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Abstract 

Introduction and purpose 

In 2024, the EBMT Inborn Errors Working Party published a study that confirmed the beneficial 

role of hematopoietic stem cell transplantation (HSCT) in patients with immunodeficiency, 

centromeric instability, and facial dysmorphism (ICF) syndrome. In this article, we aim to present 

the characteristics of ICF in an accessible way, including its genetic background, clinical 

presentation, immunological alterations, and treatment options.   

A brief description of the state of knowledge 

In recent years, published reviews and series of cases have expanded the range of known 

symptoms and complications occurring in patients with ICF. Our understanding of immunological 

alterations in ICF evolved from isolated defects of immunoglobulin production to a comprehensive 

model which involves impairment of cellular immunity. Advances in molecular biology and 

genetics enabled insights into the DNA methylation machinery, which allowed us to gain a more 

precise understanding of the pathogenesis of ICF and also opened up opportunities for the 

development of new therapeutic options.  

Summary  

Inborn errors of immunity (IEI), such as ICF, are diagnosed at an early stage of life. It enables 

effective treatment with longer survival of the patients. It means that healthcare professionals are 

increasingly likely to encounter such patients in their clinical practice. Thus, it is crucial to inform 
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about the usage of the HSCT in ICF syndrome and spread awareness of potential new treatment 

options, that may emerge in the near future. 
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Inborn Errors of Immunity; Hematopoietic stem cell transplantation; Combined immunodeficiency 

 

 

 

Introduction  

 

Immunodeficiency, centromeric instability, and facial dysmorphism (ICF) syndrome is 

a group of rare autosomal recessive inborn errors of immunity (IEI) [1]. The first report of the ICF 

was published by Hulten et al. in 1978 [2]. Since then, slightly over one hundred cases have been 

reported worldwide [1,3]. The molecular mechanism of ICF development lies in the impairment of 

the epigenetic process of the development and maintaining DNA methylation pattern [4–6]. The 

core symptoms of ICF are immunodeficiency of variable extent, mild facial anomalies, and 

neurologic impairment [7]. Despite the shared core of the clinical and molecular similarities, ICF is 

a group of diseases with various genetic backgrounds. Two of the most often diagnosed types of 

ICF, which encompass over 80% of all reported cases, are ICF1 with a mutation in the DNA 

methyltransferase 3B (DNMT3B) gene and ICF2 with a mutation in the zinc-finger and BTB domain 

containing 24 (ZBTB24) gene [1,8]. Other subtypes are ICF3 and ICF4 with the mutations in the 

cell division cycle associated 7 (CDCA7) and helicase lymphoid specific (HELLS) genes 

respectively [9]. There was also established an ICF X category for patients who present clinical 

symptoms of ICF with yet unknown genetic aberrations [5]. In recent years, there have been 

published articles, that present a more accurate molecular landscape of the DNA methylation 

process, thanks to the usage of Clustered Regularly-Interspaced Short Palindromic Repeats/Cas 9 

(CRISPR/Cas9) machinery. It has also led to a deeper understanding of the molecular mechanism 

underlying the pathogenesis of ICF [10–13]. From the clinical point of view, in 2024 the 

EBMT/ESID Inborn Errors Working Party published its first recommendations on the treatment of 

ICF with the usage of Hematopoietic stem cell transplantation (HSCT) [14]. Given these significant 

scientific advances regarding ICF, we aim to provide a clear and accessible overview of this group 

of disorders for clinicians who may encounter them in their practice [15]. 
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Material and methods 

 

Articles cited in this manuscript were searched using keywords: Immunodeficiency–centromeric 

instability–facial dysmorphism syndrome, ICF, inborn errors of immunity, IEI, DNMT3B, ZBTB24, 

CDCA7, and HELLS in databases including PubMed, Scopus, and Springer Nature.  

 

Genetic Background 

 

The molecular hallmarks of ICF include instability of the juxtacentromeric heterochromatin 

regions of chromosomes 1, 9, and 16 enriched with specific hypomethylation of pericentromeric 

satellite repeats 2 and 3 [16]. It results in whole-arm deletions, chromatid, and chromosome breaks, 

stretching, and multiradial chromosome junctions observed in phytohemagglutinin (PHA)-

stimulated lymphocytes [3,4,7,17]. This flaw is associated with disturbances in the epigenetic 

modification process of methylation of the CpG-rich (ICF1), and -poor (ICF2-4) promoter regions, 

and it is responsible for the development of all known forms of the ICF [4,5]. DNMT3B’s main role 

lies in establishing a DNA methylation pattern during embryogenesis [4]. ICF1 patients carry 

missense, nonsense, or splice-site mutations of the DNMT3B gene on chromosome 20q11.2, that 

impair the catalytic part of methyltransferase [4,18,19]. However, they do not lead to a complete 

loss of enzyme activity, as such a loss could be lethal for humans [18]. This impairment results in 

promoter hypomethylation of germline genes and loss of methylation at X-linked genes [11,20–22]. 

In the case of ZBTB24, CDCA7, and HELLS, these are the part of DNA methyltransferase 1 

(DNMT1) - dependent maintenance pathway, which preserves established methylation patterns 

throughout the lifetime [4,23]. ICF2 arises from nonsense and frameshift mutations in the ZBTB24 

gene located on chromosome 6q21, which causes premature termination of the protein [5,24–26]. 

Patients with ICF3 carry missense mutations of the CDCA7 gene on chromosome 2q31.1, that 

impair the function of its conserved C-terminal zinc finger domain. In the case of the ICF4, various 

mutations of the HELLS gene on chromosome 10q23.33, disturb its function as a member of the 

SNF2 Family of ATP-dependent chromatin remodelers [9,12,27–30].  

ZBTB24’s role in the development of the ICF is connected with the HELLS-CDCA7 

nucleosome remodeling complex, as it serves as a transcriptional factor that positively regulates the 

expression of CDCA7 [5,31]. CDCA7 enables the recruitment of HELLS to chromatin and supports 

its nucleosome remodeling activities [27]. Dysregulation of the CDCA7-HELLS complex directly 

disturbs access of DNA methylation machinery to genomic regions [9,27,31]. Mutations present in 

Patients with ICF2, ICF3, and ICF4 were also proven to impair classical nonhomologous end-



6 
 

joining (c-NHEJ), which disturbs V(D)J recombination and class-switch recombination (CSR) in 

lymphocytes, which might be crucial in the pathogenesis of immunodeficiency [25,32,33]. 

Additionally, in patients with each form of the ICF, who presented an atypical course of the disease, 

mutations of Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) have been 

confirmed [13,23].  

At the molecular level, the distinction between ICF1 and ICF2-4 lies in the methylation status 

of centromeric α-satellite and subtelomeric repeats. In ICF1, centromeric α-satellite repeats exhibit 

normal methylation levels, while in other ICF subtypes these regions demonstrate a 

hypomethylation [34]. For subtelomeric repeats the situation is reversed: ICF1 patients exhibit 

hypomethylation, whereas patients with other ICF types present standard methylation levels [20]. 

DNA methylation has a crucial function in transcriptional regulation, silencing of transposable 

elements, genomic imprinting, and X-chromosome inactivation. Disruption of this epigenetic 

process profoundly affects the functioning of the entire organism [16]. 

 

Alterations in development and physical appearance 

 

The most characteristic clinical features of ICF patients are a wide range of congenital facial 

abnormalities. However, they are variable and usually mild. The most commonly observed are 

hypertelorism, flat nasal bridge, and epicanthic folds [8,17,35]. Other alterations encompass a round 

face, macrocrania, high forehead with frontal bossing, up-turned nose, low-set ears, micrognathia, 

macroglossia, cleft palatine, or lip [7,8,17,35]. Other characteristics of the ICF are limb 

deformations, such as short and thin limbs, clinodactyly, and syndactyly. Other described alterations 

include hypospadias, protruding abdomens, bipartite nipples, and skin pigment changes [1,35,36]. 

Among the changes in internal organs, the following have been listed: atrial septal defect, ventricular 

septal defect, ascending aorta dilatation, and horseshoe kidney [7,8,35,36]. Several patients have 

been described with cerebral malformations, such as corpus callosum hypoplasia, macrocephaly, 

and cortical atrophy [7,8,35]. It is worth mentioning, that most of the listed above non-facial changes 

were reported in isolated cases. In the neonatal period, patients may present with prematurity, low 

birth weight, and failure to thrive [1,8]. ICF also affects psychomotor development, as the majority 

of ICF patients exhibit a delay in walking and speech. It also leads to psychomotor impairment in 

the form of ataxic gait, muscle hypotonia, and seizures [7,36]. Patients may also show signs of 

growth retardation, which is suspected to be associated more with low birth weight and recurrent 

gastrointestinal infection, than with the underlying genetic defect [7]. When it comes to the 

intellectual status of the patients, the picture is variable. Mental disability from mild to severe was 
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described in almost all ICF2 patients. In comparison, more than half of the ICF1 patients exhibit 

normal intelligence [1,8,35]. Such a differentiation might be connected with ZBTB24’s high 

expression in the caudate nucleus and its role in the differentiation of the hippocampal neurons, as 

both structures are an essential part of the brain’s learning and memory system [8,37]. 

 

Immunological alterations 

 

The typical immunological deficiency in patients with ICF was described as hypo- or 

agammaglobulinemia, which is one of the first noticed features of the disease, diagnosed at a median 

age of 3 years [15,35]. However, the alterations, do not involve solely immunoglobulin production. 

While the number of lymphocyte B cells remains on the standard level, immunophenotyping 

confirms a low level of memory B cells in all ICF patients [1,35]. Despite the general immunological 

landscape seems similar in all ICF patients, there are some significant differences between them. 

When it comes to the number of CD19+ CD27+ memory B cells their level is significantly higher 

in ICF1 patients compared to ICF2 patients. In the case of the number of circulating 

immunoglobulins, due to more severe impairment in the process of immunoglobulin class-switch 

recombination, ICF1 patients also present significantly lower levels of IgG and IgA in serum 

[1,25,35]. While ICF was commonly associated with isolated humoral immunodeficiency, recently 

published studies support the presence of dysregulations in cellular immunity. In ICF patients 

decreased number of CD4+ lymphocytes type T cells, with abnormal CD8+/CD4+ ratio was noticed. 

Changes were observed in lymphocyte T differentiation, with a higher number of TFH  and a 

lowered population of  TFR and Treg lymphocyte subtypes [38]. Also, impaired proliferation 

capacity of both CD4+ and CD8+ lymphocyte T was confirmed. A reduction in the number of NK 

cells was also observed. These findings support the existence of a combined immunodeficiency in 

patients with ICF syndrome [38–40]. Interestingly, abnormalities in T lymphocyte counts were 

detected in patients at a later stage of life [8]. Despite progress in our understanding of the 

mechanism of immunodeficiency in ICF, direct links between specific mutations and impaired 

immunological function remain unclear [15]. In the case of hypo- or agammaglobulinemia, the 

suspected mechanism is impairment of the class-switching process and dysregulation of 

immunoglobulin signaling, while the direct mechanism underlying cellular immune dysfunction 

remains a subject of ongoing investigation by researchers [15,25,35,41]. The natural consequences 

of combined immunodeficiency are recurrent infections and increased incidence of bacterial sepsis, 

which are leading causes of premature death, that usually occur in the first or second decade of life 

[1,7,41]. The most common include respiratory (bronchitis, otitis) and gastrointestinal tract 
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infections, which are noticed at the median age of 4 months [8,35]. Most infections are either viral 

or bacterial; however, the presence of opportunistic pathogens, such as Candida spp. or 

Pneumocystis jiroveci is a common finding [1,7,8]. Additionally, the presence of JC polyomavirus 

infection, as well as EBV and CMV viremias were regularly reported [1,42]. In a few patients, there 

were confirmed EBV-driven malignancies, such as diffuse large B cell lymphoma, and 

hemophagocytic lymphohistiocytosis [38,43]. Differences in the immunological landscape in ICF1 

and ICF2 patients are reflected in the infectious complications they experience. While the frequency 

of bacterial and viral infections in both groups of patients remains at the same level, sepsis and 

fungal infections are more commonly observed in ICF1 patients [1]. Such differences may arise 

from more profound hypogammaglobulinemia and impairment of lymphocyte T-cell function in 

those patients [38]. There are also multiple reports of immunologic diseases found in ICF patients, 

such as: gastritis, enteropathy, colitis, hepatitis, inflammatory bowel disease, thyroiditis, pulmonary 

alveolar proteinosis, and non-septic arthritis [7,15,35,44–46]. Another group of disorders commonly 

associated with ICF are the hematologic ones, which include iron-deficiency anemia, aplastic 

anemia, thrombocytopenia, leukocytopenia, myelodysplastic neoplasm, acute lymphoblastic 

leukemia, and Hodgkin lymphoma [7,15,35,45]. 

 

Treatment options and recommendations 

 

Symptomatic methods of treatment of ICF involve immunoglobulin substitution and 

antimicrobial prophylaxis, which help protect patients from recurrent infections [7,47]. However, 

this therapeutic approach is not a solution without flaws, such as the necessity of continuous 

administration of the drug throughout a lifetime, preserving consequences of impaired lymphocyte 

T cell function, and persistent defects in mucosal immunity that manifest as persistent diarrhea 

[35,48,49]. The imperfection of antimicrobial prophylaxis resulted in shortened lifespan of the 

patients [8]. Since Gennery et al. 2007 and Hagleitner et al. 2008 presented cases of patients with 

ICF1 syndrome successfully treated with HSCT, it has been postulated, that it can reverse humoral 

and cellular immunodeficiency associated with ICF [7,47]. Previous recommendations of IEI 

treatment did not address its performance in patients with ICF, despite several cases, which 

presented promising results [8,35,43,50–52]. It changed in 2024 when Berghuis et al. published an 

official study on behalf of the EBMT/ESID Inborn Errors Working Party Study, that encouraged 

clinicians to perform HSCT in patients with all types of ICF syndrome [15]. The overall survival in 

their cohort of 18 patients with ICF treated with HSCT cohort was 83%. All deaths occurred within 

the first few post-HSCT and all of them were due to infections. Until the latest follow-up Patients, 
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who survived the procedure, presented cellular immune reconstruction in CD3+, CD4+, and CD8+ 

lymphocytes T and NK cells approximately on the level of 90% within the age-adjusted reference 

values. A number of lymphocyte B cells were within the age-adjusted reference values in all cases. 

Patients who survived HSCT achieved resolution of pre-transplantation infections and immune 

dysregulation including non-infectious enteropathy and malignancy [15]. This study also confirmed 

conclusions drawn from the case published by Kraft et al., that achieving stable mixed chimerism 

leads to complete immune reconstitution [15,52]. It has an important indication, as it may encourage 

clinicians to use a reduced-intensity conditioning schemes are characterized by better toxicity 

profiles and a lower rate of occurrence of GvHD [53,54]. Another important message is that more 

beneficial aspects of HSCT are observed in patients transplanted in early childhood, compared to 

the older ones, as they suffer from irreversible bronchiectasis, immune-mediated organ damage, and 

malignancies [15,35,51]. ICF diagnosis, alongside clinical presentation, is based on cytogenetic 

analysis and gene panel sequencing, so broader access to those techniques may contribute to faster 

diagnosis and better outcomes of transplantation [3,55]. There were also attempts to use the 

detection of T Cell Receptor Excision Circles (TREC), which is successfully incorporated into the 

diagnostic process of other immunodeficiency syndromes, however, it has been proven ineffective 

in the diagnosis of ICF [56]. Although HSCT reverses the negative consequences of 

immunodeficiency and hematological impairment, it does not reverse delays in neurological 

development or cortical atrophy associated with seizures [7,8]. 

 

Conclusions and Future Perspectives 

 

ICF remains a rare example of a disease caused by the disorder of the DNA methylation process 

resulting from a single gene defect [11]. The discovery that impairment of this epigenetic process is 

a background of the severe and potentially fatal syndrome has led to investigations of its presence 

in other diseases, such as autoimmune and metabolic diseases, solid tumors, and hematological 

malignancies [11]. The future of therapeutic approaches to the impairments of methylation 

machinery may lie in using CRISPR/Cas9 technology. Currently, it is being utilized to create an 

induced pluripotent stem cells (iPSCs) model for ICF cells, however, some publications explore the 

usage of this technology to correct methylation aberrations encountered in those cells [10,57]. 

Considering that, currently in clinical use, there are approved anti-cancer drugs that affect DNA 

methylation, it implies that progress in the usage of CRISPR/Cas9 may provide new curation 

possibilities for patients with ICF syndrome [11,58]. 
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