BOMBUSHKAR, Igor. Metabolic accompaniments of variants of uric acid exchange. Journal of Education, Health and Sport. 2022;12(12):373-390. eISSN 2391-8306. DOI http://dx.doi.org/10.12775/JEHS.2022.12.12.054 https://apcz.umk.pl/JEHS/article/view/43399 https://zenodo.org/record/10913102

The journal has had 40 points in Ministry of Education and Science of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of December 21, 2021. No. 32343. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical Culture Sciences (Field of Medical sciences and health sciences); Health Sciences (Field of Medical Sciences and Health Sci Punkty Ministerialne 2019 - aktualny rok 40 punktów. Załącznik do komunikatu Ministra Edukacji i Nauki z dnia 21 grudnia 2021 r. Lp. 32343. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu). © The Authors 2022; nces).

This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun. Poland

This article is published with open access at License Open Journal Systems of Nicolaus Copernaces University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial license distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial license Share alike. (http://creativecommons.org/licenses/by-nc-su/4.0) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 21.11.2022. Revised: 18.12.2022. Accepted: 30.12.2022.

Metabolic accompaniments of variants of uric acid exchange

Igor S. Bombushkar

Ukrainian Scientific Research Institute of Medicine of Transport, Odesa, Ukraine bombuchkar@gmail.com

Abstract

Background. During the implementation of the project "Physiological activity of uric acid", our group discovered four variants of the combination of levels of uricemia and uricosuria in patients with chronic pyelonephritis in the remission phase, which are accompanied by characteristic constellations of parameters of the autonomic nervous, endocrine, and immune systems, the levels of which correlate with uricemia and/or uricosuria. The **aim** of this study is to clarify the relationship between parameters of exchange of uric acid and other metabolites. Materials and methods. Under an observations were 34 males (23-70 years) and 10 females (33-76 years) with chronic pyelonephritis in the phase of remission. The object of the study was serum and urine levels of uric acid as well as calcium, magnesium, phosphates, chloride, sodium, potassium, creatinine, urea and glucose. Results. Among all registered parameters, 12 were identified as characteristic of the four variants of uric acid metabolism. The discriminant model includes, in addition to uricosuria and uricemia by definition, blood levels of creatinine, urea, glucose, phosphates, magnesium, and potassium, creatinineuria as well as body mass index, electrokinetic index and sex index. According to the results of the canonical correlation analysis, it was established that balneotherapy-induced concomitant changes in uricosuria and uricemia positively determine changes in diuresis and excretion of urea, magnesium, sodium, phosphates, calcium, potassium and chloride, as well as calciumemia and magnesiumemia. Conclusion. The uric acid molecule, as a structural analog of methylxanthines and adenosine, exerts the metabolic effects, probably, as the consequences of its neuro-endocrine effects.

Keywords: uric acid, electrolytes, glucose, urea, creatinine, relationships.

INTRODUCTION

During the implementation of the project "Physiological activity of uric acid", our group discovered four variants of the combination of levels of uricemia and uricosuria in patients with chronic pyelonephritis in the remission phase, which are accompanied by characteristic constellations of parameters of the autonomic nervous, endocrine, and immune systems, the levels of which correlate with uricemia and/or uricosuria [3,4,10,11,21,23]. Similar tests were conducted in an experiment on healthy rats [1,2,7,8,9,20]. The **aim** of this study is to clarify the relationship between parameters of uric acid and other metabolites exchange, that will allow to create a complete picture of the physiological activity of uric acid.

MATERIALS AND METHODS

Under an observations were 34 males (23-70 years) and 10 females (33-76 years) with chronic pyelonephritis in the phase of remission. Testing was performed twice - on admission and after 7-10 days of standard balneotherapy on Truskavets Spa (drinking of Naftussya bioactive water, applications of ozokerite, mineral pools) [22].

Daily urine was collected, in which was determined the concentration of uric acid (estimated by uricase method), creatinine (by Jaffe's color reaction by Popper's method) and urea (urease method by reaction with phenolhypochlorite) as well as electrolytes: calcium (by reaction with arsenase III), magnesium (by reaction with colgamite), phosphates (phosphate-molybdate method), chloride (mercury-rhodanidine method), sodium and potassium (flamming photometry). Urine lithogenicity index (Lith) calculated by the Tiselius' HS [24] formula modifed by Flyunt VR et al [6]:

Lith = $(Uric acid \cdot Calcium/Magnesium \cdot Creatinine)^{0.25}$.

The same metabolic parameters were determined in plasma as well as glucose (glucoseoxidase method). The analysis carried out according to instructions [6] with the use of flaming spectrophotometer "C Φ -46", analyzers "Reflotron" (BRD) and "Pointe-180" (USA) and corresponding sets of reagents.

Given its integral physiological nature [12,15,16,17,18], we determined also the electrokinetic index (EKI) as rate of electronegative nuclei of buccal epithelium by intracellular microelectrophoresis on the device "Biotest" (produced by Karmazin National University, Kharkiv).

Normal (reference) values of variables are taken from the instructions and/or database of the Truskavetsian Scientific School of Balneology [6,13,22].

For statistical analysis used the software package "Microsoft Excell" and "Statistica 6.4 StatSoft Inc" (Tulsa, OK, USA).

RESULTS

Discriminant analysis was used to identify the specific metabolic accompaniment of clusters of uric acid exchange [14]. From among all the registered parameters, the forward stepwise program selected 12 as identifiers for the four variants of uric acid metabolism. The discriminant model includes (Tables 1 and 2), in addition to uricosuria and uricemia by definition, plasma **electrolytes** magnesium, potassium and phosphates, **non-electrolytes** glucose, urea and creatinine and urine creatinine, as well as **integral** markers of metabolism such as body mass index and electrokinetic index and sex as a metabolotropic factor.

Step 12, 14 of vars in model. 12, of oupling. \neq grps, while $1.0,0570$, approx. $\Gamma_{(36)}=5,0, p$												
	C	lusters of	f Uric Ao	cid	Pa							
Variables		Excha	nge (n)									
currently in the	S -	S±	S2-	S±	Wil	Par-	F-re-	p-	Tole-	Norm		
model	E2+	E+	E+	E -	ks	tial	move	le-	ran-	Cv		
	IV	Ι	Π	Ш	Λ	Λ	(3,7)	vel	су	(30)		
	(22)	(21)	(15)	(30)								
Uricosuria,	5,94	3,94	3,88	2,27	0,289	0,197	98,9	10-6	0,865	3,00		
mM/24 h										0,250		
Uricemia,	0,316	0,371	0,249	0,322	0,079	0,723	9,31	10-4	0,679	0,365		

Table 1. Summary of discriminant function analysis for metabolic parameters exchange Step 12, N of vars in model: 12; Grouping: 4 grps; Wilks' Λ : 0,0570; approx. F₍₃₆₎=9,8; p<10⁻⁶

mM/L										0,116
Sex Index	1,18	1,24	1,07	1,33	0,065	0,872	3,57	0,018	0,610	1,23
(M=1; F=2)										0,344
Magnesium Plasma,	0,826	0,856	0,831	0,822	0,067	0,849	4,32	0,007	0,812	0,90
mM/L										0,056
Electrokinetic Index,	48,3	43,6	42,7	40,4	0,063	0,906	2,52	0,064	0,684	40,9
%										0,250
Body Mass Index,	27,5	28,1	25,9	26,9	0,061	0,929	1,873	0,142	0,651	24,2
kg/m ²										0,133
Glucose Plasma,	4,57	4,11	4,94	4,69	0,061	0,930	1,84	0,147	0,843	4,70
mM/L										0,160
Phosphates Plasma,	0,96	0,97	1,09	1,06	0,061	0,937	1,64	0,188	0,884	1,20
mM/L										0,167
Potassium Plasma,	4,40	4,40	4,50	4,19	0,063	0,906	2,53	0,064	0,762	4,55
mM/L										0,104
Urea Plasma,	6,13	6,22	6,09	5,70	0,061	0,936	1,663	0,182	0,572	5,0
mM/L										0,330
Creatininuria,	9,43	9,27	7,21	6,71	0,061	0,928	1,874	0,141	0,682	11,0
mM/24 h										0,330
Creatinine Plasma,	85,6	87,4	88,1	84,0	0,061	0,940	1,56	0,207	0,396	77,5
μM/L										0,172

	T٤	able	2.	Summary	/ of	forward	stepwis	e analv	sis of	` metabolic	parameters
--	----	------	----	---------	------	---------	---------	---------	--------	-------------	------------

Variables	F to	p-	Λ	F-va-	p-
currently in the model	enter	level		lue	level
Uricosuria, mM/24 h	154	10-6	0,154	154	10-6
Uricemia, mM/L	8,47	10-4	0,118	52,9	10-6
Sex Index (M=1; F=2)	3,93	0,011	0,103	34,3	10-6
Magnesium Plasma, mM/L	3,41	0,021	0,091	26,3	10-6
Electrokinetic Index, %	1,62	0,191	0,086	21,1	10-6
Body Mass Index, kg/m ²	1,51	0,219	0,082	17,7	10-6
Glucose Plasma, mM/L	1,76	0,161	0,076	15,5	10-6
Phosphates Plasma, mM/L	1,41	0,246	0,072	13,7	10-6
Potassium Plasma, mM/L	1,56	0,205	0,068	12,4	10-6
Urea Plasma, mM/L	1,27	0,291	0,065	11,3	10-6
Creatininuria, mM/24 h	1,72	0,169	0,061	10,5	10-6
Creatinine Plasma, µM/L	1,56	0,207	0,057	9,84	10-6

Instead, urinary excretion of urea and all registered electrolytes, lithogenicity of urine, as well as age, despite their obvious recognition ability, were outside the discriminant model, apparently due to duplication/redundancy of information (Table 3).

|--|

	Clu	sters o	f Uric A	Acid	Par	ameters	stics				
		Excha	nge (n)								
	S-	S±	S2-	S±	Wil	Par-	F to	p-	Tole-	Refe-	Cv
Variables	E2+	E+	E+	E-	ks	tial	en-	level	ran-	rence	
	IV	Ι	Π	III	Λ	Λ	ter		cy	mean	
	(22)	(21)	(15)	(30)						(30)	
Urea Excretion,	796	566	548	407	0,055	0,967	0,81	0,491	0,520	458	0,186
mM/24 h											
Diurese,	2,59	2,00	2,05	1,51	0,055	0,966	0,85	0,469	0,515	1,40	0,274
L/24 h											
Calcium Excretion,	6,37	5,23	5,13	3,96	0,055	0,963	0,92	0,438	0,748	4,38	0,214
mM/24 h											
Magnesium	5,74	5,13	4,31	3,68	0,056	0,977	0,56	0,641	0,718	4,10	0,266
Excretion, mM/24 h											
Phosphates	30,5	25,7	23,3	18,1	0,056	0,980	0,50	0,683	0,707	25,2	0,294
Excretion, mM/24 h											

Chloride Excretion	277	214	208	156	0,056	0,988	0,30	0,834	0,766	167,5	0,172
mM/24 h											
Sodium Excretion,	262	211	218	179	0,056	0,978	0,55	0,652	0,738	154	0,211
mM/24 h											
Potassium	87	71	65	66	0,055	0,971	0,70	0,552	0,484	65	0,269
Excretion, mM/24 h											
(UA•Ca)/(Cr•Mg) ^{0,25}	0,93	0,83	0,91	0,78	0,055	0,973	0,66	0,581	0,368	0,73	0,300
Lithogenicity Urine											
Age,	44,6	48,9	57,5	53,1	0,056	0,980	0,49	0,687	0,046	49,7	0,256
Years											
Calcium Plasma,	2,20	2,21	2,16	2,21	0,056	0,988	0,28	0,837	0,699	2,30	0,065
mM/L											
Chloride Plasma,	100	103	99,5	105	0,055	0,964	0,90	0,445	0,776	101,5	0,032
mM/L											
Sodium Plasma,	141	144	140	146	0,055	0,964	0,90	0,445	0,776	145	0,034
mM/L											

Following the algorithm [19,22], we transform the 12-dimensional space of discriminant variables into the 3-dimensional space of canonical roots. The canonical correlation coefficient for the first root is 0,928 (Wilks' Λ =0,057; $\chi^2_{(36)}$ =226; p<10⁻⁶), for the second 0,679 (Wilks' Λ =0,412; $\chi^2_{(22)}$ =70; p=10⁻⁶), for the third 0,487 (Wilks' Λ =0,763; $\chi^2_{(10)}$ =21; p=0,019). The major root contains 84,2% of the discriminant possibilities, the second – 11,6%, and the minor - only 4,2%.

Calculating the values of the discriminant roots for each person based on raw coefficients and constants (Table 4) allows to visualize each patient in the information space of these roots.

Table 4. Standardized an	d raw coefficients and co	nstants for metabolic pa	rameters
	G(1 1' 1	n n	

Coefficients	S	tandardize	ed		Raw	
Variables	Root 1	Root 2	Root 3	Root 1	Root 2	Root 3
Uricosuria, mM/24 h	-1,030	0,104	0,197	-1,710	0,172	0,327
Uricemia, mM/L	-0,094	-0,897	0,350	-1,304	-12,39	4,833
Sex Index (M=1; F=2)	-0,035	-0,535	0,569	-0,084	-1,281	1,360
Magnesium Plasma, mM/L	-0,089	-0,124	-0,852	-2,376	-3,326	-22,81
Electrokinetic Index, %	-0,314	-0,333	-0,075	-0,0267	-0,0282	-0,0064
Body Mass Index, kg/m ²	-0,070	-0,468	0,139	-0,020	-0,133	0,039
Glucose Plasma, mM/L	0,167	0,273	0,328	0,181	0,297	0,357
Phosphates Plasma, mM/L	-0,052	0,372	-0,150	-0,261	1,887	-0,760
Potassium Plasma, mM/L	0,035	0,353	-0,525	0,064	0,643	-0,958
Urea Plasma, mM/L	0,158	-0,421	-0,191	0,138	-0,367	-0,166
Creatininuria, mM/24 h	-0,016	-0,154	-0,629	-0,0045	-0,043	-0,177
Creatinine Plasma, µM/L	-0,069	0,397	-0,564	-0,005	0,030	-0,042
		0	Constants	9,602	6,431	23,08

At the next stage of the analysis, the actual values of the parameters were normalized and grouped into three discriminant roots based on the structural coefficients (Table 5). In addition to discriminant variables, the table also presents variables that are not included in the model, but are still informal carriers of identifying information.

Table 5. C	orrelations	of	variables	with	canonical	roots,	root	mean	values	and	Z-values
of metabol	lic paramete	ers									

	0	Correlatio	ns	S-E2+	S±E+	S2-E+	S±E-
Variables	Va	riables-R	oots	IV (22)	I (21)	II (15)	III (30)
Root 1 (84,2%)	R 1	R 2	R 3	-3,60	-0,36	+0,19	+2,80
Uricosuria	-0,939	0,140	0,037	+3,87	+1,26	+1,17	-0,97
Creatininuria	-0,126	-0,175	-0,131	-0,47	-0,52	-1,15	-1,30
Electrokinetic Index	-0,118	-0,031	0,056	+0,73	+0,26	+0,17	-0,05
Urea Plasma	-0,061	-0,017	-0,211	+0,69	+0,74	+0,66	+0,42

Potassium Plasma	-0,059	0,084	-0,253	-0,32	-0,31	-0,10	-1,55
Creatinine Plasma	-0,019	0,029	-0,195	+1,18	+1,33	+1,38	+1,09
Phosphates Excretion	curren	ntly not in	model	+0,71	+0,06	-0,26	-0,96
Urea Excretion	curren	ntly not in	model	+3,96	+1,27	+1,06	-0,60
Calcium Excretion	curren	ntly not in	model	+2,13	+0,91	+0,81	-0,44
Magnesium Excretion	curren	ntly not in	model	+1,56	+0,99	+0,20	-0,40
Chloride Excretion	curren	ntly not in	model	+3,82	+1,61	+1,42	-0,38
Sodium Excretion	curren	ntly not in	model	+3,31	+1,75	+1,97	+0,76
Potassium Excretion	curren	ntly not in	model	+1,25	+0,36	+0,01	+0,06
Lithogenicity Urine	curren	ntly not in	model	+0,89	+0,44	+0,79	+0,23
Diurese	curren	ntly not in	model	+3,11	+1,56	+1,70	+0,28
Age	curren	ntly not in	model	-0,40	-0,06	+0,14	+0,27
Root 2 (11,6%)	R 1	R 2	R 3	+0,05	-1,13	+1,73	-0,11
Uricemia	-0,012	-0,587	-0,049	-0,70	+0,09	-1,89	-0,53
Body Mass Index	-0,033	-0,213	-0,021	+1,02	+1,21	+0,52	+0,83
Magnesium Plasma	-0,029	-0,206	-0,553	-1,47	-0,87	-1,36	-1,35
Sex Index	0,055	-0,161	0,196	-0,11	+0,02	-0,39	+0,24
Sodium Plasma	curren	ntly not in	model	-0,86	-0,11	-1,01	+0,27
Calcium Plasma	curren	ntly not in	model	-0,69	-0,60	-0,94	-0,61
Chloride Plasma	currently not in model			-0,45	+0,46	-0,63	+0,92
Glucose Plasma	0,030	0,303	0,206	-0,17	-0,78	+0,32	-0,01
Phosphates Plasma	0,088	0,213	-0,004	-1,21	-1,17	-0,53	-0,69
Root 3 (4,2%)	R 1	R 2	R 3	+0,49	-0,69	-0,60	+0,42

As we can see in Fig. 1, members of the $S\pm E$ cluster most clearly stand out from others, the characteristic features of which are a combination of hypouricosuria with hypokalemia and hypocreatininuria, while the level of creatinine in the plasma is elevated to the minimum extent for the sample, and the level of urea is at the upper limit and also minimal. Another characteristic feature is the normal, but minimal for the sample electrokinetic index. It is worth noting a number of parameters that were left out of the model, probably due to duplication and redundancy of recognition information. In particular, these are hypophosphaturia, lower limit levels of excretion of urea, calcium, magnesium and chloride, normal, but minimal for the sample, levels of natriuria, kaliuria and diuresis, as well as lithogenicity of urine. Instead, the members of this cluster were on average the oldest in the sample.

Fig. 1. Scattering of individual values of the first and second (top) and first and third (bottom) discriminant metabolic roots of patients from different clusters

At the other pole of the axis of the first root are members of the S-E2+ cluster, in which hyperuricosuria is accompanied by higher levels of the already mentioned parameters, as well as maximally increased electrokinetic index, diuresis, excretion of urea, chloride, calcium, magnesium, sodium and potassium, and lithogenicity of urine. In addition, the members of this cluster were on average the youngest in the sample.

Members of the other two clusters occupy an intermediate position along the axis of the first root and are mutually mixed. Instead, they are quite clearly demarcated along the axis of the second root. The top position of patients of the **S2-E+** cluster reflects the combination of hypouricemia with hypomagnesemia and, maximally for the sample, reduced levels in plasma of sodium, calcium, and chloride and a normal body mass index, instead, maximally for the sample, normal glycemia and low-limit phosphateemia. At the same time, there is only one woman among the 15 members of the cluster. In the members of the **S±E+** cluster located below, the listed parameters are significantly **higher/lower**, and among 16 people, there are 5 women.

The third discriminant root carries no additional information. So that all four clusters are quite clearly demarcated by the set of discriminant variables in the information space of even two roots (Table 6).

Clusters	S±E+	S2-E +	S-E2+	S±E-
	Ι	Π	IV	III
S±E+	0	8,4	13,3	12,2
I (21)				
S2-E+	5,3	0	18,3	11,2
II (15)	10-5			
S-E2+	10,3	11,8	0	40,9
IV (22)	10-6	10-6		
S±E-	10,9	8,1	37,6	0
III (30)	10-6	10-6	10-6	

Table 6. Mahalanobis distances between clusters, F-criterions (df=12,7) and p-levels

With the help of classification functions (Table 7), we will find out the possibility of identifying the belonging of this or that person to this or that cluster.

Clusters	S±E+	S2-E+	S-E2+	S±E-
	Ι	Π	IV	III
Variables	p=,239	p=,170	p=,250	p=,341
Uricosuria, mM/24 h	9,453	9,042	15,58	4,600
Uricemia, mM/L	47,74	12,13	43,09	36,42
Sex Index (M=1; F=2)	-4,855	-8,430	-4,484	-4,908
Magnesium Plasma, mM/L	808,0	795,1	784,8	771,7
Electrokinetic Index, %	1,438	1,342	1,484	1,318
Body Mass Index, kg/m ²	2,996	2,610	2,950	2,843
Glucose Plasma, mM/L	0,426	1,405	0,610	1,697
Phosphates Plasma, mM/L	62,97	68,15	65,15	63,22
Potassium Plasma, mM/L	19,24	21,03	18,66	19,04
Urea Plasma, mM/L	5,491	4,503	4,415	5,368
Creatininuria, mM/24 h	2,460	2,317	2,214	2,204
Creatinine Plasma, µM/L	0,892	0,970	0,894	0,859
Constants	-586,8	-562,2	-588,6	-527,0

Table 7. Coefficients and constants for cluster classification functions

As you can see, in retrospect, it is possible to recognize members of the most numerous cluster III without error, and others - with 1-2 errors, so that the classification accuracy is 94.3% (Table 8).

Table 8. Classification matrix for clusters

Rows: observed classifications; columns: predicted classifications

		S±E+	S2-E+	S-E2+	S±E-
	Percent	Ι	Π	IV	Ш
Clusters	correct	p=,239	p=,170	p=,250	p=,341
Ι	90,5	19	1	0	1
II	93,3	0	14	0	1
IV	90,9	2	0	20	0
III	100	0	0	0	30
Total	94,3	21	15	20	32

Now let's consider correlations between parameters of uric acid metabolism, on the one hand, and electrolytes, non-electrolytes, and metabolic markers - on the other hand (Table 9).

	Uricemia	Uricemia	Uricosuria
	raw	normalized	
Sex Index	-0,29	0,20	-0,15
Age	0,02	-0,03	-0,19
Electrokinetic Index	-0,09	-0,02	0,22
Body Mass Index	0,13	0,09	0,10
Creatinine Plasma	0,23	0,02	0,07
Urea Plasma	0,02	-0,10	0,22
Glucose Plasma	-0,35	-0,28	-0,01
Calcium Plasma	0,28	0,22	-0,03
Phosphates Plasma	-0,04	-0,06	-0,23
Magnesium Plasma	0,11	0,23	0,04
Potassium Plasma	-0,04	0,08	0,16
Chloride Plasma	0,32	0,38	-0,28
Sodium Plasma	0,32	0,38	-0,28
Diuresis	0,12	0,01	0,65
Creatininuria	-0,04	0,10	0,30
Urea Excretion	0,12	0,02	0,71
Calcium Excretion	0,12	0,03	0,38
Phosphates Excretion	0,18	0,10	0,37

Table 9. Correlation matrix for uric acid and other metabolites parameters

Magnesium Excretion	0,16	0,14	0,44
Potassium Excretion	0,14	0,08	0,27
Chloride Excretion	-0,06	-0,07	0,51
Sodium Excretion	0,04	0,00	0,36
Lithogenicity Urine	-0,04	-0,23	0,42

It was found that uricosuria has more numerous and closer correlations with metabolic parameters than uricemia.

Fig. 2. Scatterplot of the correlation between uricosuria (line X) and ureauria (line Y)

Fig. 3. Scatterplot of the correlation between uricosuria (line X) and chloriduria (line Y)

First of all, this concerns the excretion of urea (Fig. 2) and chloride (Fig. 3).

In the regression model, after stepwise exclusion, in addition to these parameters, chloridemia and kaliemia, excretion of creatinine, calcium and magnesium, as well as caused by them the lithogenicity of urine, were found. This metabolic constellation is determined by uricosuria by 81% (Table 10 and Fig. 4).

	R=0,911 ; R^2=0,830; Adjusted R^2=0,813; F(8,8)=48; p<10^-6							
	Beta	St. Err.	В	St. Err.	t(79)	p-value		
N=88		of Beta		of B				
Intercpt			-5,387	1,509	-3,57	0,000612		
Creatinine E	0,475	0,068	0,193	0,028	6,94	0,000000		
CaE	-0,594	0,091	-0,290	0,044	-6,56	0,000000		
MgE	0,371	0,095	0,286	0,073	3,91	0,000197		
CIE	0,159	0,065	0,003	0,001	2,45	0,016523		
Lithogenicity	0,798	0,078	7,856	0,772	10,17	0,000000		
CI P lasma	-0,083	0,049	-0,018	0,011	-1,70	0,093951		
Urea E	0,412	0,073	0,003	0,000	5,61	0,000000		
K Plasma	0,076	0,049	0,209	0,134	1,57	0,121253		

R=0,911; R²=0,830; χ²₍₈₎=146; p<10⁻⁶; Lambda Prime=0,170

Fig. 4. Scatterplot of the canonical correlation between uricosuria (line X) and other metabolic parameters (line Y)

It is interesting that magnesiumuria was included in the regression model for uricemia, and other components of the model were glycemia, chlorideemia, calciumemia, and creatinineemia. This metabolic constellation is determined by uricemia by 36% (Table 11 and Fig. 5).

T 11 1	1 D	•	1 1 6		4 1 1.	4	1		• •
IANIAI		reaging	modolt	nr	motoholio	noromotore	and	POW	IIPICOMIC
		'I CSSIUII	IIIUUCI I	UI		DALAINCICIN	анц	1 2 22	
				~ -					

	R=0,630; R^2=0,397; Adjusted R^2=0,360; F(5,8)=10,8; p<10^-5							
	Beta	St. Err.	В	St. Err.	t(82)	p-value		
N=88		of Beta		of B				
Intercpt			-0,5184	0,1736	-2,99	0,00372		
Glucose	-0,278	0,089	-0,0238	0,0076	-3,13	0,00240		
Ca P	0,315	0,091	0,1432	0,0413	3,46	0,00085		
CI P	0,393	0,089	0,0046	0,0010	4,42	0,00003		
Cr P	0,247	0,086	0,0015	0,0005	2,86	0,00535		
Mg E	0,163	0,086	0,0067	0,0036	1,89	0,06216		

R=0,630; R²=0,397; $\chi^{2}_{(5)}$ =42; p<10⁻⁶; Lambda Prime=0,603 Fig. 5. Scatterplot of canonical correlation between Uricemia (X-line) and other metabolic parameters (Y-line)

The same 4 parameters appeared in the regression model for uricemia, normalized by sex and age, together with magnesiumemia and urinary lithogenicity, but without creatinineemia. Such a metabolic constellation is determined by normalized uricemia by 33,5% (Table 12 and Fig. 6).

	R=0,617; R^2=0,381; Adjusted R^2=0,335; F(6,8)=8,3; p<10^-6									
NL 00	Beta	Beta St. Err. B St. Err. t(81) p-value								
N=88		of Beta		OT B						
Intercpt			-14,162	3,343	-4,24	0,00006				
Glucose	-0,213	0,091	-0,252	0,108	-2,34	0,02184				
Ca P	0,305	0,093	1,911	0,582	3,28	0,00152				
CI P	0,358	0,095	0,058	0,015	3,76	0,00032				
Mg E	0,180	0,089	0,103	0,051	2,02	0,04625				
Lithogenicity	-0,173	0,093	-1,263	0,677	-1,87	0,06574				
Mg P	0,216	0,090	6,153	2,571	2,39	0,01902				

Table 12. Regression model for metabolic parameters and normalized uricemia

R=0,617; R²=0,381; $\chi^{2}_{(6)}$ =40; p<10⁻⁶; Lambda Prime=0,619 Fig. 6. Scatterplot of canonical correlation between normalized Uricemia (X-line) and other metabolic parameters (Y-line)

According to the results of the canonical correlation analysis, two pairs of canonical roots were formed. The uric acid root of the first pair mainly represents uricosuria. The metabolic canonical root receives the maximum positive factor load from ureauria, then there is a constellation of parameters with smaller, approximately equal burdens - chlorideuria, magnesiria, calciuria, creatinineuria and the associated lithogenicity of urine, and the minimum load on the root is given by potassiumemia. Instead, chloridemia gives a negative load on the metabolic root (Table 13). Uricose determination of this metabolic constellation is 85% (Fig. 7).

	left set				
Variable	Root 1	Root			
Uricosuria	0,995	0,038			
Uricemia raw	-0,083	0,987			
Uricemia norm	-0,176	0,783			
	right set				
Variable	Root 1	Root 2			
Glucose	0,007	-0,514			
Urea Excr	0,772	0,261			
Ca P	-0,045	0,428			
Mg P	0,015	0,099			
КР	0,145	-0,108			
CI P	-0,335	0,408			
Creatinine P	0,096	0,424			
Ca Excr	0,412	0,247			
Mg Excr	0,455	0,274			
CI Excr	0,548	-0,040			
Lithogenicity	0,493	0,067			
Creatininuria	0,301	-0,097			

 Table 13. Factor structure of the canonical roots of parameters of uric acid and other metabolites exchange

R=0,920; R²=0,847; $\chi^{2}_{(36)}$ =227; p<10⁻⁶; Lambda Prime=0,056 Fig. 7. Scatterplot of canonical correlation between parameters of Uric acid exchange (X-line) and other metabolic parameters exchange (Y-line). First pair of Roots

The uric acid root of the second pair mainly represents uricemia. The metabolic canonical root receives the maximum inverse factor load from glycemia, smaller unidirectional loads with uricemia - from calciumemia, creatinineemia, and chloridemia, and minimum - from the excretion of magnesium, urea, and calcium. This metabolic constellation is determined by uric acid by 46% (Fig. 8).

R=0,675; R²=0,456; $\chi^{2}_{(22)}$ =79; p<10⁻⁶; Lambda Prime=0,369 Fig. 8. Scatterplot of canonical correlation between parameters of Uric acid exchange (X-line) and other metabolic parameters exchange (Y-line). Second pair of Roots

It is time to move on to considering the relationship between the changes in the parameters of uric acid metabolism and other metabolites caused by the course of adaptogenic balneotherapy. The screening result is shown in the table. 14.

As we can see, the dynamics of uricosuria is closely related to the dynamics of daily diuresis and excretion of urea and creatinine. Magnesiuria, calciuria, phosphaturia and chlorideuria, as well as the lithogenicity of urine caused by them, are the second constellation of parameters with the strongest connections. Instead, changes in natriuria and kaliuria correlate with changes in uricosuria very weakly, as do changes in plasma levels of creatinine, urea, and potassium.

Variable	Uricemia	Uricosuria
Cr P	0,23	-0,25
Diurese	-0,03	0,79
Cr E	-0,02	0,60
Ca E	-0,20	0,36
Pi E	-0,15	0,34
Mg E	-0,04	0,38
KE	0,03	0,20
CIE	0,12	0,32
Na E	0,14	0,15
Lithogenicity	-0,19	0,31
Ca P	0,28	0,06
Mg P	0,18	0,03
KP	-0,09	0,18
CI P	0,26	-0,10
Na P	0,26	-0,10
Urea E	-0,06	0,77
Urea P	0,07	0,20

 Table 14. Correlation matrix for changes in uric acid and other metabolites parameters

However, after step-by-step exclusion, the dynamics of kaliemia remained in the regression model, while the dynamics of chloriduria was left out of the model (Table 15).

	R=0,940; R^2=0,884; Adjusted R^2=0,853; F(9,3)=28; p<10^-5							
	Beta	St. Err.	В	St. Err.	t(34)	p-value		
N=44		of Beta		of B				
Intercpt			-0,5510	0,1268	-4,35	0,000119		
Diurese	0,228	0,114	0,6896	0,3448	2,00	0,053533		
Cr E	0,358	0,090	0,1553	0,0392	3,97	0,000356		
Ca E	-0,593	0,128	-0,2604	0,0563	-4,62	0,000053		
Pi E	0,186	0,082	0,0185	0,0082	2,26	0,030115		
Mg E	0,245	0,100	0,2089	0,0853	2,45	0,019580		
KE	0,178	0,103	0,0064	0,0037	1,73	0,092282		
Lithogenicity	0,625	0,096	6,4268	0,9898	6,49	0,000000		
ΚΡ	0,227	0,109	0,6315	0,3044	2,07	0,045666		
Urea E	0,350	0,108	0,0030	0,0009	3,25	0,002624		

Table 15. Regression model for changes in metabolic parameters and uricosuria

The dynamics of this constellation of metabolic parameters is determined by the dynamics of uricosuria by 88% (Fig. 9).

R=0,940; R²=0,884; $\chi^{2}_{(9)}$ =81; p<10⁻⁶; Lambda Prime=0,116 Fig. 9. Scatterplot of canonical correlation between changes in Uricosuria (X-line) and other metabolic parameters (Y-line)

Instead, the dynamics of uricemia is related to the dynamics of metabolic parameters much weaker. It is surprising that in the process of step-by-step exclusion, the program left chlorideuria, natriuria, lithogenicity, and magnesiumemia in the regression model, while natriemia and creatinineemia were left out of the model. Obviously, this circumstance explains the significant difference (11,4%) between the actual and adjusted coefficients of determination (Table 16 and Fig. 10).

	R=0,544; R^2=0,295; Adjusted R^2=0,181; F(6,4)=2,6; p=0,034					
N=44	Beta	St. Err.	В	St. Err.	t(37)	p-value
Intercot			-0.00365	0.00705	-0.52	0.608
CIE	0,250	0,179	0,00009	0,00007	1,40	0,171
Na E	-0,345	0,213	-0,00015	0,00009	-1,62	0,114
Lithogenicity	-0,325	0,157	-0,08307	0,04025	-2,06	0,046
Ca P	0,453	0,152	0,10625	0,03556	2,99	0,005
Mg P	0,199	0,155	0,17439	0,13606	1,28	0,208
CI P	0,349	0,154	0,00145	0,00064	2,27	0,029

Table 16. Regression model for changes in metabolic parameters and uricemia

R=0,543; R²=0,295; $\chi^{2}_{(6)}$ =13,7; p=0,034; Lambda Prime=0,705 Fig. 10. Scatterplot of canonical correlation between changes in Uricemia (X-line) and other metabolic parameters (Y-line)

It is natural that according to the results of the canonical correlation analysis, the combined determination of the dynamics of metabolic parameters from the side of uricosuria and uricemia exceeds the effect of uricosuria itself by only 10% (Table 17 and Fig. 11).

Root	left set		
Variable	R		
Uricemia	-0,058		
Uricosuria	0,999		
Root	right set		
Variable	R		
CIE	0,333		
Na E	0,185		
Lithogenicity	0,341		
Ca P	0,055		
Mg P	0,020		
CI P	-0,115		
Diurese	0,834		
Cr E	0,637		
Ca E	0,386		
Pi E	0,371		
Mg E	0,405		
KE	0,207		
ΚΡ	0,197		
Urea E	0,813		

Table 17. Factor structure of the canonical roots of changes in parameters of uric acid and other metabolites exchange

R=0,946; R²=0,894; $\chi^{2}_{(28)}$ =93; p<10⁻⁶; Lambda Prime=0,068 Fig. 11. Scatterplot of canonical correlation between changes in Uricosuria&Uricemia (X-line) and other metabolic parameters (Y-line)

CONCLUSION

Therefore, the exchange of uric acid is closely related to the exchange of other metabolites, at least electrolytes and nitrogenous compounds. A detailed analysis of the mechanisms of such connections will be carried out in the next article. Spoiler. Mediators are neuro-endocrine effects of uric acid.

ACKNOWLEDGMENT

We express sincere gratitude to colleagues of sanatorium "Moldova" for help in conducting this investigation.

ACCORDANCE TO ETHICS STANDARDS

Tests in patients are conducted in accordance with positions of Helsinki Declaration 1975, revised and complemented in 2002, and directive of National Committee on ethics of scientific researches. During realization of tests from all parent of participants the informed consent is got and used all measures for providing of anonymity of participants.

For all authors any conflict of interests is absent.

REFERENCES

1. Bombushkar IS. Features of the state of the neuroendocrine-immune complex and electrolytenitrogenous exchange under different variations of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2020; 10(5): 410-421.

2. Bombushkar IS, Gozhenko AI, Korda IV, Badiuk NS, Zukow W, Popovych IL. Features of the exchange of electrolytes and nitrogenous metabolites under different options of uric acid exchange in healthy female rats. Journal of Education, Health and Sport. 2020; 10(4): 405-415.

3. Bombushkar IS, Gozhenko AI, Badiuk NS, Smagliy SS, Korda MM, Popovych IL, Blavatska OM. Relationships between parameters of uric acid metabolism and neuro-endocrine factors of adaptation [in Ukrainian]. Journal of marine medicine. 2022; 2(95): 59-74.

4. Bombushkar IS, Korda MM, Żukow X, Popovych IL. Sexual dimorphism in relationships between of plasma uric acid and some psycho-neuro-endocrine parameters. Journal of Education, Health and Sport. 2022; 12(12): 357-372.

5. Flyunt VR, Flyunt I-SS, Fil' VM, Kovbasnyuk MM, Hryvnak RF, Popel SL, Zukow W. Relationships between caused by drinking of bioactive water Naftussya changes in urine lithogenicity and neuro-humoral-immune factors in humans with their abnormalities. Journal of Education, Health and Sport. 2017; 7(3): 11-30.

6. Goryachkovskiy AM. Clinical Biochemistry [in Russian]. Odesa: Astroprint; 1998: 608.

7. Gozhenko AI, Smagliy SS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual problems of transport medicine. 2019; 4 (54): 123–131.

8. Gozhenko AI, Smagliy VS, Korda IV, Zukow W, Popovych IL. Cluster analysis of uric acid exchange parameters in female rats. Journal of Education, Health and Sport. 2019; 9(11): 277-286.

9. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Features of immune status in different states of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2019; 9(12): 167-180.

10. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between parameters of uric acid exchange and immunity as well as microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(1): 165-175.

11. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between changes in uric acid parameters metabolism and parameters of immunity and microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(2): 212-222.

12. Honcharenko MS (editor). Valeological toolkit hardware-software diagnostics and monitoring of health [in Ukrainian]. Kharkiv. VN Karazin NU; 2011: 135.

13. Khmelevskyi YV, Usatenko OK. Basic Biochemical Constants of Humans at Norm and at Pathology [in Russian]. Kyïv: Zdorovya; 1987: 160.

14. Klecka WR. Discriminant Analysis [trans. from English in Russian] (Seventh Printing, 1986). In: Factor, Discriminant and Cluster Analysis. Moskva: Finansy i Statistika; 1989: 78-138.

15. Kyrylenko IG. Changes in electrokinetic index of buccal epithelium correlated with changes in some parameters of EEG, HRV, hemodynamics and metabolism. Experimental and Clinical Physiology and Biochemistry. 2018; 2(82): 5-14.

16. Kyrylenko IG, Fajda OI, Drach OV, Popel SL, Popel RL, Zukow W. Relationships between electrokinetic index of buccal epithelium and some functional and metabolic parameters at men with chronic pyelonephrite. Journal of Education, Health and Sport. 2016; 6(1): 302-314.

17. Kyrylenko IG, Fediaieva SI, Miesoiedova V, Popadynets' OO, Żukow X. Vegetative, metabolic and immune accompaniments of changes in the electrokinetic index of the buccal epithelium under the influence of therapeutic factors. Journal of Education, Health and Sport. 2022; 12(1): 344-354.

18. Kyrylenko IG, Flyunt I-SS, Fil' VM, Zukow W, Popovych IL. Changes in electrokinetic index of buccal epithelium correlated with changes in some parameters of immunity and fecal microbiocenosis. Journal of Education, Health and Sport. 2018; 8(10): 168-170.

19. Polovynko IS, Zajats LM, Zukow W, Yanchij RI, Popovych IL. Quantitative evaluation of integrated neuroendocrine and immune responses to chronic stress in rat male. Journal of Education, Health and Sport. 2016; 6(8):154-166.

20. Popovych IL, Bombushkar IS, Badiuk NS, Korda IV, Zukow W, Gozhenko AI. Features of the state of neuro-endocrine factors of adaptation under different options of uric acid metabolism in healthy female rats. Journal of Education, Health and Sport. 2020; 10(3): 352-362.

21. Popovych IL, Gozhenko AI, Bombushkar IS, Korda MM, Zukow W. Sexual dimorphism in relationships between of uricemia and some psycho-neuro-endocrine parameters. Journal of Education, Health and Sport. 2015; 5(5): 556-581.

22. Popovych IL, Gozhenko AI, Korda MM, Klishch IM, Popovych DV, Zukow W (editors). Mineral Waters, Metabolism, Neuro-Endocrine-Immune Complex. Odesa. Feniks; 2022: 252.

23. Smagliy VS, Gozhenko AI, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL.

Variants of uric acid metabolism and their immune and microbiota accompaniments in patients with neuroendocrine-immune complex dysfunction. Actual problems of transport medicine. 2020; 1(59): 114–125.

24. Tiselius HS. A biochemical basis for grouping of patients with urolithiasis. Europ Urol. 1978; 4: 241-249.