RZADKOWSKI, Kamil and MROZKOWIAK, Miroslaw. Environmental dimorphism of the frequency of significant correlations of the torso features with the feet features among 7-13-year-old youth. Journal of Education, Health and Sport. 2023;32(1):128-144. eISSN 2391-8306. DOI http://dx.doi.org/10.12775/JEHS.2023.32.01.010

https://apcz.umk.pl/JEHS/article/view/42084

https://zenodo.org/record/8200409

The journal has had 40 points in Ministry of Education and Science of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of 17.07.2023 No. 32318. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical Culture Sciences (Field of Medical sciences and health sciences). Health Sciences (Field of Medical Sciences and Health Sciences). Prunkty Ministerialne z 2019 - aktualny rok 40 punktów. Załącznik do komunikatu Ministra Edukacji i Nauki z dnia 17.07.2023 Lp. 32318. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu).

© The Authors 2023;
This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike.
(http://creativecommons.org/licenses/by-ne-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.
The authors declare that there is no conflict of interests regarding the publication of this paper.
Received: 01.06.2023. Revised:30.07.2023. Accepted: 31.07.2023. Published: 31.07.2023.

Environmental dimorphism of the frequency of significant correlations of the torso features with the feet features among 7-13-year-old youth

Author: ¹Kamil Rzadkowski^{CDEF}, ²Mirosław Mrozkowiak^{ABG}

Place of work: ¹Chiropractic School of Poland, Świecie, Poland

²Physiotherapy Clinic AKTON, Warsaw, Poland

A – preparation of research project

B – data collection

C – statistical analysis

D – data reading

E – preparation of manuscript

F – literature elaboration

G – funds obtaining

Summary

Introduction. Studies on the correlation of selected torso and feet features among 7-13-year-

old children and adolescents have shown that the most frequent and strongest correlations

with feet features occur among girls at the age of 11 and 12 years and among boys at 11, 12

and 13 years old.

Material and method. The research was carried out in the group of adolescents aged 7 to 13

and registered 16,462 observations, including 5,552 from the urban area and 10,910 from

rural environment, together with 87 features describing torso and feet. The work stand for

measuring selected features using the photogrammetric method consists of a computer and a

card, programme, monitor, printer and a projection-receiving device with a camera.

Conclusions

The frequency of significant correlations of torso features with feet features that differentiate

the rural environment from urban is greater, however, the urban area presents more frequent

relationship with feet features at a different level.

Features of the frontal and transversal plane tell the rural environment apart, whereas the

urban environment is only differentiated by the frontal plane.

The frequency of significant relationships of the feet features, which torso features correlate

with and differentiate between the rural and urban environment is greater. Therefore, these are

the morphological features that characterize the longitudinal arch of the feet. The features that

differentiate the urban environment are those describing only the longitudinal arche.

Keywords: dimorphism, correlations, posture features, feet, environment

129

1. Introduction

The result analysis of the correlation of the value of selected torso and feet features among 7-13-year-old children and adolescents showed that in the analyzed age groups the most common and strongest relationships and coexistence with the features of the feet occur among girls at 11 and 12 years of age, and among boys at 11, 12 and 13 years of age. There were no accuracy and logical relationships between the parameters of the pelvic-spine syndrome and feet in all age groups and each sex. The features of the sagittal and frontal plane are more dominant among the features describing the pelvic-spine syndrome and most often correlating with feet features, whereas transversal plane dominates less. On the other hand, features describing the 5th hallux valgus and varus and hallux varus of the right foot are the most dominant among the feet features in correlation with the parameters of the pelvic-spine syndrome [1].

The analysis also showed that the number of torso features significantly related to feet features and differentiating between male and female sex is greater, and the relationship is more frequent among boys. The number of features of the transversal plane differentiating the male sex is the same, whereas there is more of the frontal plane. The number of feet features related to torso features is bigger among girls than boys, and the relationship with feet features is also more frequent among girls [2].

Pilot studies by Drzał-Grabiec and Snela [3] in the population of girls and boys aged 7 to 9 years allowed to establish a statistically significant correlation between the Clarke's angle and the parameters describing the length of individual spine curvatures, i.e., the length (RLL) and the height of lordosis (DLL) and the height of thoracic kyphosis (DKP). There is a statistically significant correlation between the length of thoracic kyphosis (DKP) for the left and right foot, the length of lumbar lordosis (DLL) for the right and left foot, and the height of lumbar lordosis (RLL) for the right and left foot. In terms of gender, there is a statistically

significant correlation among boys between the length of thoracic kyphosis (DKP), the height of thoracic kyphosis (RKP), the height of lumbar lordosis (RLL) and the length of lumbar lordosis (DLL) and the right and left foot. In the group of girls, there is a correlation between the Clarke's angle of the right and left foot and the length of lumbar lordosis (DLL). Considering the age of the studied groups, the relationships that occur simultaneously for the right and left foot were found in the case of 9-year-olds for the DLL and RLL parameters. In the study group, there were not found statistically significant correlations between the longitudinal arch of the feet and the parameters describing the spine in the frontal plane, i.e. KNT (torso bent angle in the frontal plane), UK (deviation of the spinous processes from the C7-S1 line), UL (difference in the height of the lower angles of shoulder blades - inclination) and UB (difference of the depth of the lower angles of shoulder blades - twist), OL (difference in distance of the lower angles of shoulder blades from the spine). The authors conclude that the longitudinal arch of the feet is related to the length parameters describing the body posture. The strength of the correlation of the parameters can be average or weak, but the presence of dependency between most of the length parameters indicates a specific tendency. Other features of the body posture do not present such a relationship. Moreover, single correlations with a small strength of correlation should be treated as random.

The aim of the research is to demonstrate the environmental dimorphism of the frequency of significant relationships of selected torso features with feet features in the group of 7-13-year-old children. The result analysis of the research was going in two directions. The first was the answer to the question: which torso features do most often show a significant relationship with feet features in the context of environmental dimorphism? The second was the answer to the question: which feet features do the torso features most often show a significant relationship with also in the context of environmental dimorphism?

2. Material and method

The research was carried out in the group of children and adolescents aged 7 to 13 and registered 16,462 observations, including 5,552 from the urban (M) and 10,910 rural (W) environments. Due to the limited volume of the work, a detailed description of the somatic features of the research material and the obtained research results can be found in the author's monograph [4]. Empirical data were based on quantitative and qualitative features (gender, place of residence, etc.). The values of positional statistics were calculated (arithmetic mean, quartiles), as well as dispersion parameter (standard deviation) and symmetry indicators (asymmetry coefficient, cluster coefficient), which give a full overview of the distribution of the researched features considering age groups, gender, and environment. Relationships and significance were determined using p as a value, and frequency as percentage.

The basic assumption in the research was to always assess habitual attitude as a relatively permanent individual characteristic of a human being. This attitude reflects the individual emotional, mental, and social state of the respondent. It is the most accurate in describing his silhouette in time and place. The obtained diagnostics does not determine whether the individual's posture is correct, but it only affirms the state of its ontogenetic realization. Objectivized and comparable test results will make it possible to register the parameters adopted for the analysis with possible to define compensations. The combination of a torso and feet examination makes it possible to objectively determine the quality of the posture pattern realized in each environment, gender, and age category. The usage of the measuring device determines several dozen parameters describing the body posture. For statistical analysis, 87 angular and linear parameters of the spine, pelvis, torso, and feet were selected in the sagittal, frontal, and transversal planes, in individual age categories and environment, tab. 1. A spatial image is possible to obtain thanks to lines displayed with

strictly defined parameters on the child's back and feet. The lines falling on the skin are distorted depending on the configuration of the surface. Thanks to the use of a lens, the image of the examined person can be received by a special optical system with a camera, and then transferred to a computer monitor. Line image distortions recorded in the computer memory are processed by a numerical algorithm into a contour map of the tested surface. While the examination, one should be aware that the taken picture records the image of the silhouette visible on the child's skin [4].

Tab. 1. The list of registered torso and feet features

Within torso area

No	Symbol			Parametres				
•		Label	Name Description					
	Sagittal plane							
1	Alfa	degree s	Inclination of the lumbosacral segment					
2	Beta	degree s	Inclination	of the thoracolumbar segment				
3	Gamma	degree s	Inclination of the upper thoracic segment					
4	DCK	mm	Total length of the spine	Vertical distance between C ₇ and S ₁ points				
5	KPT	degree s	Torso extension angle	It is determined by the deviation of C ₇ -S ₁ points from the vertical line (backwards)				
6	KPT -	degree s	Torso bent angle	It is determined by the deviation of C ₇ -S ₁ points from the vertical line (forwards)				
7	DKP	mm	Length of thoracic kyphosis	Distance between LL a C ₇ points				
8	KKP	degree s	The angle of thoracic kyphosis	KKP = 180 – (Beta+Gamma)				

9	RKP	mm	Height of thoracic kyphosis	Distance between C ₇ a PL points				
10	GKP	mm	Depth of thoracic kyphosis	The distance measured horizontally between vertical lines passing through PL and KP points				
11	DLL	mm	Length of lumbar lordosis	The distance between S ₁ and KP points				
12	KLL	degree s	Lumbar lordosis angle	KLL = 180 - (Alfa + Beta)				
13	RLL	mm	Height of lumbar lordosis	Distance between S ₁ and PL points				
14	GLL -	mm	Depth of lumbar lordosis	The distance measured horizontally between vertical lines passing through PL and LL points				
	Frontal plane							
15	KNT -	degree s	of the	It is determined by the deviation of the C_7 - S_1 line from the vertical to the left.				
16	KNT	degree s	torso bend to the side	It is determined by the deviation of the C ₇ -S ₁ line from the vertical to the right.				
17	LBW -	mm	The right shoulder higher	The distance measured vertically between the horizontal lines going through the B ₂ and B ₄ points.				
18	LBW	mm	The left shoulder higher					
19	KLB	degree s	The angle of shoulders line, where the right one is higher	The angle between the horizontal and the straight line going through the B_2 and B_4 points.				
20	KLB –	degree s	The angle of shoulders line, where the left one is higher					

21	LŁW	mm	Left shoulder blade higher	The distance measured vertically between horizontal lines going through Ł1 I and Łp points.
22	LŁW –	mm	Right shoulder blade higher	
23	UL	degree s	The angle of shoulder blades line, where the right one is higher	The angle between the horizontal and the straight line going through the Ł1 and Łp points.
24	UL -	degree s	The angle of shoulder blades line, where the left one is higher	
25	OL	mm	more distant	The difference in the distance of the lower angles of the shoulder blades from the line of the spinous processes of the spine, measured horizontally at the straight lines going through the Łl and Łp points.
26	OL -	mm	The lower, more distant angle of the right shoulder blade	
27	TT	mm	The left waist triangle is higher	The difference in the distance measured vertically between the T_1 and T_2 points and between T_3 and T_4 points.
28	TT –	mm	The right waist triangle is	

			higher	
29	TS	mm	The left waist triangle is wider	The difference in the distance measured horizontally between the straight lines going through the T ₁ and T ₂ points and T ₃ and T ₄ points.
30	TS -	mm	The right waist triangle is wider	
31	KNM	degree s	The pelvic tilt angle, the right ala of ilium is higher	The angle between the horizontal and straight line going through the M1 and Mp points.
32	KNM -	degree s	The pelvic tilt angle, the left ala of ilium is higher	
33	UK	mm	The maximum deviation of the spinous process of the vertebra to the right	The greatest deviation of the spinous process from the vertical coming from S_1 . The distance is measured on the horizontal axis.
34	UK -	mm	The maximum deviation of the spinous process of the vertebra to the left	
35	NK	_	The number of the vertebrae deviating	The number of the vertebrae most deviating to the left or right in the asymmetrical course of the spinous process, counting as 1, first cervical vertebra (C1) If the arithmetic mean is, for example, from 12.0 to 12.5 it is Th5, if from 12.6 to 12.9 it is Th6.

36	ŁB -	mm	as far as possible to the left or right The lower angle of the right shoulder blade more oblique	Transversal plane The difference in the distance (convexity) of the lower angles of the shoulder blades from the back surface.
37	ŁB	mm	The lower angle of the left shoulder blade more oblique	
38	UB –	degree s	of the line of convexity of the lower	Angle difference UB ₁ - UB ₂ . The UB ₂ angle between: the line passing through the point Łl and being simultaneously perpendicular to the camera axis and the straight line passing through Łl and Łp. The UB ₁ angle included between the line passing through the point Łp and being simultaneously perpendicular to the camera axis and the straight line passing through Łp and Łl.
39	UB	degrees	The angle of the line of convexity of the lower angles of the blades, more convex on the right	
40	KSM	degree s	Pelvis twisted to	The angle between a line passing through Ml point and being simultaneously perpendicular to the camera axis

			the right	and a straight line passing through Ml and MP points
41	KSM -	degree s		The angle between a line passing through Mp point and being simultaneously perpendicular to the camera axis and a straight line passing through Ml and MP points

Within feet area

Feature	Symbol		Fe	atures	
numbe		Label	Name	Description	
r				-	
42	DL p	mm	Length of the	The distance between	
43	DL 1		right foot (p),	akropodion and pterion points	
			and left foot (1)	on the platnogram	
44	Sz p		The width of the	The distance betwenn	
45	Sz 1		right foot(p), and	metatarsale fibulare and	
			left foot (l)	metatarsale tibiale points on	
1.6	. 10	1	TT1 1 0 1	the plantogram	
46	Alfa p	degrees	The angle of the	The angle between the	
47	m A 1 C		hallux valgus of	straight line passing through	
47	Alfa p		the right foot:	the metatarsale tibiale and the	
48	p Alfa 1		Alfa p p, and left: Alfa l p.	innermost points at the medial edge of the heel and the	
40	1 22220		The angle of		
49	M Alfa l p		hallux vargus of	the metatarsale tibiale and the	
49	Anarp		the right foot:	innermost points at the medial	
			Alfa p m, and	edge of the toe	
			left: Alfa l m.		
50	Beta p		The angle of the	The angle between the	
	m		5th hallux	straight line passing through	
51	Beta p		vargus of the	the metatarsale fiburale points	
	p		right foot: Beta p	and the outermost point on	
52	Beta 1		p, and left: Beta 1	the lateral edge of the heel	
	m		p.	and the straight line passing	
53	Beta 1 p		The angle of the	through the metatarsale	
			5th hallux valgus	fiburale points and the	
			of the right foot:	outermost straight line on the	
			Beta p m, and	lateral edge of the V toe on	
			left: Beta 1 m.	the plantogram	
54	Gamma		Heel angle of the	The angle between the	
) ,	P		right foot	straight line passing through	
55	Gamma		(p), and left foot		
	L		(1)	innermost points on the	
			(-)	medial edge of the heel and	
				the straight line passing	
				through the metatarsale	
				fiburale points and the	

				outermost line on the lateral edge of the heel in the plantogram			
56	PSP	mm ²	Surface of the	Foot plantogram surface			
57	PSL		right foot(p), and left foot(l)				
58	DP 1	mm	Length of	The length of the arch from			
59	DP 2		longitudal arch	the 1st, 2nd, 3rd, 4th and 5th			
60	DP 3		of the right foot	metatarsal bones to the			
61	DP 4		1, 2, 3, 4, and 5	pterion point			
62	DP 5		(P), and the left				
63	DL 1		foot (L)				
64	DL 2						
65	DL 3	1					
66	DL 4	1					
67	DL 5						
68	WP 1	1	Height of arch 1,	Distance from the ground to			
69	WP 2		2, 3, 4 and 5 of	the highest point of arch 1, 2,			
70	WP 3		the right foot	3, 4 and 5.			
71	WP 4		(P), and left foot				
72	WP 5	1					
73	WL 1	1					
74	WL 2	1					
75	WL 3	1					
76	WL 4]					
77	WL 5]					
78	SP 1		Width of arch 1,	Bowstring of the arch length			
79	SP 2		2, 3, 4 and 5 of	1, 2, 3, 4 and 5.			
80	SP 3	1	the right foot				
81	SP 4]	(P), and left foot				
82	SP 5	1	(L)				
83	SL 1]					
84	SL 2	1					
85	SL 3	1					
86	SL 4	1					
87	SL 5	1					

Source: own research

3. Results

Tab. 2. Environmental dimorphism of the frequency of significant correlations of the torso features with the feet features

Feature	Enviro	onment	Feature	Enviro	onment
name	Urban area	Rural area	name	Urban area	Rural area
DCK	39,21	27,45	ŁB	7,84	15,68
Alfa	11,76	23,52	ŁB-	9,8	7,84
Beta	13,72	11,76	OL	7,84	17,64
Gamma	23,52	31,37	UL	3,92	9,8
KKP	25,49	23,52	KLB	7,84	9,8
RKP	39,21	31,37	KLB-	13,72	
DKP	35,29	15,68	UB	15,68	19,6
GKP	29,41	9,8	UB-	15,68	21,4
KLL	11,76	19,6	LŁW-	9,8	19,6
DLL	29,41	17,64	TS	21,56	5,88
RLL	27,45	15,68	TT-	17,64	19,6
GLL	19,6	13,72	KNM		5,88
KNT-	19,6	9,8	KSM		9,8
KPT-	23,52	23,52	UK-		5,88

Source: own research

The result analysis of the research in terms of the environmental dimorphism of the torso parameters most often differentiating significant relationships with the feet features showed that among the propositus from the urban environment it is the size of the line asymmetry of the shoulder blades, where the left one is higher (KLB-). The result analysis of the research obtained on propositus from the rural environment showed that the differentiating features were the value of the right-hand pelvic tilt angle in the transversal plane (KSM) and the maximum deviation of the spinous process to the left (UK-), tab. 2, fig. 1.

Tab. 3. Dimorphism of the feet features of the most frequent significant relationships with the features of the torso

(n)
$$M = 5552$$
, $W = 10910$

Feature's	Environment		Feature's	Envir	Environment	
name	M	W	name	M	W	
SZP	54,2	23,8	DP3	6,5	10,8	
SZL	60,8	52,1	DP4	8,6		
DLP		17,3	DP5	6,5	6,5	
DLL	22,0		SP1	8,6	22,0	
AlfaP	17,2	8,6	SP3	28,6	13,0	
AlfaL	13,0	8,6	SP4	6,5	10,8	
BetaP	45,6	17,2	SP5		8,6	
BetaL	32,5	28,6	WL1	26,0	28,6	
GamP		10,8	WL2	8,6	23,8	
GamL	15,1	26,0	WL3		15,2	
PSP	30,3	36,8	DL1		15,2	
PSL		17,3	DL2	24,2	17,2	
WP1	19,5	15,2	DL3		8,6	
WP2	34,7	32,5	DL4		6,5	
WP3		10,8	SL1		13,4	
WP4	17,3		SL2	8,6		
DP1	28,1	19,9	SL3	24,2	6,5	
DP2	10,8	23,8	SL4	17,3		

Source: own research

The result analysis of the research on the environmental dimorphism of the feet features, which the torso features most often show a significant relationship with, showed that the values of the following parameters among the propositus of the urban environment are height and length of the fourth longitudinal arch of the right foot (WP4, DP4), and the width of the second and fourth arch of the left foot (SL2, SL4). On the contrary, among the results of test on subjects from the rural environment, the values of the following features are right foot heel angle (GamP), left foot plantocontourgraph surface (PSL), height of the third arch and width of the fifth arch of the right foot (WP3, SP5), height of the third and length of

the first, third and fourth arch of the left foot (WL3, DL1, DL3, DL4), and width of the first arch of the left foot (SL1), tab. 3, fig. 2.

4. Discussion

The literature review of environmental dimorphism and the frequencies of significant correlations of torso features with feet features showed that this topic is completely ignored.

5. Conclusions

- 1. The frequency of significant relationships of the torso features with the feet features that differentiate the rural environment from urban is greater, however, the features of the urban environment have more frequent relationship with the feet features at a different level of significance. Features of the frontal and transversal plane differentiate the rural environment, whereas the urban area is differentiated only by the frontal plane.
- 2. The frequency of significant relationships of the feet features with the torso features that differentiate the rural environment from urban is greater. These are the morphological features whereby that characterize the longitudinal arch of the feet. The features that differentiate the urban environment are features that describe only the longitudinal arch.

Literature

- Mrozkowiak Mirosław, Bibrowicz Karol, Szurmik Tomasz, Hadlich Roland, Correlations and coexistence of characteristics describing body posture and feet in children and young people of both sexes aged 7 to 13 years. Education, Health and Sport. 2017;7(5):265-314.
- Sokołowski Marek, Mrozkowiak Mirosław. Correlations between selected characteristics that describe body trunk and feet in children and young people aged 4 to 18 years.
 2017;7(6):281-316. eISSN 2391-8306. DOI
- 3. Justyna Drzał-Grabiec, Sławomir Snela. The influence of rural environment on body posture. Annals of Agricultural and Environmental Medicine 2012; 19(4).
- 4. Mrozkowiak M., Modulacja, wpływ i związki wybranych parametrów postawy ciała

dzieci i młodzieży w wieku od 4 do 18 lat w świetle mory projekcyjnej, Wydawnictwo Uniwersytetu Kazimierza Wielkiego, Bydgoszcz, tom I, II, 2015 r.

Fig.1 Environmental dimorphism of significant correlations of torso features with feet features among 7-13 years old youth (n) M=5552, W=10910

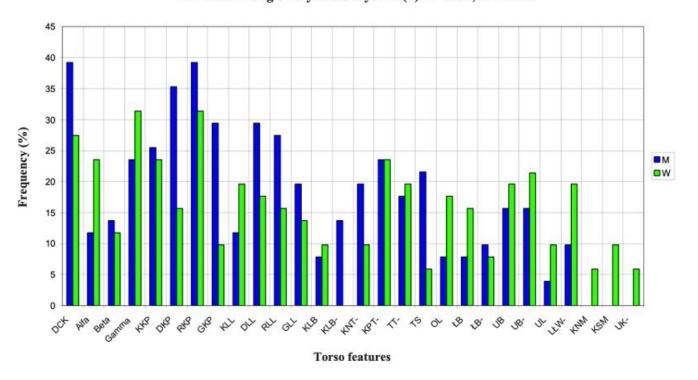
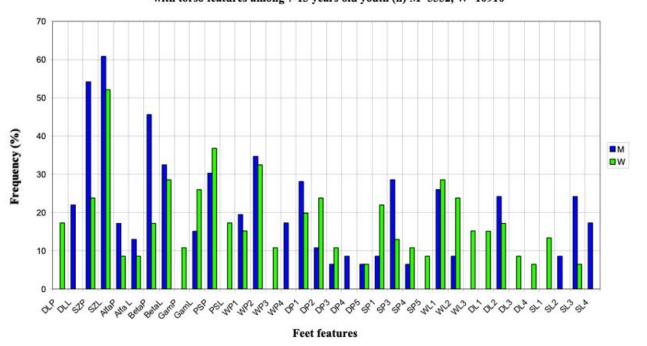



Fig. 2 Environmental dimorphism of feet features of the most frequent and significant correlations with torso features among 7-13 years old youth (n) M=5552, W=10910

