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Summary

Introduction and purpose: Modern medical knowledge has grown to a vastness

incomprehensible for a single health professional to learn and accommodate. The usage of

modern information technologies comes to help, one of them being artificial intelligence, a

branch of computer science aimed at developing solutions to perform tasks similar to the

human brain, but more efficient and complex, without actual human intervention. The goal of
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this review is to provide reader with the knowledge how artificial intelligence is applied in

various branches of medicine.

Brief description of the state of knowledge: In the fields of infectious diseases, including

COVID-19 diagnostics, radiology, dermatology and surgery, works lean toward the statement,

which suspect application of AI is beneficial for medical practitioners. Programs help to

develop statistical models for virus spreading and the creation of antiviral solutions. The

radiological application involves the analysis of images to aid radiologists in diagnosing

certain features, similarly to dermatology, where eg. AI can identify malignancy of skin nevi.

In the department of surgery, predictive algorithms can help in choosing operation methods

and improve outcomes.

Conclusions: Usage of AI assistance in the medical field has proven to be successful, but it is

yet to be commonly encountered in everyday work. Programs need to be further developed

and made more approachable to users without expertise in the IT field. AI may also prove

useful in the process of education of health professionals.

Keywords: artificial intelligence; infectious diseases; radiology; dermatology; surgery; health

Introduction

The term artificial intelligence (AI) first appeared in 1955 and was described as a machine

trying to mimic human cognitive capabilities [1], but in modern terms, scientists define it as

“thinking humanly and acting rationally”. Programs are able to perform similar tasks to a

human brain without human intervention, but most of the time more efficient if built correctly

and fed an appropriate amount of data [2]. Since its introduction, AI has made significant

progress, allowing programs to automatically analyze, explain and represent complicated data,

and using the computational power of modern personal computers it can be applied locally,

without a need to rent or buy expensive workstations and server clusters [3]. Algorithms

process the amount of data, beyond scope of human capabilities, can discover important

information from data and assist in making clinical decisions, reducing the chance of potential

man-made errors. [4].

The purpose of this review is to familiarize the reader with the application of artificial

intelligence technology in chosen fields of medicine.
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Infectious Diseases

Artificial intelligence is used in the field of infectious diseases. It can be applied for early

detection and diagnosis of the infection, projection of morbidity and mortality rates, contact

tracing and modeling vaccine and drug response [5].

Modeling the antigenic variation of viruses can improve the prediction adequacy of immune

efficacy of vaccines as well as increase vaccine screening efficiency. A deep learning

approach containing bidirectional long-short-term memory neural network and a

convolutional neural network has been applied to model an antigenic variation in the

influenza A virus, which has shown 99.20% of efficacy in predicting the strains in the

forthcoming year [6].

In the case of norovirus infection, the management measures most of which rely more on

prevention than treatment, data mining technology based on the wavelet transform AI

algorithm was used to identify the at-risk group. Such findings can be implemented to protect

patients prone to infection and as a result, reduce the clinical infection rate of the virus [7].

Moreover, machine learning (ML) methods may have the ability to help improve the

development and optimize viral clearance unit operations for new therapeutic antibodies [8].

The application of artificial intelligence-based algorithms in drug repositioning may be crucial

for predicting drug-target interactions, allowing to eliminate the need of extensive, resource-

consuming in-vitro research [9]. Furthermore, another vital application of AI is creating a

disease transmission model. A divide-and-conquer algorithm has been used to predict

associations between known viruses and potential mammalian species. The results showed

that there is a significant underestimation in the number of associations in wild and

domesticated mammals by a factor of 4.3, and the average potential mammalian host-range of

viruses by a factor of 3.2. This indicates the existence of a knowledge gap regarding

reservoirs and the potential for transmission of zoonotic and domesticated mammals’ viruses

[10].

The identification of factors conducive to spreading the pathogen has proved to be useful in

the case of the COVID-19 pandemic crisis as well. A deep learning method has been used for

forecasting the risk of COVID-19 infection and has shown relatively high efficacy in

predicting future COVID-19 cases [11]. Moreover, the use of machine learning algorithms
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has enabled to develop HealthMap and BlueDot, both of which can predict the outbreak of the

virus with great efficiency [12]. The diagnosis of COVID-19 relies mostly on real-time

reverse-transcription polymerase chain reaction (RT-PCR), however this technique has shown

to have much lower sensitivity (71%-80%) than the 3D deep-learning framework developed

specifically for the detection of COVID-19 (known as COVNet) by examination of the chest

x-ray and computed tomography (CT) scan images of patients, accurately distinguishing

patients with COVID-19 from patients with non-COVID-19 community-acquired pneumonia.

COVNet is able to process each CT scan in under 5 seconds with 90% sensitivity and 96%

specificity for COVID-19 identification [12], [13]. Moreover, another deep learning

diagnostic system is used to identify features of COVID-19 infection in CT scans of

individuals with false-negative RT-PCR results. [13] Although artificial intelligence is still in

its initial stages when it comes to the discovery of new therapies, in silico screening with AI

can allow the identification of potentially effective therapeutic agents among already existing

drugs. Molecule transformer-drug target interaction (MT-DTI) is a type of natural language

processing (NLP) tool. It has been used to predict binding affinity values between available

antiviral drugs and target proteins on SARS-CoV-2. This allowed the identification of

atazanavir, an antiretroviral medication, which may be effective in the treatment of SARS-

CoV-2. [13] Artificial intelligence and machine learning are able to identify viral proteins of

SARS-CoV-2 for drug development, hence supporting the development of vaccines and

medications [14].

Radiology

AI solutions are emerging in radiology as well. The constant need for automatization and

misdiagnosis reduction is growing, inducing engineers and scientists to develop more and

more complex and reliable applications. Though the primary function of AI is to support

radiologists during image evaluation and making a diagnosis, future solutions may be

advanced enough to work independently [15]. Presently AI is used mainly in three major

domains, including diagnostic AI, predictive AI, and operational AI [16].

Diagnostic AI is the most common feature used in AI solutions implemented in radiology,

being offered in 79% of studied applications [17]. A major impact of AI can be majorly seen

in the automated detection of findings. Machine learning solutions enable displaying or

highlighting relevant findings and supporting radiologists in image evaluation [18]. They can
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produce automatically generated reports with natural language processing as well [19].

Moreover, AI can be used to boost an imaging process, decreasing the imaging time and

improving the positioning and the quality of images. Furthermore, automated solutions can

help with the interpretation of images, suggesting a diagnosis based on the predictive models

[18]. Such tools can improve interpretation reliability, decreasing incorrectly detected

findings (false positives) [15]. However, maintaining a high level of the machine learning

interpretation is crucial, especially for static models, which have been shown to deteriorate

after ca. 8 months. Static AI models are not designed to correctly reply to real-time changes in

the imaging environment, becoming significantly inaccurate over time. This phenomenon is

induced by picked data-sets used for machine learning and a lack of scientists’ knowledge of

image processing and scanning protocols. To overcome this problem, a continuous data

stream in real-time should be used, replacing static models with continuous learning AI [16].

Predictive AI can be also implemented to predict disease outcome and response to the

treatment using radiology AI-enabled biomarkers. Such solutions are the most addressed to

oncological patients, as determining the risk profile based on the tumor characteristic can be

beneficial for their treatment [20]. Machine learning models can be taught in order to develop

radiomics-derived prognostic scales for numerous tumors [21]. These AI solutions can be

based on various radiological factors, including intensity-based measures, subvisual

heterogeneity and texture, shape and volumetric features as well as tumor microenvironment

and vascularity radiomics [20].

Operational AI focuses on optimizing patient scheduling, reducing delays, and therefore

contributing to enhanced patient satisfaction. Though only 3% of AI solutions address the

operational and administrative tasks, studies have shown that predicting waiting times and

proper scheduling is an important factor in patients’ contentment [17]. An analysis of

ultrasound, radiography, CT and MRI delays has proved that machine learning solutions such

as elastic nets, which are simple regularization algorithms based on an ordinary linear

regression model, are the best in delay prediction [22].

Dermatology

Artificial intelligence is gaining increasing importance in dermatology, and the latest research

shows that accuracy matches or even exceeds dermatologists' ability to diagnose skin lesions

from clinical and dermoscopic images. Several artificial intelligence studies are already
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focusing on differentiating benign and malignant pigmented lesions, improving the diagnosis

of psoriasis and other inflammatory skin diseases.

Previous studies illustrated that AI can distinguish between benign nevi vs. melanoma using

individual pixels from dermatoscopic and non-dermatoscopic images [23], [24], [33], [34],

[25]–[32].

A further study by Jutzi et al. [35] assessed patients' attitudes toward AI. It demonstrated that

most respondents supported using AI, mainly to help detect melanoma early at home.

Nevertheless, potential errors, poor quality of analyzed photos, and insufficient protection of

AI data still stand as significant barriers. Lately, machine learning and convolutional neural

network (CNN) models have been found to classify melanoma on histopathological or clinical

images with exceedingly high diagnostic accuracies and sensitivities [36]–[38]. ML models

using factual data, including more racially diverse datasets, are being trained, increasing the

availability of artificial intelligence in remote health care facilities with limited resources [36],

[39]. Some authors noted the usefulness and accuracy of smartphone applications that classify

the risk of photographed lesions or detect malignant / pre-neoplastic changes on

histopathological images [39], [40].

One investigation examined the correlation between dermatoscopic and reflectance confocal

microscopy (RCM) observations and the histologic classification of melanocytic lesions with

peripheral globules [41]. They discovered that dermoscopy and RCM correctly identified

84.21% of dysplastic nevi and 100% of melanomas. The size and shape of peripheral globules

and cancerous RCM features like pagetoid cells, non-edged papillae, atypical junctional

thickenings, and atypical cells at the dermal-epidermal junction, dysplastic nevi, and

melanocytic lesions differ significantly from one another. Additionally, it has been

demonstrated that a top-ranked computer algorithm has greater specificity than dermatologists

in classifying photos of melanomas, nevi, and seborrheic keratoses (85.0 vs. 72.6%) [42]. As

a result, AI can accurately distinguish skin pictures of melanoma and its benign imitators.

Despite all of this promising research, an oncologic transformation of nevi cannot be

predicted by doctors or AI, despite the increasing accuracy of diagnosing melanomas [43].

This is because some melanocytic nevi, such as dysplastic or spitzoid nevi, are static on

clinical presentation and there isn't enough data to train AI on their progression.

Understanding how AI may follow the progression of dysplastic nevi requires more research.
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According to a review by Du et al. [44], ML can predict the clinical results and prognosis of

several dermatoses such as non-melanoma skin cancer, psoriasis, and chronic venous ulcers.

Larger sample sizes of data would allow ML algorithms to give reliable results; nevertheless,

this may be a limitation as they must acquire substantial dermatologic data sets through

national and international cooperation between registries. The authors emphasize the necessity

for prospective clinical studies to verify the use of ML models to predict outcomes.

Recently, an ML model accurately predicted the Dermatology Quality of Life Index for

psoriasis patients stopping risankizumab [45], a similar ML technology was used to build a

highly effective biomarker for predicting the progression of alopecia areata to alopecia totalis

or alopecia universalis [46]. Furthermore, a multicenter prospective open-label pilot study was

lately conducted referring to treating psoriatic patients with secukinumab. A prediction model

was created using the clinical characteristics of patients, reaching a 91.88% success rate in

correctly forecasting respondents and nonresponders [47].

Although AI has several uses in dermatology, certain obstacles limit its widespread use,

including generalizability, standardization, and interpretability [23], [35], [44]. Most original

research studies in AI have not studied the applications in large-scale clinical trials. Further,

high-quality clinical trials are required to support the application of AI in the dermatological

field.

Surgery

There is no doubt that artificial intelligence opens up many new possibilities in the field of

surgery. There are many indications that in a few years AI will be able to revolutionize the

science and practice of surgery, leading to a colossal improvement in the quality of patient

care.

In their daily work, surgeons make many risky decisions, and they report that the most

common causes of serious errors are diagnostic mistakes. Traditional clinical decision-making

tools exist, but they are inaccurate and the retrieval of data is tedious and time-consuming

[48]. For this reason, there is a high degree of likelihood that the commonly used artificial

intelligence will initially focus on significantly improving the performance of doctors, by

assisting in making the right clinical decisions. In the future, the surgeon will be able to

perform a comprehensive operational risk assessment based on data collected from the patient
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in a mobile application. The patient will complete data such as glucose level, consumed meals,

physical activity and weight, which will be sent to the electronic medical record (EMR). With

the participation of artificial intelligence, it will allow for automated analysis of population

data and specific patients. As a result, it will be possible to precisely determine the degree of

risk when planning an operation, detect comorbidities as well as provide relevant information

in the field of postoperative care. Additionally, it will be helpful in making decisions during

surgery, due to the analysis of intraoperative progress integrated with EMR data, symptoms

and electrosurgical energy consumption. This can be significant in avoiding adverse events

and faster anticipation of processes taking place during operations. The combination of data

from before, after, and during the procedure will improve the recovery process as well as

predict and prevent complications. This enables care that is individually tailored to the needs

of the patient [49], [50].

It should be emphasized that one of the domains of AI - machine learning algorithms in

bariatric surgery have shown particularly promising possibilities. Most of the ML algorithms

used were able to predict weight loss along with surgical complications with an accuracy of

98% [51]. Machine learning has also found application in the preoperative assessment of

lymph node metastases in patients with colorectal cancer, which is of key importance in the

treatment of this cancer. The clinical model had a diagnostic accuracy of 64.87%. Importantly,

the diagnostic efficiency of the radiometric model was significantly higher than that of the

clinical models [52].

In addition to the key role of artificial intelligence in planning and decision-making, its

application in the field of surgical techniques should be mentioned. It has been shown that

remote control robotic surgery not only increases the safety of the procedure but also allows

operations to be performed in places anatomically inaccessible to the doctor's hands. It is very

likely that in the future, doctors will only supervise robots in surgical operations [53].

Conclusion

We can share the optimism that AI technology will find application in various fields of

medicine. Difficulties that need to be overcome are in sociological and applicative aspects.

Many medical professionals are still afraid that software is going to replace them, while most

currently developed commercial solutions are aimed to ease and increase the effectiveness of
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work. From the user point of view, having an approachable and simple interface, that could be

used without or with a minimal amount of training is one of the most important things.
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