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Abstract. The efficiency of using photosynthetically active radiation by trees largely depends on the architecture of the

assimilation apparatus in their crown. It is known that an increase in the level of atmospheric pollution is accompanied, on the one
hand, by an increase in the foliage density on the leafy shoot length, and on the other hand, by an increase in the transparency of the
crown due to the expansion of the leafless inner part of the crown. On this basis, we assume that the foliage percentage of leafy
shoots (PL) is a sensitive indicator of changes in growing conditions not only due to environmental pollution, but also in broader
ecological aspects, in particular, in the geographical or climatic gradients of Eurasia. For this purpose, a database of empirical data
has been formed in the amount of 558 model trees of Scots pine of natural and artificial origin from 6 regions of Northern Eurasia
with a measured percentage of needle in the leafy shoot biomass. A regression model has been designed, in which the contributions
of mensuration variables (tree age and stem diameter), climatic variables (temperature and precipitation) and the origin of stands
(natural and artificial) to explain the variability of the desired PL indicator are 15, 53 and 30 %, respectively. It is concluded that with
a decrease in annual precipitation from 600 to 300 mm, there is an increase in PL by 0.2..0.3% for every 10 mm of annual
precipitation, both in natural stands and in plantations. When the January temperature decreases from 0°C to -20 °C, PL increases by
0.8...1.0% for each 1°C. Thus, the foliage percentage of leafy shoots of Scots pine is an indicator of changes in growing conditions in
the climate gradients of Eurasia.
Keywords: needle percentage in the leafy shoot biomass, regression model, dendrometric indicators of trees, natural stands and
plantations, averaged January temperature, averaged annual precipitation.

1. Introduction
The ability of forest trees to extract atmospheric carbon dioxide and produce organic matter

is the basis of their functioning (Budyko, 1964; Dylis, 1978). The efficiency of using
photosynthetically active radiation by tree crowns largely depends on the architecture of the
assimilation apparatus associated with such concepts as the “volumetric density” of foliage biomass
(Protopopov & Gorbatenko, 1967), or “phytosaturation” of foliage, as the foliage biomass divided
by the crown space occupied by foliage (Usoltsev, 1985, 2013), or “density” of foliage biomass as
dry weight of foliage divided by crown surface area (Mizoue & Masutani, 2003). The architecture

of the assimilation apparatus is also associated with such a concept as the
crown transparency (Tsel’niker, 1969). It is defined as the ratio of the
area of the crown gaps to the area of the entire crown on its frontal
projection and varies from 0.05 in shade-tolerant Norway spruce to 0.32
in light-demanding Scots pine (Zel’niker, 1969). In light-demanding
species, already in 10-20 age, the crown is divided into the mantle
(Kronenmantel), or the leafy part of the crown, and the crown core
(Kronenkern), or the leafless part of the crown along the stem axis (Fig. 1)
(Burger, 1939; Assman, 1961).

Fig. 1. Scheme of crown division into the mantle (1) and the core (2)
areas (modified after Burger, 1939)

The specificity of crown architecture consists in the subordination
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of branches of different orders that ensure its mechanical stability, the ways of xylem and phloem
transport and the balance of organic matter (Münch, 1938; McMahon & Kronauer, 1976; Valentine,
1988; Tsel'niker, 1995; Poorter et al., 2008; Ishii & Asano, 2009; Yagi, 2011; Iida et al., 2011;
Echereme et al., 2015; Jucker et al., 2015; Yang et al., 2015; Pallas et al., 2016; Xu et al., 2019;
Chen et al., 2022). As the tree grows, the volume of the crown increases, while in light-demanding
species the proportion of the core in the crown increases, whereas in shade-tolerant species it
changes slightly in relation to light-demanding ones (Rudnev, 1977).

So, tree architecture is related to the availability of radiation at a given position within a tree
crown (Yang et al., 2015). In the gradient of decreasing illumination inside the crown, its mantle in
light-demanding species is increasingly moving away from the stem axis with age and shifting to
the periphery of the crown. At the same time, the leafless part expands not only along the stem, but
also along the branches, first along the branches of the 1st order, then along the branches of the 2nd
order, etc., i.e. the assimilation apparatus is increasingly concentrated in the surface part of the
crown mantle, exclusively on the leafy shoots (Mayer, 1980). For example, in white birch trees
aged 8, 18, 31 and 50 years, the proportion of leafy shoots in the crown biomass is 100, 67, 56 and
20%, respectively (Ilyushenko, 1970), i.e. over a 40-year period there is a 5-fold decrease in the
proportion of leafy shoots in the crown biomass.

The number of branching orders in the crown is limited in forest trees to four or five
(Tsel'niker, 1995; Avdeeva & Krivonosenko, 2013), and branches of the last order are usually
represented by leafy shoots. The term "shoot" or “segment” in the literature has no single definition,
and the discussion is mainly about its age and position in the crown (Serebryakov, 1952;
Grudzinskaya, 1960; Nukhimovsky, 1974; Mazurenko & Khokhryakov, 1974; Ford et al., 1990;
Room et al., 1994; Zel’niker et al., 2000; Serebryakova et al., 2006; Yagi, 2011; Sargent, 2013). In
our presentation, the concept of "leafy shoot" is not related to age or position in the crown, it may
include the axis increment of 1-2 years in the upper part of the crown and the increment of several
years in the lower crown part. The main feature of the concept of "leafy shoot" is the presence of
foliage along the entire length of its main axis and lateral (overgrown) branches.

There is a close relationship between the length of the shoot and the needle biomass on it
(Sander & Eckstein, 1994; Tsel'niker, 1995). As a result, the proportion of assimilation mass in
leafy shoots (crown greenery) is a fairly stable value, its coefficient of variation in pine, birch and
aspen varies only from 2 to 5% (Gorbatenko, 1970; Usoltsev, 1985). The proportion of foliage in
leafy shoot biomass is in larch 45±3.5 % (Yablokov, 1934), in birch 63.4 ± 0.5%, in aspen 70.0±
1.6% (Usoltsev, 1973), in pine 78% (Ivanchikov et al., 1982).

It is known that with the deterioration of growing conditions, the share of the assimilation
apparatus in the aboveground biomass increases. In the worst conditions, trees increase the mass of
the most vital organ - the assimilation apparatus, thereby compensating for its reduced activity in
these conditions (Smirnov, 1971; Usoltsev, 1974; Alekseev, 1975). A similar pattern is repeated in
stressful conditions of stands subject to air pollution. In the conditions of air pollution, the growth
of the apex and upper branches is most significantly reduced, which leads to a change in the
architecture of the crown. It becomes flat-topped, and with more severe damage - dry-topped and
resembles the crown of old-age trees in its shape (Yuknis, 1987; Yarmishko, 2009). As we approach
the sources of air pollution, the share of foliage in the crown mass of pine (Yusupov et al., 1997),
spruce and fir (Usoltsev et al., 2012), as well of birch (Zavyalov, 2009) increases.

In many coniferous species, an increase in the needle density on shoots has been found due
to the advance from background areas to the source of air pollution (Augustaitis, 1989, 1992;
Yarmishko, 1997; Zalesov & Bachurina, 2008; Zarubina, 2011) or with an increase in the content of
heavy metals in tree needles (Tarkhanov, 2011). Sometimes, the increase in the level of air pollution
is accompanied by an increase not only in the density of the needles, but also in their linear
dimensions (Sidaravicius, 1987). At the same time, there is a decrease in the life expectancy
(longevity) of needles (Yarmishko, 1989; Torlopova & Robakidze, 2003; Zalesov & Bachurina,
2008).
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Strange as it may seem at the first glance, a decrease in the life expectancy of needles as the
degree of air pollution increases, leads to an increase in the proportion of needles in the biomass of
leafy shoots. Figure 2 shows a decrease in the life expectancy of Scots pine needles from 4 years
(right) to 1 year (left) as they approach the source of pollution. It is obvious that as the life
expectancy of needles decreases, the proportion of the leafless part of shoots increases, and there is
a further expansion of the crown core. This expansion is initially due to the fall of the needles of the
4th year, then the needles of the 3rd year, etc. Since there is an inversely proportional relationship
between the age of Scots pine needles in polluted conditions and the density of needles in the
segment of the corresponding year (Zubareva, 1993), then as the needles of previous years fall off
and the corresponding "rejuvenation" of the shoot, the proportion of needles in the biomass of the
leafy shoot increases. Therefore, the proportion of needles in the biomass of the current year's shoot
is always higher than the proportion of needles in a shoot bearing needles for several years. For
example, according to K.S. Bobkova et al. (1986), the needle percentage in the leafy shoots of Scots
pine varies from 64 to 77%, depending on the type of forest. But in the biomass of shoots of the
current year, the proportion of needles of Scots pine is significantly higher (ranging from 80 to 83%)
than the proportion of needles in the biomass of all leafy shoots (Bobkova et al., 1986) and varies
slightly by forest types (Kamenetskaya, 1970).

Fig. 2. Decrease in the longevity of needles from 4 years (right) to 1 year (left) as they
approach the source of air pollution (Jäger, 1980; cited and modified according to: Schubert, 1985).

A similar pattern was shown on the shoots of Abies alba in the botanical gardens of
Tharandt and Halle in Germany (Fig. 3). As a result of the fact that sulfur dioxide pollution in Halle
is four times higher than in Tharandt, the longevity of needles in Halle is two years shorter. But the
decrease in the density of needles in segments of different ages occurs much more intensively in
Halle: from 100% in the segment of the current year to 10% in the segment that has grown 3 years

ago, whereas in Tharandt the corresponding decrease is
only from 100% to 80% (Schubert, 1985). In this case, it
also becomes obvious that as the needles of previous years
fall off, the proportion of needles in the leafy shoots
naturally increases.

Fig. 3. Covering of annual segments (located from top to
bottom) with needles (%) as an expression of the
proportion of needles in segments of different years and
longevity of Abies alba needles in the botanical gardens of
Tharandt and Halle (modified after Schubert, 1985).

On the other hand, as we approach the source of air
pollution, the transparency of tree crowns increases many times due to the intensive needle fall
along the stem and branches of the 1st, 2nd, etc., orders and the corresponding expansion of the
crown core (Sidaravicius, 1987; Yarmishko, 1990; Brassel & Schwyzer, 1992; Nizametdinov,
2009). Thus, as the degree of air pollution increases, the natural expansion of the crown core due to
the lack of radiation inside crown becomes more intense due to pollution, and in some extreme
cases, the crown mantle focuses on the shoots of the current year. Since we are talking here about
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the proportion of needles in the leafy shoots, this proportion increases as we approach the source of
pollution.

Apparently, an increase in the transparency of the crown due to the expansion of its leafless
core and an increase in the needle density of the shoots on the periphery of the crown mantle are
two components of a common process caused by the reaction of the tree to air pollution. Based on
the above, we assume that the needle percentage of leafy shoot biomass is a sensitive indicator of
changes in growing conditions not only due to environmental pollution, but also in broader
ecological relations, in particular, in the climate gradients of Eurasia.

Since the 1930s, a simplified methodology has been used in the forests of Northern Eurasia
(present-day Russia, Ukraine and Kazakhstan) to determine the biomass of foliage. According to
this method, the leafy shoots of the entire crown were cut off with a pruner and weighed, while a
sample of the resulting mass of shoots was taken to determine the share of foliage in leafy shoots
and then the biomass of the foliage of the entire tree was calculated (Yablokov, 1934; Molchanov &
Smirnov, 1967; Baizakov, 1969; Kamenetskaya, 1970; Usoltsev, 1985; Lakyda, 2002). These data
on the foliage percentage in the leafy shoots were stored in the archives of researchers, and were
recently brought together and published in the corresponding database (Usoltsev, 2020).

In the following presentation, the concept of a leafy shoot assumes the presence of needles
along the entire length of the shoot. As far as we know, there is no data in the literature on
geographical patterns of the foliage percentage in the leafy shoot biomass of tree crowns. It is only
known that the life expectancy of needles increases as one moves from south to north (Serebryakov,
1961), but whether this phenomenon is related to the needle density of shoots is unknown. There are
only single published patterns of changes in the proportion of needles in the leafy shoots of Scots
pine in relation to the stem diameter at breath height, and they are directly opposite. In the
conditions of the Ukrainien steppe, this relationship is negative (Sytnyk et al., 2017), and in the
northern taiga subzone in the Arkhangelsk region it is positive (Babich et al., 2004).

The purpose of our research was to identify climate patterns of changes in the percentage of
needles (PL, %) in the leafy shoots of Scots pine trees on the territory of Northern Eurasia. To
achieve this goal, the following tasks were set:

- to compile the original database of PL in the leafy shoots of Scots pine;
- to develop a regression model of PL changes in relation to the dendrometric indicators of a

tree and the climate variables of Northern Eurasia;
- to establish whether there is a difference between natural stands and plantations in the

value of PL.

2. Material and methods

The harvest data on the PL of Scots pine from different regions in the amount of 558 sample
trees, represented by both natural stands and plantations, were taken from the mentioned database
(Usoltsev, 2020). The characteristics of the source material are given in Table 1. The mentioned
database contains the coordinates of the sample plots where data on model trees were obtained.
Using these coordinates, we determined the corresponding territorial indicators of the average
January temperature and average annual precipitation from the corresponding climate maps (World
Weather Maps, 2007). These climate maps were shown in our previous article (Usoltsev et al.,
2022). The use of the maps of winter temperature instead of the average annual one was justified
earlier (Usoltsev et al., 2019).
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Table 1. Statistics of the analyzed indicators of 558 sample trees
Designation of
statistics(a)

Indices analyzed(b)
A D H PL LAT LON T PR

Ukrainian Polesie, natural stands
Mean 141 45.8 31.1 51.6

37.3
73.6
9.7
18.7
12

49.7 30.3 -7 570
Min 64 27.0 23.0 - - - -
Max 186 55.0 36.6 - - - -
SD 39.8 7.4 3.9 - - - -

CV, % 28.2 16.1 12.7 - - - -
n 12 12 12 - - - -

Ukrainian Polesie, plantations
Mean 51 23.9 23.9 61.5

42.0
76.3
7.7
12.6
24

50.6 28.5 -8 570
Min 15 8.0 7.3 - - - -
Max 91 38.1 33.7 - - - -
SD 21.2 8.8 7.4 - - - -

CV, % 41.2 36.8 31.1 - - - -
n 24 24 24 - - - -

Ukrainian steppe, plantations
Mean 58 20.6 18.7 59.7

49.8
71.6
6.8
11.4
14

48.6 35.4 0 440
Min 9 7.0 4.5 - - - -
Max 90 27.2 24.3 - - - -
SD 26.3 6.0 6.5 - - - -

CV, % 45.2 29.0 34.9 - - - -
n 14 14 14 - - - -

Central Urals, southern taiga, plantations
Mean 24 10.1 10.1 66.5

41.3
95.6
11.3
17.0
81

57.0 62.0 -18 440
Min 15 2.4 3.0 - - - -
Max 32 20.0 18.5 - - - -
SD 6.2 4.7 4.2 - - - -

CV, % 25.5 46.1 41.4 - - - -
n 81 81 81 - - - -

Southern Urals, southern taiga, natural stands
Mean 79 21.8 19.7 73.4

33.6
88.7
8.0
10.9
97

55.5 60.2 -18 570
Min 44 7.0 8.3 - - - -
Max 126 33.7 26.7 - - - -
SD 17.7 7.4 5.5 - - - -

CV, % 22.4 33.8 27.9 - - - -
n 97 97 97 - - - -

Western Siberia, forest steppe, plantations
Mean 28 12.7 11.3 75.1

52.0
83.0
4.8
6.4
147

55.6 73.5 -20 320
Min 10 4.5 3.5 - - - -
Max 50 21.0 19.6 - - - -
SD 12.5 3.7 4.7 - - - -

CV, % 44.0 29.4 41.6 - - - -
n 147 147 147 - - - -

Turgai depression, steppe, natural stands
Mean 49 14.2 14.2 76.6

56.6
88.0
6.7
8.8
84

52.3 64.0 -14 300
Min 20 0.6 1.9 - - - -
Max 110 34.5 26.1 - - - -
SD 26.6 7.4 5.2 - - - -

CV, % 53.8 51.7 36.5 - - - -
n 84 84 84 - - - -

Turgai depression, steppe, plantations
Mean 41 13.2 12.5 73.5

45.6
93.9
9.6
13.1
99

52.3 64.0 -14 300
Min 22 2.6 3.5 - - - -
Max 50 21.7 16.2 - - - -
SD 13.0 5.4 4.1 - - - -

CV, % 31.4 41.1 32.7 - - - -
n 99 99 99 - - - -

(a) Mean is mean value; Min is minimum value; Max is maximum value; SD is standard deviation;
CV is coefficient of variation; n is number of observations.
(b) A is tree age, years; H is tree height, m; D is stem diameter at breast height, cм; PL is needle
percentage in leafy shoot biomass, %; (LAT) and (LON) are geographical latitude and longitude,
respectively, °; T is averaged January temperature, °C; PR is average annual precipitation, mm.
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As mentioned above, the PL value is related to the stem diameter. In the conditions of the
Ukrainian steppe, the pair relations of PL in 15 trees of the Scots pine and 15 trees of the introduced
black locust (Robinia pseudoacacia L.) were analyzed not only with the stem diameter, but also
with the tree age and height. Although all the dependences turned out to be statistically weak
(Sytnyk et al., 2017), we need to find out what proportion of PL variability can occur on the
dendrometric (mensurational) indicators of trees (age, diameter and height), on climatic variables
(the average January temperature and average annual precipitation) and the origin of stands (natural
and artificial).

When modeling the response of the biomass of two-needled pine trees to the January
temperature and annual precipitation, taking into account the origin of stands, the affiliation of trees
to natural stands and plantations was encoded by the binary variable, B = 0 and B = 1, respectively
(Usoltsev et al., 2020). When we introduced only single binary variable B into the equation, this
means that the 3-D surface (temperature – precipitation - biomass) in X-Y-Z coordinates shifts
between natural and artificial trees only along the Z axis by the value of the regression coefficient at
the binary variable B. According to our assumption, the biomass of trees in natural stands and
plantations reacts differently to changes in the age because their differences in temporal stem
growth (Zolotukhin, 1966; Jordan and Farnworth, 1982; Makarenko and Biryukova, 1982;
Polyakov et al., 1986; Usoltsev & Vanclay, 1995; Romanov et al., 2014). In order to take these
differences into account, in the designed model, along with B, we introduced the synergisms (B×lnA)
as another independent variable. Although this synergism was not statistically significant, in our
current case we consider it possible to include in the designed model for PL. To account for the
simultaneous effects of temperature and precipitation, their product (synergism) was introduced in
the equation for tree biomass as another independent variable, and it was statistically significant
(Usoltsev et al., 2020).

3. Results and discussion

Based on the above and the harvest data, the statistical characteristics of which are shown in
Table 1, we tested the following model structure:

ln(PL) = a0+a1(lnA)+a2(lnD)+a3(lnН)+a4[ln(T+50)]+a5(lnPR)+a6[ln(T+50)]×(lnPR)
+a7(B) +a8(B×lnA), (1)

in which the regression coefficients a1, a3 and a6 for variables (lnA), (lnH) and [ln(T+50)]×(lnPR)
according to the Student's criterion were not statistically significant at the level of p < 0.05 (t = 0.6,
1.1 and 1.1 < t05 = 1.96) and were excluded from further analysis.

The final model has the form:

ln(PL) = 7.1670-0.0273(lnD)-0.5074[ln(T+50)] -0.1631(lnPR) -0.4000(B)+0.0899(B×lnA); (2)
adjR2 = 0.335; SE = 0.10,

where B is the binary variable encoding whether the harvest data belongs to natural stands (B =
0) or plantations (B = 1); adjR2 is a coefficient of determination adjusted for the number of
parameters; SE – equation standard error.

According to the Student's criterion, all regression coefficients in the model (2) are
significant at the level of p < 0.01 (t = 3.0…11.3 > t01 = 2.58). Since the mean January temperature
in the northern part of Eurasia has negative values, the corresponding independent variable is
modified and subjected to log-log procedure as (T+50). The intercept in model (2) is adjusted taking
into account the logarithmic transformation (Baskerville, 1972). The contributions of mensuration
variables (age and stem diameter), climatic variables (temperature and precipitation) and the origin
of stands (natural and artificial) to explain the variability of the desired PL indicator by model (2)
are 15, 53 and 30 %, respectively.
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According to the sign of the independent variable (lnD), the needle density of leafy shoots
has a negative relationship with the stem diameter. Apparently, this pattern is associated with the
concentration of needle biomass per unit of shoot length in trees that have lagged in growth
(candidates for dying off) and have a relatively smaller stem diameter (Yablokov, 1934). The above
is consistent with the result obtained in a 35-year-old Norway spruce stand: with the increase in
stem diameter from 4 to 30 cm, the percentage of needles in the leafy shoot biomass decreases from
60 % to 50 % (Burger, 1939).

Judging by the sign of the independent variable (B), the needle density of leafy shoots in
plantations is lower than in natural forests, and judging by the sign of the variable (B×lnA), the
marked difference decreases or changes the sign as the age of the trees increases. This pattern is
somewhat repeated when modeling the biomass of needles in plantations and natural stands, but
with the opposite sign: at the young age, the biomass of needles in plantations is higher than in
natural stands, but then with age there is a change in the ratio of biomass value, and natural stands
gain an advantage over plantations in terms of the stock of needle biomass (Usoltsev & Vanclay,
1995).

Judging by the signs of the independent variables [ln(T+50)] and (lnPR), the PL indicator
with unchanged values of age and stem diameter is negatively associated with both averaged
January temperature and annual precipitation. The first pattern is explained by the increase in
January temperature associated with a decrease in the moisture supply of territories in the direction
from the taiga zone to the steppe, and the second one - by the increase in the climate continentality
and the related decrease in moisture supply of forest areas in the direction from west to east
(Nazimova, 1995). For the purpose of graphical interpretation of the named regularity, the average
values of the age of a tree (46 years) and the stem diameter at breast height (15.6 cm) for all regions
are substituted into the model (2). Then, according to the set values of January temperature and
annual precipitation, the corresponding 3D surface for PL of natural stands and plantations is
constructed (Fig. 4).

Fig. 4. The change in the theoretical values of PL in the coordinates of the average January
temperature and average annual precipitation with the age of 46 years and the stem diameter of 15.6
cm; 1 - natural stands, 2 - plantations.

We can see in Fig. 4 that with unchanged values of age and stem diameter, PL in natural
stands is higher than in plantations, and this difference is statistically significant. In both origins, PL
increases with both a decrease in temperature and a decrease in precipitation. The analysis of Fig. 4
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allows us to conclude that with a decrease in annual precipitation from 600 to 300 mm, there is an
increase in PL by 0.2...0.3% for every 10 mm of annual precipitation, both in natural stands and in
crops. When the January temperature decreases from 0 to -20 °C, PL increases by 0.8...1.0% for
each 1°C.

In order to trace how the ratio of PL in plantations and natural pine forests changes with age,
the auxiliary equation is calculated

ln(D) = -1.6929+0.8144(lnA)+0.3396[ln(T+50)] +0.0114(lnPR) +0.8537(B)-0.1846(B×lnA); adjR2 =
0.552; SE = 0.34. (3)

A graphical interpretation of equation (3) with average values of T = -18 °C and PR = 570
mm (Fig. 5) showed that at the initial stages of growth, the stem diameter in plantations is higher
than in natural stands, but as the age increases, this ratio is reversed.

Fig. 5. The ratio of theoretical values of stem diameter at breast height in natural stands (1)
and plantations (2) due to the age of the tree. The standard error of the equation is shown here and
below

Substituting equation (3) into (2) and tabulating the resulting expression for the specified
tree age at average values of T = -18 °C and PR = 570 mm, we obtained the age ratio of PL trees in
natural stands and plantations (Fig. 6).

Fig. 6. Changes in theoretical PL values with the age of trees in natural stands (1) and
plantations (2) at values T = -18 °C and PR = 570 mm.
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Thus, it was found that at the initial stages of growth, PL in plantations is significantly lower
than in natural stands, but as the age of trees increases, this ratio changes to the opposite. As noted
above, in terms of the needle biomass, plantations and natural stands correlate in the opposite way:
at the initial stages of growth, the biomass of needles is higher in plantations due to a higher growth
rate, but with age, the growth rates are aligned or reversed and the ratio of the biomass of needles
changes accordingly. This means that the increase in PL is associated with a decrease in the growth
rate of trees: (1) both with an increase in age and with the degree of tree depression in the canopy,
and (2) both with a decrease in temperature in the direction from south to north and with a decrease
in precipitation in the direction from west to east.

4. Conclusions
Based on the analysis of published data, it was stated that as we approach the source of air

pollution, the proportion of needles in the biomass of leafy shoots increases. It is also known that in
the worst site classes, the biomass of needles, when other parameters being equal, is higher than in
the best sites, and this is explained by a compensatory effect: a decrease in assimilation activity is
compensated by an increase in the biomass of the assimilation apparatus.

On this basis, it is hypothesized that an increase in the proportion of needles in the biomass
of leafy shoots can be considered as a reaction to the deterioration of growing conditions, regardless
of the causes of this deterioration.

It was found that the increase in PL is associated with both an increase in age and the degree
of suppression of the tree in the canopy. It can also be associated with a decrease in temperature in
the direction from south to north, and with a decrease in precipitation in the direction from west to
east. All these trends may be associated with a decrease in the growth rate of trees due to the
deterioration of habitat quality.

Thus, an increase in the proportion of needles in leafy shoots can serve as a diagnostic sign
of the degree of deterioration of growth conditions, regardless of whether this deterioration is
associated with the degree of air pollution or with changes in climatic conditions.
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