services yield substantial cognitive, motor, and social benefits in children 

with DS. Key strategies include: 

• Physical therapy: Targeting hypotonia, motor delays, and postural control. 

• Occupational therapy: Enhancing fine motor skills and daily functional abilities. 

• Speech and language therapy: Improving expressive/receptive communication, 

articulation, and feeding skills. 

Early access to these services improves school readiness and supports long-term adaptive 

functioning. 

Multisystem Medical Monitoring 

Individuals with DS are prone to a wide range of medical comorbidities requiring coordinated, 

interdisciplinary care: 

• Cardiac care: Congenital heart defects (especially AVSD) require early 

echocardiographic screening and often surgical repair. 

• Endocrine surveillance: Regular screening for congenital and autoimmune 

hypothyroidism. 

• Vision and hearing checks: Essential due to high rates of otitis media, hearing loss, 

strabismus, and cataracts. 

• Gastrointestinal and hematological follow-up: Including risks of Hirschsprung 

disease, duodenal atresia, and childhood leukemia. 

Clinical guidelines recommend life-stage-specific checklists for regular assessment and 

preventive care. 

Educational Support and Inclusive Practices 

Educational programs tailored to individual learning profiles help optimize academic outcomes. 

Interventions include: 

• Individualized Education Programs (IEPs) 
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• Inclusion in mainstream classrooms with support services 

• Augmentative and alternative communication (AAC) tools 

Educational support also fosters social integration, self-esteem, and lifelong learning. 

Psychosocial and Vocational Support 

Psychosocial well-being is essential. Interventions focus on: 

• Parental training and family counseling 

• Peer inclusion and community programs 

• Behavioral therapy to manage ADHD, anxiety, or autism-like features 

As individuals with DS age, vocational training and supported employment promote autonomy 

and integration into adult society. 

Innovations and Assistive Technologies 

Emerging tools include: 

• Digital apps for language and cognitive stimulation 

• Wearable technologies for mobility and health tracking 

• Tele-rehabilitation for remote service delivery, especially post-COVID-19 

These tools expand access and engagement across diverse settings. 

 

3. CRISPR Technology – Mechanism and Medical Applications 

Introduction to CRISPR 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) represents a cutting-

edge gene-editing system first discovered as part of the bacterial adaptive immune response. It 

enables precise targeting and modification of genetic sequences through the use of an RNA 

guide and an associated nuclease, most commonly Cas9. This system has revolutionized 

molecular biology by allowing scientists to directly and efficiently edit the genomes of virtually 

any organism [30, 31]. 

Mechanism of CRISPR-Cas Systems 

The CRISPR-Cas9 system operates via a two-component strategy: the Cas9 endonuclease and 

a synthetic guide RNA (gRNA). The gRNA directs Cas9 to a specific DNA sequence, where 
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the enzyme creates a double-strand break (DSB). Following this, the cell’s repair mechanisms 

take over, engaging either non-homologous end joining (NHEJ), which often introduces small 

insertions or deletions (indels), or homology-directed repair (HDR), which can be used for 

precise gene correction or insertion when a repair template is provided [30, 34]. 

Other enzymes such as Cas12 and Cas13 have since expanded the CRISPR toolkit. Cas12 is 

also used for DNA targeting but introduces staggered DSBs, while Cas13 targets RNA, 

enabling post-transcriptional gene regulation [32, 35]. Furthermore, novel systems like base 

editing and prime editing provide refined editing capabilities without requiring DSBs, reducing 

cytotoxicity and off-target effects [34] (Figure 1). 

 

 

Figure 1. CRISPR-Cas9 gen editing [reprint from 34] 

 

Clinical Applications of CRISPR 

CRISPR has rapidly moved from laboratory discovery to therapeutic experimentation. Key 

areas of application include: 



12 

• Monogenic Diseases: CRISPR-Cas9 has shown therapeutic potential in treating 

disorders such as sickle cell disease and beta-thalassemia by reactivating fetal 

hemoglobin genes [35]. 

• Cancer Immunotherapy: Engineered immune cells, especially CAR-T cells, are 

enhanced with CRISPR edits for improved tumor targeting and immune evasion [32]. 

• Infectious Disease Diagnostics: SHERLOCK and DETECTR platforms utilize 

CRISPR for rapid, sensitive, and low-cost detection of viral RNA including SARS-

CoV-2 [33]. 

• Neurological Disorders: Research is exploring the application of CRISPR in correcting 

mutations associated with diseases like Huntington’s, amyotrophic lateral sclerosis 

(ALS), and Alzheimer’s disease [30, 35]. 

• Cardiovascular and Metabolic Diseases: Investigational applications are also 

emerging in dyslipidemia and diabetes by targeting regulatory elements of key 

metabolic genes. 

Technical Challenges 

Despite its potential, CRISPR-based therapies raise several concerns: 

• Off-target Effects: Inaccurate DNA cleavage can result in unintended gene disruption. 

• Delivery Mechanisms: Effective delivery to relevant tissues remains a technical hurdle. 

• Mosaicism and Immunogenicity: Particularly in embryo editing or in vivo 

applications, mosaic distribution of edits and immune responses to Cas proteins must 

be mitigated. 

Research highlights about CRISPR 

CRISPR has become a symbol of precision medicine and gene innovation around the world. Its 

applications span far beyond the lab, and here are some expanded highlights: 

• In 2018, a Chinese scientist, He Jiankui, created global controversy when he announced 

the birth of twin girls whose embryos had been genetically edited using CRISPR to 

make them resistant to HIV. This event led to international condemnation, legal 

repercussions, and renewed calls for global regulation of human germline editing. in 

2018 by announcing the birth of the first CRISPR-edited babies, raising global ethical 

concerns. 
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• CRISPR has enabled the development of browning-resistant mushrooms by knocking 

out a gene involved in enzymatic browning, potentially reducing food waste in 

supermarkets and during transport., potentially reducing food waste in the retail 

industry. 

• Researchers have engineered CRISPR systems to target antibiotic-resistant bacteria, 

offering hope against so-called "superbugs." 

• Using CRISPR, scientists are exploring the possibility of de-extinction, with efforts to 

edit elephant DNA to closely resemble that of the woolly mammoth, aiming to resurrect 

traits such as cold resistance and fur growth, such as the woolly mammoth, by editing 

elephant DNA. 

• NASA is investigating how CRISPR functions in space by testing gene-editing tools on 

the International Space Station. These experiments aim to understand how DNA repair 

mechanisms work in microgravity, which has implications for astronaut health during 

long-term space travel. under microgravity to study DNA repair and mutations during 

spaceflight. 

• Scientists have recently developed CRISPR tools that can turn genes on or off without 

cutting the DNA, using systems like CRISPRa and CRISPRi (activation and 

interference). 

• In 2018, CRISPR was used for the first time to treat a genetic disease (Leber congenital 

amaurosis) in a human patient directly inside the body. 

• Researchers have created a CRISPR-based “gene drive” that can spread genetic 

modifications rapidly through populations — studied especially for mosquito-borne 

diseases like malaria. 

• CRISPR has been used to create “glow-in-the-dark” mushrooms and animals in 

laboratory settings for educational and experimental purposes. 

• A CRISPR-powered diagnostic device the size of a USB stick has been developed to 

detect COVID-19 in less than an hour in field conditions. 

• CRISPR was first observed in the genome of bacteria as a defense mechanism against 

viruses — bacteria "remember" viral sequences to neutralize them upon future 

infections.  
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• Jennifer Doudna and Emmanuelle Charpentier were awarded the 2020 Nobel Prize in 

Chemistry for their groundbreaking development of CRISPR-Cas9 gene-editing 

technology 

• CRISPR is used not only in medicine but also in agriculture — to create crops that are 

resistant to diseases, drought, or pests.  

• This technology has potential applications in conservation — for instance, by 

eliminating diseases transmitted by mosquitoes that threaten endangered species 

• CRISPR is used in modern diagnostic tests, enabling fast and affordable detection of 

COVID-19 and other pathogens 

Future Directions 

Future efforts will likely focus on improving CRISPR specificity, developing safe in vivo 

delivery systems (e.g., lipid nanoparticles, virus-like particles), and Advances in single-cell 

sequencing and AI-driven design of gRNAs are expected to further enhance precision and 

safety. Additionally, combinatorial approaches using CRISPR with epigenetic modulators or 

RNA interference may open new therapeutic avenues [30–35]. 

 

4. CRISPR Potential in the Context of Down Syndrome 

Silencing the Extra Chromosome 21 

Down syndrome (DS) is caused by the presence of a third copy of chromosome 21. One of the 

most compelling and advanced areas of research using CRISPR involves the selective silencing 

of this extra chromosome. Using the CRISPR-Cas9 system, researchers have inserted the XIST 

gene—normally involved in X chromosome inactivation—into the additional chromosome 21 

in induced pluripotent stem cells (iPSCs) derived from individuals with DS. The result was 

successful transcriptional silencing of the entire chromosome, significantly reducing the 

overexpression of trisomic genes and restoring more typical gene expression patterns [13, 33] 

(Figure 2). 
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Figure 2. CRISPR-Cas 9 eliminates trisomy 21 [reprint from zespoldowna.info] 

 

This approach is still experimental and limited to in vitro models, but it offers a powerful proof 

of concept that entire chromosomes may be silenced therapeutically in the future. 

CRISPR in Cellular and Animal Models 

Numerous experimental studies have utilized CRISPR-Cas9 in both human-derived cells and 

mouse models of DS, such as the Ts65Dn mouse. In these systems, specific dosage-sensitive 

genes—such as DYRK1A, RCAN1, APP, and SOD1—have been targeted to investigate their 

contribution to the DS phenotype. 

For instance, in trisomic mouse models, partial inactivation of DYRK1A has resulted in 

improved cognitive function, synaptic plasticity, and hippocampal neurogenesis. Similar 

strategies applied to APP have reduced Alzheimer-like plaque formation and 

neurodegeneration [14, 15, 34]. 

Cellular models using iPSCs from DS patients have demonstrated that CRISPR-mediated gene 

correction can normalize cell proliferation rates and restore differentiation pathways in neural 
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and cardiac lineages [12, 13]. These findings support the potential of CRISPR to reverse 

developmental deficits at the cellular level. 

Editing Symptom-Associated Genes 

Beyond whole chromosome silencing, CRISPR offers a highly specific means to target 

individual genes responsible for particular DS symptoms. For example: 

• DYRK1A: Overexpression contributes to cognitive dysfunction. CRISPR knockdown 

improves learning and memory in mice. 

• SOD1 / GPX1: Genes involved in oxidative stress pathways, whose regulation may 

reduce neuronal damage. 

• APP: Linked to early-onset Alzheimer’s pathology; its partial correction reduces plaque 

burden. 

By focusing on key targets, CRISPR allows researchers to develop tailored interventions that 

may be more feasible for clinical application than global chromosomal correction. 

Toward Translational Applications 

While current applications remain largely experimental, recent research suggests growing 

feasibility in using CRISPR to correct trisomy 21 at the chromosomal level. A team of scientists 

has reportedly achieved allele-specific editing of the extra chromosome 21 in human stem cells, 

leading to its selective elimination in a subset of cells. In these edited cells, researchers observed 

normalization of gene expression and improvements in cellular behavior. Though these results 

are preliminary and not yet validated clinically, they illustrate the conceptual viability of full 

chromosomal correction. 

Additionally, new delivery platforms are under development to facilitate CRISPR-based editing 

in the nervous system. One such method involves the use of lipid nanoparticles capable of 

transporting CRISPR components across the blood-brain barrier. This strategy, still in 

preclinical stages, could eventually make it possible to correct gene expression in the brains of 

individuals with Down syndrome. 

CRISPR may not yet be ready to “cure” Down syndrome, but it provides unprecedented access 

to dissect and potentially rebalance the biological mechanisms that underlie it. 
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5. Challenges and Limitations 

Challenges and Limitations of CRISPR in the Context of Down Syndrome 

Safety of Gene Therapy 

Despite the growing therapeutic potential of CRISPR technology, safety remains one of the 

main clinical concerns. In the context of Down syndrome (DS), where the targets may include 

entire chromosomes or specific genes, the risks of side effects are multifaceted: 

• Off-target effects: These refer to unintended modifications in non-target areas of the 

genome. Such changes can disrupt gene expression and, in extreme cases, lead to tumor 

formation. 

• Cellular response variability: In DS cell models, gene editing efficiency varies 

significantly between cells. Some cells may not undergo editing or may respond 

abnormally, limiting the overall effectiveness of the therapy [13–15]. 

• CRISPR delivery challenges: Accurately and efficiently delivering CRISPR tools 

(e.g., Cas9 and gRNA) to target tissues such as the brain remains a challenge. New 

methods, such as lipid nanoparticles, are under testing, but their efficacy and safety have 

yet to be confirmed [34, 35]. 

Technological Limitations 

• Therapeutic durability: In some cases, especially with somatic editing, repeated 

administration of therapy may be necessary. 

• Complexity of whole-chromosome editing: Although in vitro silencing of the extra 

chromosome 21 has been achieved, translating this success to in vivo applications is 

highly complex. Further research is needed to ensure stability and long-term efficacy of 

such modifications. 

Ethical and Social Aspects 

• Human genome modification: In DS, editing may affect traits deeply connected to 

individual identity. This raises questions about the boundaries of human genetic 

intervention and biological diversity. 
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• Consent and autonomy: In prenatal or early-childhood therapies, informed consent 

from the patient is not possible. Decisions must be made by parents or guardians, which 

may lead to ethical concerns. 

• Stigmatization and social pressure: Technological advancements could create social 

pressure to eliminate Down syndrome, raising concerns about the acceptance of people 

with disabilities and the right to genetic diversity. 

The Need for Regulation and Oversight 

All CRISPR-related interventions in the treatment of Down syndrome should be subject to 

international and national bioethical regulations. Transparent oversight, ethics committee 

involvement, and public dialogue involving physicians, patients, scientists, and legal experts 

are essential. 

 

6. The Future of Gene Therapy in Down Syndrome 

Promising Research Directions and Potential Breakthroughs 

Recent advances in molecular biology and genetics have opened new horizons for the 

application of gene therapy in Down syndrome (DS). A key focus of ongoing research is the 

correction of gene dosage effects—particularly those involving critical genes such as 

DYRK1A, APP, and SOD1—using CRISPR-based editing platforms. Preclinical studies using 

DS mouse models and patient-derived induced pluripotent stem cells (iPSCs) have 

demonstrated that modulation of these genes can lead to improvements in cognitive function, 

neurogenesis, and cellular oxidative balance [5–15, 30–35]. 

One emerging line of investigation involves the use of base editing and prime editing 

technologies to perform precise, single-nucleotide corrections without inducing double-strand 

breaks. These approaches may offer safer and more targeted alternatives to traditional CRISPR-

Cas9 methods, particularly for editing genes involved in neurodevelopment and immune 

function in DS [31–34]. 

Another major breakthrough is the creation of cerebral organoids—3D brain-like structures 

derived from iPSCs—which can be genetically edited using CRISPR to model DS in vitro. 

These organoids replicate key developmental and pathological features of DS brains, offering 

a novel platform for drug screening and mechanistic studies [25, 27, 30]. 
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Future Perspectives for CRISPR Applications (including speculative insights) 

Looking ahead, CRISPR’s potential in treating DS lies in a combination of technological 

innovations and interdisciplinary research. Key areas expected to drive future progress include: 

• In vivo CRISPR delivery systems: Advances in non-viral delivery, such as lipid 

nanoparticles and virus-like particles, may enable safe and efficient targeting of brain 

and cardiac tissues. 

• Cell-type specific editing: Tissue-specific promoters and engineered Cas variants 

could allow CRISPR to act only in trisomy-affected cells, minimizing off-target effects. 

• Epigenome editing: Beyond genetic correction, CRISPR can also modulate epigenetic 

states. This opens the door to reversible therapies that adjust gene expression without 

altering DNA sequences. 

• Integration with transcriptomics and AI: Combining CRISPR with high-throughput 

gene expression profiling and artificial intelligence can accelerate identification of key 

therapeutic targets. 

Although a clinical application for CRISPR in Down syndrome is not imminent, several 

experimental approaches are emerging that may redefine what is possible in the near future. 

Preliminary reports from recent research indicate that allele-specific CRISPR strategies have 

been able to eliminate the extra chromosome 21 in up to 30% of treated cells in vitro. These 

corrected cells exhibited restored gene expression profiles and improved cellular behavior. 

While these results have not yet progressed to clinical trials, they offer an early glimpse of what 

targeted aneuploidy correction might look like in practice. 

In parallel, the development of novel lipid-based delivery systems that can cross the blood-

brain barrier is opening the possibility of targeting neural tissues directly—potentially 

correcting gene expression in brain regions implicated in DS. These insights, though unofficial 

and not yet peer-reviewed in all cases, highlight a research field that is both dynamic and full 

of potential. 

7. Conclusions 

Down syndrome (DS) remains one of the most complex genetic disorders, and its treatment 

continues to rely on multidisciplinary support and individualized care. Gene therapy, 

particularly CRISPR-based approaches, presents an exciting future path for therapeutic 

innovation. 
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While numerous technological, ethical, and biological challenges remain, current studies using 

iPSCs, animal models, and new delivery platforms highlight CRISPR’s transformative 

potential. From editing individual genes to silencing entire chromosomes, CRISPR allows 

researchers to explore genetic modulation in unprecedented ways. 

Further investment in research, transparent ethical oversight, and open public dialogue will be 

essential. As science advances, the continued pursuit of safe, precise, and effective interventions 

holds the promise of a brighter future for individuals with Down syndrome. 

Yet, amid this pursuit of innovation, a profound question lingers: Should our goal be to change 

individuals with Down syndrome, or to change how society embraces their diversity? Perhaps 

the greatest breakthrough will not come from editing DNA, but from editing perspectives — 

seeing value not only in correction, but in inclusion. 
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