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Abstract

The treatment of skin trauma, especially facial skin trauma, is a major challenge due to its

complex structure, the presence of appendages, color, texture, and the large area to be

reconstructed in extensive trauma. “The gold standard” for treating trauma is autologous

intermediate thickness skin grafting. An alternative solution is the usage of bioengineered skin

substitutes. Tissue engineering is intended to provide patients with better treatment options

and more effective pain reduction. Unique skin lesions are those related to the face. To fulfill

the need to improve the results of facial skin reconstruction, the “Biomask” concept was

introduced for the treatment of facial wounds.

The purpose of this review is to analyze composite dermal-epidermal substitutes already on

the market for clinical use, as well as briefly discussing materials in the testing phase,

focusing on 3D skin bioprinting and facial trauma regeneration using “BioMask”.

PubMed and Google Scholar databases were searched for relevant sources. Search terms

included “skin substitutes”, “synthetic skin substitutes”, “bioengineered skin”, “composite

skin substitutes” and additionally each analyzed unit of composite skin substitutes was

searched.

Bioengineered skin substitutes effectively fulfill the role of dressings during the

reconstruction of skin injuries. The development of 3D skin bioprinting is enabling the
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increasing and effective use of these materials. The high requirements in the treatment of

facial skin injuries are the trigger for the development of new materials such as "BioMask".

The synergy of new technologies makes it possible to create improved methods of wound

dressing and reconstruction of skin defects.

Keywords: skin substitutes; bioengineered skin; composite skin substitutes; 3D skin substitute;

BioMask

Introduction

The skin is the largest human organ that acts as a barrier between the body and the

environment. It protects against external factors such as chemical, physical and biological

agents, microorganisms, UV radiation. It participates in temperature regulation, gas exchange

and prevents dehydration. It has mechanoreceptors, thermoreceptors and nociceptors. It

consists of the epidermis, dermis and subcutaneous tissue.

Causes of skin loss include thermal injury, acute trauma, surgery, genetic diseases or chronic

wounds. Wounds can be divided into epidermal, superficial partial-thickness, deep partial-

thickness and full-thickness as the depth of injury increases.

Wound treatment with grafts includes autograft, allograft, xenograft (a transplant from an

organism of another species, usually from porcine skin), and the use of amnion (1). “The gold

standard” for treating trauma is autologous intermediate thickness skin grafting. It involves

extracting the epidermis with the superficial part of the dermis from the donor site and then

applying the graft to the wound. The graft donor site heals as a superficial wound due to

migration of keratinocytes. The advantage of autografting is that there is no risk of rejection.

However, a key drawback of autologous tissue grafting is donor site morbidity. An allograft

is a human graft derived from a cadaver used to temporarily cover a wound. It can be fresh or

frozen. It provides permanent coverage in patients with extensive burns for the first few

weeks, when the immune response is pathologically suppressed. After vascularization of the

allograft occurs, the highly immunogenic epithelial cells trigger a host immune response and

are rejected, usually three to four weeks after transplantation (2). Allograft can be obtained

from non-profit skin banks as well as commercially, such as Karoskin. The advantages are the

natural porosity of the skin, an intact basement membrane and protection of the subcutaneous

https://www.zotero.org/google-docs/?nOhScT
https://www.zotero.org/google-docs/?upWK8x
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tissue. On the other hand, it is associated with the risk of transmission of infectious diseases

and the high cost of the procedure (3). Amnion has been used as a wound treatment for burns

for about 100 years. It is rich in collagen and growth factors that promote healing, improve

wound closure and reduce scar formation. It is characterized by the absence of immune

markers, antimicrobial and pain-reducing properties (4). It is effective in treating burns,

including facial burns (5,6).

An alternative solution is the usage of bioengineered skin substitutes. Tissue engineering is

intended to provide patients with better treatment options and more effective pain reduction.

Compared to traditional treatment methods, tissue engineering technology provides a new

approach to treating skin injuries. There are many classifications of skin replacement products.

They can be divided according to anatomical structure (epidermal, dermal, dermo-epidermal),

the duration of coverage (temporary, semi-permanent, permanent), and type of biomaterial

(biological: autologous, allogeneic, xenogeneic; synthetic: biodegradable, non-biodegradable)

(2,7). Dermo-epidermal (composites) skin substitutes are composed of a layer of epidermis

and dermis resembling normal skin in histological structure. They are the most advanced of

all types of artificial grafts.

The basic requirements for bioengineered skin are safety, effectiveness and being convenient

in application. Skin substitutes also share common characteristics. They are required to be a

semi-permeable membrane that provides a barrier against pathogens as well as allowing gas

exchange and drainage of excess secreted fluid. They should demonstrate free adhesion. It is

crucial that they be non-toxic, exhibit a lack of immunogenicity, do not induce inflammation

and do not cause allergic reactions. They should have appropriate mechanical qualities, such

as biodegradability and elasticity (8). Despite remarkable advances in skin substitutes,

commercially available materials have limitations such as abnormal scarring, lack of

integration, poor mechanical integrity, fragility and immune rejection (9). Reduced and long

vascularization increases the risk of graft failure, so a pre-vascularization process seems

necessary to increase the effectiveness of the skin substitute (10). The presence of a capillary

network in the skin substitute guarantees the formation of a functional anastomosis with the

host vasculature within 4 days. In contrast, de novo vascularization of sterile constructs by the

host vascular system requires at least 14 days, depending on the size of the implanted tissue

(11).

https://www.zotero.org/google-docs/?7KHCz2
https://www.zotero.org/google-docs/?tCmh7K
https://www.zotero.org/google-docs/?56vQbU
https://www.zotero.org/google-docs/?ThZWvU
https://www.zotero.org/google-docs/?Oc0sPD
https://www.zotero.org/google-docs/?pshbHV
https://www.zotero.org/google-docs/?d2BxU6
https://www.zotero.org/google-docs/?tqX6UD
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Unique skin lesions are those related to the face. The face is the most important recognizable

feature of a person. Disfigurement of the face because of trauma, tumor removal, congenital

anomalies, or chronic diseases requires a complex approach due to functional restoration as

well as the patient's aesthetic needs. Moreover, varying facial contours and constant facial

movement limit the use of skin substitutes. To fulfill the need to improve the results of facial

skin reconstruction, the “Biomask” concept was introduced for the treatment of facial wounds.

(12).

The purpose of this review is to analyze composite dermal-epidermal substitutes already on

the market for clinical use, as well as briefly discussing materials in the testing phase,

focusing on 3D skin bioprinting and facial trauma regeneration using “BioMask”.

Material and methods

PubMed and Google Scholar databases were searched for relevant sources. Search terms

included “skin substitutes”, “synthetic skin substitutes”, “bioengineered skin”, “composite

skin substitutes”. Additionally, each unit was searched for relevant sources using the terms

“Apligraf”, “OrCel”, “PolyActive”, “TissueTech Autograft System”, “StrataGraft”,

“PermaDerm“, “3D skin”, “3D bioprinting”, “BioMask”. The most relevant published studies

were selected and used in the current review.

Apligraf

Apligraf is a xenogeneic material composed of bovine type I collagen and human

keratinocytes and fibroblasts from infant cells. It is available in the form of a 44cm2 disk. It is

the first allogeneic material approved by the FDA for the treatment of hard-to-heal venous

ulcers and wounds in diabetic foot syndrome. Its effect is to transition from a chronic, non-

healing ulcer to a healing state resembling an acute, healing wound (13). It is used as a

temporary bioactive dressing due to its cell life of up to about 6 weeks (14). Sabolinski et al.

conducted a comparative analysis of the effectiveness of wound treatment with bilayered

living cellular construct (BLCC; Apligraf) and a fetal bovine collagen dressing (FBCD;

PriMatrix) in pressure injuries based on the records of 1352 patients. Patients treated with

BLCC were 66% more likely to heal, and healing time was about 2 months shorter compared

to FBCD. Healing was more favorable with BLCC than FBCD at 4 weeks (13% vs. 7%), 8

(29% vs. 17%), 12 (42% vs. 27%), 24 (64% vs. 45%) and 36 (73% vs. 56%) (15). Eudy et al.

presented a case of using Apligraf as a treatment for full-thickness skin injuries in a 3-year-

https://www.zotero.org/google-docs/?fBFbpA
https://www.zotero.org/google-docs/?g5hcLb
https://www.zotero.org/google-docs/?ywWy6F
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old girl (16). Kirsner et al. compared the effectiveness of Apligraf (BLCC) and EpiFix

(dHACM) in treating diabetic foot ulcers. They evaluated the outcomes of 218 patients out of

226 treated for diabetic foot syndrome in 2014 at 99 centers. Inclusion criteria included ulcer

size of 1-25cm2, ulcer duration ≤52 weeks and ulcer area reduction of ≤20% in the 14 days

prior to initial treatment with BLCC or dHACM. The percentage of healed wounds was

higher for BLCC than dHACM at week 12 (48% vs. 28% ) and week 24 (72% vs. 47%) (17).

On the other hand, Glat et al. comparing AmnioBand (dHACA) and Apligraf showed greater

efficacy of dHACA in the treatment of diabetic foot wounds on a group of 60 patients. The

percentage of wounds healed at the end of the study (12 weeks) was 90% in the dHACA

group compared to 40% after using Apligraf (18). Towler et al. compared a bioengineered

skin graft substitute (Apligraf) with a living, cryopreserved, human skin allograft (TheraSkin).

Higher healing rates were observed in the group treated with TheraSkin at both 12 weeks

(93.3% vs. 75.0%) and 20 weeks (93.3% vs. 83.3%), but these differences in healing rates

were not statistically significant (19).

OrCel

OrCel is a xenogeneic material based on bovine type I collagen enriched with cultured

allogeneic keratinocytes and fibroblasts derived from the foreskin of a newborn. Its effect is

comparable to Apligraf. It acts as a temporary dressing, absorbs within 7-14 days and 14-21

days after application no cellular DNA of the preparation is found in the wound (2). It is used

to treat burns and also to cover wounds and donor sites created after surgical release of hand

contractures (20).

PolyActiv

PolyActiv is a synthetic material consisting of soft PEO (polyethylene oxide terephthalate)

and hard PBT (polybuthylene terephthalate), which form a porous matrix containing

autologous cultured keratinocytes and fibroblasts. By using autologous rather than allogeneic

cells, there is no risk of immune rejection or transmission of infectious agents. As a synthetic

skin component, it is not biodegradable, which rules it out as a permanent skin substitute. Can

be used as a biologically active dressing providing growth factors to accelerate wound healing

(2). It is also used in bone and periosteum replacements (21) or dental implants (22). On the

other hand, the material is increasingly being used to create membranes for separating CO2

emitted by industry. which is one way to combat climate change. (23–25).

https://www.zotero.org/google-docs/?DmX75l
https://www.zotero.org/google-docs/?heQFte
https://www.zotero.org/google-docs/?EcbaVY
https://www.zotero.org/google-docs/?rscYcU
https://www.zotero.org/google-docs/?HYEXEL
https://www.zotero.org/google-docs/?fQWziE
https://www.zotero.org/google-docs/?QEuzj0
https://www.zotero.org/google-docs/?NFU4yu
https://www.zotero.org/google-docs/?UgSsHg
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TissueTech

The TissueTech Autograft System consists of two separate materials. The dermis substitute is

Hyalograft 3D and the epidermis substitute is Laserskin. Autologous fibroblasts and

keratinocytes grow on micro-perforated hyaluronic acid membranes. The material allows

closure of wounds larger than 5cm2 in 85% of cases with a low recurrence rate (26). The

material is used to treat ulcers, including diabetic foot ulcers (27). It is also effective in

preventing depression or neck scars after parotid surgery (28).

StrataGraft

StrataGraft consists of allogeneic cultured keratinocytes and dermal fibroblasts in murine

collagen-dsat. It is a skin substitute produced in vitro by the organotypic culture of NIKS

keratinocytes (29). Bioengineered NIKS-based skin substitutes have been compared with

allografts from cadavers in a phase I/IIa clinical trial as a temporary dressing in full-thickness

complex skin lesions prior to autografting. Host immune tolerance and the ability to prepare

skin defects before transplantation were comparable in both materials (30). A similar study

was conducted by Centanni et al. covering one half of patients' wounds with StrataGraft and

the other half with an allograft from a bank cadaver. The morphology of the NIKS

keratinocyte-based epidermis was indistinguishable from that of the prepared normal human

epidermal keratinocytes tissue. There were also no statistically significant differences in

immune response between StrataGraft and cadaveric allografts (31). StrataGraft is well

tolerated and may be a safe alternative in patients with deep partial-thickness thermal burns

(32). Gibson et al. conducted a phase 3, open-label, controlled, randomized, multicenter trial

evaluating the efficacy and safety of StrataGraft construct in patients with deep partial-

thickness thermal burns. They concluded that using this material after 3 months of treatment,

permanent wound closure was achieved at the StrataGraft treatment site without the need for

autografting in 83,1% of patients (33).

Permaderm

PermaDerm is a material based on the patient's own skin cells for the treatment of severe skin

burns. It consists of autologous fibrocytes and keratinocytes cultured on collagen medium

(34). A small patch of full-thickness skin is taken from the patient, the cells are isolated and

then cultured in medium to multiply. Afterwards, they are combined with a substrate based on

https://www.zotero.org/google-docs/?La7f6c
https://www.zotero.org/google-docs/?Coqoz1
https://www.zotero.org/google-docs/?QREX1N
https://www.zotero.org/google-docs/?DdQ1ph
https://www.zotero.org/google-docs/?hA17Tf
https://www.zotero.org/google-docs/?z5wQVD
https://www.zotero.org/google-docs/?FjsfBe
https://www.zotero.org/google-docs/?MDgCQ7
https://www.zotero.org/google-docs/?94tCQV
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biomedical polymer of collagen to form living skin substitute that contains both epidermal

and dermal components. This technology makes it possible to transplant a hundred times

more skin in 30 days. The aim of this material is to create permanent skin tissue that will not

be rejected by the host immune system.

Bioprinting of 3D skin

To overcome imperfections in skin tissue engineering such as pigmentation, lack of skin

appendages and scarring, attention has turned to 3D printing technology. It enables the

fabrication of multi-layered complex structures of functionally active skin. The process begins

by examining the depth, length and other information about the injury site via a digital device.

Based on this data, the 3D printer's execution tip can produce artificial skin tissue tailored to

the injury site. The 3D printer can directly deposit the bio-ink layer by layer in the wound,

enabling in-situ printing. This method of producing skin substitutes aims to reduce material

manufacturing time, automation and standardization. This advance is very promising,

especially in military and first aid indications (35).

Cubo et al. published a study of the automation and in vitro production of printed human skin

containing dermal and epidermal components based on human plasma and fibroblasts and

keratinocytes obtained from skin biopsies. (36). Using 3D printing, Wanga et al. constructed a

bilayer scaffold with hydrogel of sodium alginate as the dermis and polylactic acid-hydroxy

glycolic acid copolymer (PLGA) as the epidermis. The skin structure showed good physical

and chemical fidelity, maintained wound moisture, increased collagen deposition and

neovascularization, and did not cause inflammation (37). Similar study conducted Lian et. al

fabricate designed bilayer skin using an extrusion-based bioprinter and a gelatin/sodium

alginate/gelatin methacrylate hydrogel. Bioprinted skin accelerated wound healing, reduced

wound contraction and scarring, and facilitated wound skin epithelialization. Also

microvascularization in the dermis and dense keratinocytes in the epidermis of the bioprinted

skin were observed (38).

Baltazar et al. described the fabrication of an implantable multilayered vascularized

bioengineered skin graft using 3D bioprinting. The graft was created using one bio-ink

containing human foreskin fibroblasts (FB), human endothelial cells (EC) derived from

human endothelial colony-forming cells (HECFC) of umbilical cord blood and human

placental pericytes (PC) suspended in rat tail type I collagen to form the dermis, and then

https://www.zotero.org/google-docs/?OwFcYQ
https://www.zotero.org/google-docs/?MbUH1w
https://www.zotero.org/google-docs/?UxhefH
https://www.zotero.org/google-docs/?H8cQrK
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printed with a second bio-ink containing human foreskin keratinocytes (KC) to form the

epidermis. Completed graft was implanted into the back of the mouse and after 4 weeks

vascularization was achieved (39). Levin et al. examined an in situ 3D printing method for

treating full-thickness wounds in rat and pig models. In all animals, the injuries healed within

4 weeks - wound shrinkage, mature epithelial recovery and hair restoration could be observed

without any signs of inflammation or rejection (40).

Biomask

Facial injuries have long-term consequences for an individual's physical, mental and social

well-being. These injuries are emotionally difficult to accept. There may be functional

limitations, patients may develop post-traumatic stress disorder, and the scars that remain

bother patients (41). As a result of the frequency and complexity of facial injuries and the

difficulty of matching available skin substitutes, the "BioMask" concept was developed. The

basis of this concept is scanning the patient's injured face and using 3D bioprinting

technology. A team led by Col. Robert Hale at the US Army Institute of Surgical Research

has developed a mask consisting of a neodermal matrix with epithelium grafts using wound

vacuum-assisted closure (VAC) technology (12). Seol et al. developed “BioMask” which is a

customized bioengineered skin substitute combined with a wound dressing layer that snugly

fits onto the facial wounds. The use of three-dimensional (3D) bioprinting allowed the skin

substitute to adhere tightly to facial contours, which overcome limitations of traditional skin

substitute products that are designed as simple flat sheets. It is bioenginereed skin substitute

consists of three layers; a porous polyurethane (PU) layer, a keratinocyte-laden hydrogel layer,

and a fibroblast-laden hydrogel layer. BioMask has great potential to offer effective and rapid

restoration of aesthetic and functional facial skin. (42).

Conclusion

Bioengineered skin substitutes effectively fulfill the role of dressings during the

reconstruction of skin injuries, especially in large area injuries with a deficit of autologous

donor sites. The development of 3D skin bioprinting is enabling the increasing and effective

use of these materials. The high requirements in the treatment of facial skin injuries are the

trigger for the development of new materials such as "BioMask". The synergy of new

technologies makes it possible to create improved methods of wound dressing and

reconstruction of skin defects.

https://www.zotero.org/google-docs/?ZWtFuJ
https://www.zotero.org/google-docs/?saBOPm
https://www.zotero.org/google-docs/?eflnwO
https://www.zotero.org/google-docs/?abbtrA
https://www.zotero.org/google-docs/?kqvsqO
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