```
                                    The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part b item 1223 (26/01/2017)
                                    1223 Journal of Education, Health and Sport elSSN 2391-83067

Sexual dimorphism of the incidence of significant relationships between selected foot parameters and trunk parameters in children aged 7-13 years

\author{
Mrozkowiak Mirosław \({ }^{1}\), Sokołowski Marek \({ }^{\mathbf{2}}\), Posłuszny Mariusz \({ }^{\mathbf{3}}\), Kaiser Alicja \({ }^{4}\) \\ \({ }^{1}\) Kazimierz Wielki University, Bydgoszcz, Poland \\ \({ }^{2}\) University of Physical Education, Poznań, Poland \\ \({ }^{3}\) Kręg-Clinic, 192 Strzeszyńska Str., Poznań, Poland \\ \({ }^{4}\) Department of Didactics of Tourism and Recreation, WSB University in Poznań, Poznań, Poland
}

Key words: relationships, dimorphism, parameters of body posture, feet, sex

\section*{Summary}

Introduction. Despite the development of alternative means of transport and consequential sedentary lifestyle, two-legged locomotion has remained important during phylogenetics. Lower limbs are still the main and ultimate means of human mobility which is transforming the mutual influences, dependencies and relationships between the features of trunk and feet.

Material and method. The study with the group of children aged 7-13 years enabled to record 12943 observations including 6983 girls and 5960 with regard to the measurement of the 87 parameters describing trunk and feet. The station for an assessment of selected features using the photogrammetric method consisted of a computer, a card, software, a display monitor, a printer and a projection-reception device with a camera.

\section*{Findings}
1. The number of foot parameters revealing significant relationships with the trunk characteristics differentiating both sexes was the same and the correlation between the examined properties was found stronger in boys. The differentiating features included parameters describing disorders of toe positioning and the longitudinal arch of feet among male adolescents and only the longitudinal arch in female subjects.
2. The number of trunk parameters with which the features of feet correlated most significantly was found to be bigger in male subjects than in their female counterparts. The features in boys revealed a more frequent significant relationship whereas the differentiating features were observed only in the frontal plane.

\section*{1. Introduction}

Upright standing in phylogenetics of body posture resulted in a range of morphological changes within the entire body.
The development of spinal curvatures in the sagittal plane and perhaps the architecture of feet, we know today, over which the centre of body gravity has shifted was an immediate consequence of a multi-annual process of verticalization. As a result, the foot and the entire pelvic girdle were transformed. Foot and to some extent spinal curvatures have begun to fulfil supportive, locomotor, shock-absorbing and sensory functions. Despite the development of alternative means of transport and consequential sedentary lifestyle, two-legged locomotion has remained important during phylogenetics. Lower limbs are still the main and ultimate means of human mobility which is transforming the mutual influences, dependencies and relationships between the features of trunk and feet.

Yasser and Kasperczyk, while studying the relationships between the height of longitudinal medial arch and Clarke's arch, concluded that there was a relationship confirmed by significant correlation between both parameters [1]. Own studies carried out in the group of children and adolescents aged 7-13 years enabled to record 12943 observations consisting in the measurements of 87 features describing body posture and feet in particular age groups and sexes. The analysis of the results regarding the relationships between the parameters of trunk and feet revealed that the most frequent and the strongest relationships and interaction with
the features of feet in the assessed age groups were observed in girls aged 11 and 12, boys at the age of 11,12 and 13 . No regularities or logical relationships between the parameters of the spine-pelvis complex and feet were found in all age ranges and sexes. The features of the sagittal, frontal and transverse planes to a lesser extent were predominant among the characteristics describing the spine-pelvis complex and most often correlating with the parameters of feet. It appears, however, that among the features of feet, the parameters concerning the fifth toe varus and valgus deformity and the first toe varus deformity in the right foot most frequently correlated with the parameters of the spine-pelvis complex [2]. Marciniak, in his biomechanical deliberations concerning the correction of foot defects and failures, mentions the controversies about the ways of influencing the correct development of feet in children in case of static flat-valgus foot deformities. According to the author, the incidence is not widespread and refers to ca. \(10-15 \%\) of the population. He also claims that the formation of the longitudinal arch of foot is largely affected by the positioning of heel and consequently by the strength of spinator muscles [3]. Steinmetz assumes there is an interaction between the type of the formation of foot and the spinal formation. The suggestion that if the spine can be corrected by the foot, the foot can be corrected by the spine, arouses a number of reservations, but the results of the studies presented below, at least theoretically, envisage such a possibility. Steinmetz also emphasises the reasons for wearing corrective footwear as the properly positioned foot in special footwear may be the cause of spinal deformity [4].

The main objective of the study was to prove sexual dimorphism with regard to the frequency of significant correlations of the selected trunk parameters and the features of feet in the group of children and teenagers aged 7-13 years. The analysis of the study results headed in two directions. The first one was to provide an answer to the question: which parameters of trunk most frequently revealed a significant relationship with the parameters of feet within sexual dimorphism? The second one was to give an answer to the question: which parameters of trunk most often correlated with the parameters of feet within sexual dimorphism?

\section*{2. Material and methods}

The study with the group of children aged 7-13 years enabled to record 12943 observations including 6983 girls and 5960 with regard to the measurement of 87 features describing the trunk and feet. The statistical analysis covered 87 angular and linear parameters of the spine, pelvis, trunk and feet in the sagittal, frontal and transverse planes, in particular age, sex and environmental categories, see Table 1. Due to the article constraints, the detailed description
of the somatic features of the study material and the obtained results are available in the author's monography [5]. The empirical data were the quantitative and qualitative characteristics (gender, domicile, etc.). The conducted calculations covering the values of position statistics (arithmetic mean, quartiles), the dispersion parameter (standard deviation) and symmetry indicators (asymmetry and concentration indicators) provided a comprehensive view of the distribution of the studied features considering age ranges, gender and environment. The relationships and their significance were assessed using p-value and frequency expressed in percentage.
The fundamental assumption of the study was to assess the habitual posture as a relatively constant individual characteristic of a human being. This posture reflected an individual emotional, psychical and social condition of the subject. Moreover, the posture provided the most reliable description of the subject's silhouette at a given time and in a place. The conducted diagnostics did not determine whether an individual's posture was correct or not, it only identified the condition of its ontogenetic development.

Objectified and comparable test results ensured that the postural parameters adopted for the analysis were recorded with possible to determine compensations. The combined assessment of the trunk and feet allowed to objectively determine the quality of the postural model applied in a given environment, gender and age category. The measuring instrument used in the study determined several tens of parameters describing body posture. The statistical analysis covered 87 angular and linear parameters of the spine, pelvis, trunk and feet in the sagittal, frontal and transverse planes, see Table 1. Obtaining the spatial picture was possible thanks to displaying the line of strictly defined parameters on a teenager's back and feet. The lines falling on the skin of a child got distorted depending on the configuration of the surface. The applied lens ensured that the imaging of a subject could be received by a special optical system with a camera, then transmitted to the computer monitor. The distortions of the line imaging recorded in the computer memory were processed through a numerical algorithm on the topographic map of the investigated surface. When conducting the study, one should be aware of the fact that the taken photo records an image of the silhouette displayed on a child's back [5].

Table 1. List of parameters measured for trunk and foot system
Trunk parameters
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No.} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|r|}{Parameters} \\
\hline & & Unit & Name & Description \\
\hline \multicolumn{5}{|r|}{Sagittal plane} \\
\hline 1 & Alfa & degrees & \multicolumn{2}{|l|}{Inclination of lumbo-sacral region} \\
\hline 2 & Beta & degree & \multicolumn{2}{|l|}{Inclination of thoracolumbar region} \\
\hline 3 & Gamma & degree & \multicolumn{2}{|l|}{Inclination of upper thoracic region} \\
\hline 4 & DCK & mm & Total length of the spine & Distance between C 7 and S 1 , measured in vertical axis \\
\hline 5 & KPT & degree & Angle of extension & Defined as a deviation of the C7-S1 line from vertical position (backwards) \\
\hline 6 & KPT - & degree & Angle of body bent & Defined as a deviation of the C7-S1 line from vertical position (forwards) \\
\hline 7 & DKP & mm & Thoracic kyphosis length & Distance between LL and C7 \\
\hline 8 & KKP & degrees & Thoracic kyphosis angle & KKP = \(180-(\) Beta + Gamma \()\) \\
\hline 9 & RKP & mm & Thoracic kyphosis height & Distance between points C7 and PL \\
\hline 10 & GKP & mm & Thoracic kyphosis depth & Distance measured horizontally between the vertical lines passing through points PL and KP \\
\hline 11 & DLL & mm & Lumbar lordosis Length & Distance measured between points S1 and KP \\
\hline 12 & KLL & degree & Angle of lumbar lordosis & KLL \(=180-(\) Alfa + Beta \()\) \\
\hline 13 & RLL & mm & Lumbar lordosis Height & Distance between points S1 and PL \\
\hline 14 & GLL - & mm & Lumbar lordosis depth & Distance measured horizontally between the vertical lines passing through points PL and LL \\
\hline \multicolumn{5}{|r|}{Frontal plane} \\
\hline 15 & KNT - & degree & \multirow[t]{2}{*}{Angle of body bent to the side} & Defined as deviation of the C7-S1 line from the vertical axis to the left \\
\hline 16 & KNT & degree & & Defined as deviation of the C7-S1 line from the vertical axis to the right \\
\hline 17 & LBW - & mm & Right shoulder up & Distance measured vertically between horizontal lines passing through points B2 and B4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 18 & LBW & mm & Left shoulder higher & \\
\hline 19 & KLB & degree & Shoulder line angle, right shoulder up & \multirow[t]{2}{*}{Angle between the horizontal line and the straight line passing through points B2 and B4} \\
\hline 20 & KLB - & degrees & Shoulder line angle, left shoulder up & \\
\hline 21 & LŁW & mm & Left scapula up & \multirow[t]{2}{*}{Distance measured vertically between horizontal lines passing through points Ł1 and Łp} \\
\hline 22 & LŁW & mm & Right scapula up & \\
\hline 23 & UL & degree & Angle of scapula line, right scapula up & \multirow[t]{2}{*}{Angle between the horizontal line and the straight line passing through points \(Ł 1\) and \(Ł p\)} \\
\hline 24 & UL - & degree & Angle of scapula line, left scapula up & \\
\hline 25 & OL & mm & Lower angle of left scapula more distant & \multirow[t]{2}{*}{Difference of the distance of lower angles of scapulas from the line of spinous processes measured horizontally along the lines passing through points \(Ł 1\) and \(Ł p\)} \\
\hline 26 & OL - & mm & Lower angle of right scapula more distant & \\
\hline 27 & TT & mm & Left waist triangle up & \multirow[t]{2}{*}{Difference of the distance measured vertically between points T 1 and \(\mathrm{T} 2, \mathrm{~T} 3\) and T 4 .} \\
\hline 28 & TT - & mm & Right waist triangle up & \\
\hline 29 & TS & mm & Left waist triangle wider & \multirow[t]{2}{*}{Difference of the distance measured horizontally between straight lines passing through points T1 and T2, T3 and T4} \\
\hline 30 & TS - & mm & Right waist triangle wider & \\
\hline 31 & KNM & degree & Pelvis tilt, right ilium up & \multirow[t]{2}{*}{Angle between the horizontal line and the straight line passing through points M1 and Mp} \\
\hline 32 & KNM - & degree & Pelvis tilt, left ilium up & \\
\hline 33 & UK & mm & Maximum inclination of the spinous process to the right & Maximal deviation of the spinous process from the line from S 1 . The distance is measured in horizontal line. \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|l|}\hline 34 & \text { UK - } & \text { mm } & \begin{array}{l}\text { Maximum } \\ \text { inclination of the } \\ \text { spinous process } \\ \text { to the left. }\end{array} & \\ \hline 35 & \begin{array}{l}\text { Number } \\ \text { of the } \\ \text { vertebra }\end{array} & - & \begin{array}{l}\text { Number of the } \\ \text { vertebra } \\ \text { maximally } \\ \text { distanced to the } \\ \text { left or to the right }\end{array} & \begin{array}{l}\text { Number of the vertebra most distanced to the left } \\ \text { or to the right in the asymmetric line of the } \\ \text { spinous process, counting as 1 the first cervical } \\ \text { vertebra (C1). } \\ \text { If the arithmetic mean takes the value e.g. from } \\ \text { 12.0 to 12.5, it is Th5, if from 12.6 to 12.9 it is } \\ \text { Th6. }\end{array} \\ \hline 36 & \text { ŁB - } & \text { mm } & \begin{array}{l}\text { Lower angle of } \\ \text { the right scapula } \\ \text { more convex }\end{array} & \begin{array}{l}\text { Difference of the distance of lower scapula angles } \\ \text { from the surface of the back }\end{array} \\ \hline 37 & \text { ŁB } & \text { mm } & \begin{array}{l}\text { Lower angle of } \\ \text { the scapula more } \\ \text { convex }\end{array} & \\ \hline 38 & \text { UB - } & \text { degree } & \begin{array}{l}\text { Angle of projection } \\ \text { line of lower scapula } \\ \text { angles, the left one } \\ \text { more convex }\end{array} & \begin{array}{l}\text { Difference in the angles UB1 - UB2. Angle UB2 } \\ \text { between: the line passing through point Ł1 and at } \\ \text { the same time perpendicular to the camera axis } \\ \text { and the straight line passing through points Łl and } \\ \text { Łp. Angle UB1 between the line passing through }\end{array} \\ \text { point Łp and perpendicular to the camera axis and } \\ \text { the straight line passing through points Łp and Ł1. }\end{array}\right]\)

Foot parameters
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Symbol} & \multicolumn{2}{|r|}{Parameters} \\
\hline No. & & Unit & Name & Description \\
\hline 42 & DL p & \multirow[t]{4}{*}{mm} & Length of the right & \multirow[t]{2}{*}{Distance between points acropodion and pterion in a plantogram} \\
\hline 43 & DL 1 & & foot (p), left foot (l) & \\
\hline 44 & Szp & & \multirow[t]{2}{*}{Width of the right foot (p), left foot (l)} & \multirow[t]{2}{*}{Distance between points metatarsal fibular and metatarsal tibial in a plantogram} \\
\hline 45 & Sz 1 & & & \\
\hline 46 & \[
\begin{array}{|l}
\hline \text { Alfa } p \\
\text { m } \\
\hline
\end{array}
\] & \multirow[t]{4}{*}{degree} & \multirow[t]{4}{*}{Valgity angle of the hallux of the right foot: Alfa \(p\), of the left foot: Alfa 1 p . Angle of varus} & \multirow[t]{4}{*}{Angle between the straight line passing through points metatarsal tibial and the most inner one on the medial edge of the heel and the straight line passing through points metatarsal tibial and the} \\
\hline 47 & Alfa p p & & & \\
\hline 48 & Alfa 1 m & & & \\
\hline 49 & Alfa 1 p & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & deformity in the right foot: Alfa p m, left foot: Alfa 1 m . & most inner one on the medial edge of the great toe \\
\hline 50 & \[
\text { Beta } \mathrm{p}
\]
\[
\mathrm{m}
\] & & \multirow[t]{4}{*}{Angle of varus deformity of the \(5^{\text {th }}\) toe of the right foot: Beta p p, of the left foot: Beta 1 p. Valgity angle of the fifth toe of the right foot: Beta p m, left foot: Beta 1 m .} & \multirow[t]{4}{*}{Angle between the straight line passing through points metatarsal fibular and the most outer one on the lateral edge of the heel and the straight line passing through points metatarsal fibular and the most outer one on the lateral edge of the fifth toe in a plantogram} \\
\hline 51 & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Beta } p \\
p
\end{array} \\
\hline
\end{array}
\] & & & \\
\hline 52 & \[
\text { Beta } 1
\]
\[
\mathrm{m}
\] & & & \\
\hline 53 & Beta 1 p & & & \\
\hline 54 & \[
\begin{aligned}
& \hline \text { Gamma } \\
& \mathrm{P}_{\text {(Gam.P) }}
\end{aligned}
\] & & Heel angle of right foot (p), of left foot (1) & Angle between the straight line passing through points metatarsal tibial and the most inner one on the medial edge of the heel and the straight line passing through points metatarsal fibular and the most outer one on the lateral edge of the heel in a plantogram \\
\hline 56 & PS p & \multirow[t]{2}{*}{\(\mathrm{mm}^{2}\)} & \multirow[t]{2}{*}{Plantar surface of right foot (p), left foot (1)} & \multirow[t]{2}{*}{Plantar surface of the foot} \\
\hline 57 & PS 1 & & & \\
\hline 58 & DP 1 & \multirow[t]{25}{*}{mm} & \multirow[t]{10}{*}{Length of longitudinal arch 1, \(2,3,4\), and 5 of right foot \((\mathrm{P})\), left foot (L)} & \multirow[t]{10}{*}{Length of the arch from 1, 2, 3, 4 and 5 metatarsal foot to point pterion} \\
\hline 59 & DP 2 & & & \\
\hline 60 & DP 3 & & & \\
\hline 61 & DP 4 & & & \\
\hline 62 & DP 5 & & & \\
\hline 63 & DL 1 & & & \\
\hline 64 & DL 2 & & & \\
\hline 65 & DL 3 & & & \\
\hline 66 & DL 4 & & & \\
\hline 67 & DL 5 & & & \\
\hline 68 & WP 1 & & \multirow[t]{10}{*}{Height of the arch \(1,2,3,4\) and 5 of right foot ( P ), left foot (L)} & \multirow[t]{10}{*}{Distance from the bottom to the highest point of arch \(1,2,3,4\) and 5.} \\
\hline 69 & WP 2 & & & \\
\hline 70 & WP 3 & & & \\
\hline 71 & WP 4 & & & \\
\hline 72 & WP 5 & & & \\
\hline 73 & WL 1 & & & \\
\hline 74 & WL 2 & & & \\
\hline 75 & WL 3 & & & \\
\hline 76 & WL 4 & & & \\
\hline 77 & WL 5 & & & \\
\hline 78 & SP 1 & & \multirow[t]{5}{*}{Width of the arch \(1,2,3,4\) and 5 of right foot \((\mathrm{P})\), left foot (L)} & \multirow[t]{5}{*}{Bowstring of the distance of the arch 1, \(2,3,4\) and 5 .} \\
\hline 79 & SP 2 & & & \\
\hline 80 & SP 3 & & & \\
\hline 81 & SP 4 & & & \\
\hline 82 & SP 5 & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 83 & SL 1 & & \\
\hline 84 & SL 2 & & \\
\hline 85 & SL 3 & & \\
\hline 86 & SL 4 & & \\
\hline 87 & SL 5 & & & \\
\hline 8 & & & \\
\hline
\end{tabular}

Source: author's own research

\section*{3. Results}

Table 2. Sexual dimorphism of the biggest incidence of significant relationships between selected features of feet and trunk
(n) K=6983, M=5960 (K - Female, M - Male)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|c|}{ Gender } & \multirow{2}{*}{ Parameter } & \multicolumn{2}{c|}{ Gender } \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{K} & \multicolumn{2}{|c|}{M} & & K \\
M \\
\hline DLP & 16.66 & 4.76 & DP4 & 9.52 & 4.76 \\
\hline DLL & 23.8 & 14.28 & DP5 & 7.14 & 7.14 \\
\hline SZP & 26.18 & 28.56 & SP1 & 7.14 & 9.52 \\
\hline SZL & 23.8 & 28.56 & SP2 & 7.14 & 7.14 \\
\hline Alfa P & & 16.66 & SP3 & 11.9 & 4.76 \\
\hline Alfa L & 23.8 & 19.04 & SP4 & 4.76 & 9.52 \\
\hline BetaP & 7.14 & 4.76 & SP5 & & 23.8 \\
\hline BetaL & 26.18 & 23.8 & WL1 & 9.52 & 23.8 \\
\hline GamP & 11.9 & 4.76 & WL2 & 14.28 & 23.8 \\
\hline GamL & 19.04 & 4.76 & WL3 & 7.14 & 19.04 \\
\hline PSP & 19.04 & 14.28 & WL4 & 16.66 & 9.52 \\
\hline PSL & 7.14 & 4.76 & WL5 & 9.52 & 9.52 \\
\hline WP1 & 14.28 & 16.66 & DL1 & 4.76 & \\
\hline WP2 & 11.9 & 28.56 & DL2 & 9.52 & 16.66 \\
\hline WP3 & 9.52 & 9.52 & DL3 & & 4.76 \\
\hline WP4 & 9.52 & 14.28 & DL4 & 9.52 & \\
\hline WP5 & 7.14 & 7.14 & DL5 & 4.76 & \\
\hline DP1 & 19.04 & 16.66 & SL1 & 7.14 & 11.9 \\
\hline DP2 & 16.66 & 16.66 & SL2 & 11.9 & 11.9 \\
\hline DP3 & 19.04 & 11.9 & & & \\
\hline SO & WP & & & & \\
\hline
\end{tabular}

Source: author's own research

The analysis of the study results with regard to sexual dimorphism, concerning trunk parameters most frequently differentiating the relationships with foot parameters revealed the following parameters in girls: length of arch 1, 4 and 5 of left foot (DL1, DL4, DL5). In boys, the following parameters were found: valgity angle of the hallux of right foot (Alfa), width of the longitudinal arch 5 of right foot (SP5), length of arch 3 of left foot (DL3), Table 2, Figure \(1,2\).

Table 3. Sexual dimorphism of the biggest incidence of significant relationships between selected features of feet and trunk
\[
\text { (n) } \mathrm{K}=6983, \mathrm{M}=5960 \quad(\mathrm{~K}=\text { female, } \mathrm{M}=\text { male })
\]
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|c|}{ Gender } & \multirow{2}{*}{ Parameter } & \multicolumn{2}{c|}{ Gender } \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{K} & \multicolumn{1}{|c|}{M} & & \multicolumn{2}{c|}{K} \\
\hline Alfa & 15.21 & 15.21 & TS & 8.69 & 8.69 \\
\hline Beta & 23.9 & 37.47 & KLB & 6.52 & \\
\hline Gamma & 28.25 & 23.9 & KLB- & 6.52 & \\
\hline DKP & 21.73 & 45.64 & OL & 8.69 & 13.03 \\
\hline RKP & 26.07 & 45.65 & UL & & 21.72 \\
\hline GKP & 15.21 & 45.64 & UB & 10.86 & 4.34 \\
\hline DLL & 30.42 & 49.99 & UB- & 15.2 & 10.96 \\
\hline RLL & 23.9 & 76.08 & LŁW- & & 4.34 \\
\hline GLL & 34.77 & 21.73 & KNM & & 26.07 \\
\hline KPT- & 34.77 & 34.77 & KSM & 6.52 & 8.69 \\
\hline KNT- & 15.2 & & UK- & 6.52 & \\
\hline TT- & 17.39 & 13.04 & & & \\
\hline
\end{tabular}

Source: author's own research
The analysis of the study results with regard to sexual dimorphism of foot parameters with which the parameters of trunk most frequently correlated, revealed the following parameters in girls: angle of body bent to the right side in the frontal plane (KNT-), shoulder line angle with right shoulder or left up (KLB, KLB-), maximum inclination of the spinous process to the left in the vertical line (UK-). The parameters identified in the boys included: asymmetric angle of scapula line with right scapula is up, asymmetry of scapulas with right scapula up (LŁW-), pelvis tilt to the left in the frontal plane (KNM), Table 3, Fig. 3.

\section*{5. Conclusions}
1. The number of foot parameters revealing significant relationships with the trunk characteristics differentiating both sexes was the same and the correlation between the examined properties was found stronger in boys. The differentiating parameters included parameters describing disorders of toe positioning and the longitudinal arch of feet in male adolescents, and in female subjects it was only the longitudinal arch.
2. The number of trunk parameters with which the features of feet correlated most significantly was found to be bigger in male subjects than in their female counterparts. The features in boys revealed a more frequent significant relationship whereas the differentiating features were observed only in the frontal plane.

\section*{References}
1. Yasser Jacek, Kasperczyk Tadeusz, Height of longitudinal medial arch of foot and Clarke's angle in children aged 3-6 years, Scientific Review of the Institute of Physical Education and Health WSP in Rzeszów, Rzeszów 1999, 1, 5-12.
2. Mrozkowiak Mirosław, Bibrowicz Karol, Szurmik Tomasz, Hadlich Roland, Correlations and coexistence of characteristics describing body posture and feet in children and young people of both sexes aged 7 to 13 years. Education, Health and Sport. 2017;7(5):265-314
3. Marciniak Witold, Problems of flat valgus foot in children. Biomechanical fundamentals of controlling flat valgus foot development, Materials from the scientific session, Lublin, 4-5.12. 1979.
4. Steinmetz M. 1984, Le pied, le rachis, la course et la chaussure, Medicine du Sport 1984;58,1:34-45.
5. Mrozkowiak M., Modulation, impact and relationships of the selected body posture parameters in children and adolescents aged 4 to 18 in the light of mora projection, Publishing House of Kazimierz Wielki University, Bydgoszcz, Volume I, II, 2015.
(Description of the Figures)
Fig. 1 Sexual dimorphism of significant relationships of the parameters of feet with the parameters of trunk in children aged \(7-13\) years (n) \(K=6983 \quad M=5960\)
Incidence (\%)
\(\underline{\text { Parameters of feet } \quad \mathrm{K} \text { (female) } \quad \mathrm{M} \text { (male) }}\)

Fig. 2 Sexual dimorphism of significant relationships of the parameters of longitudinal arch with the parameters of trunk in children aged \(7-13\) years
(n) \(K=6983\)
\(\mathrm{M}=5960\)
Incidence (\%)
Parameters of longitudinal arch \(\quad \mathrm{K}\) (female) \(\quad \mathrm{M}\) (male)

Fig. 3 Sexual dimorphism of significant relationships of the parameters of trunk with the parameters of feet in children aged \(7-13\) years ( \(n\) ) \(K=6983 \quad M=5960\)
Incidence (\%)
Parameters of trunk \(\quad \mathrm{K}\) (female) M (male

Ryc. 1. Dymorfizm płciowy istotnych związków wybranych cech stóp z cechami tułowia wśród 7-13-letniej młodzieży (n) K=6983, M=5960


Ryc. 2. Dymorfizm płciowy istotnych związków wybranych cech wysklepienia podłużnego stóp z cechami tułowia wśród 7 -13-letniej młodzieży (n) K=6983, M=5960


Ryc. 3. Dymofizm płciowy cech tułowia, z którymi cechy stóp wykazują najczęstszy istotny związek wśród 7-13-letniej młodzieży (n) K=6983, M=5960


Cechy tułowia```

