Bombushkar, Igor, Gozhenko, Anatoliy, Korda, Inna, Badiuk, Nataliya, Zukow, Walery and Popovych, Igor. Features of the exchange of electrolytes and nitrogenous metabolites under different options of uric acid exchange in healthy female rats. Journal of Education, Health and Sport. 2020;10(4):405-415. eISSN 2391-8306. DOI http://dx.doi.org/10.12775/JEHS.2020.10.04.043 https://apcz.umk.pl/JEHS/article/view/39438 https://zenodo.org/record/8380624

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019. © The Authors 2020: This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Noncommercial use, distribution Non commercial license Share alike. (http://creativecommons.org/licensex/by-nc-as/4.0) which permits unerstried, non commercial use, distribution and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licensex/by-nc-as/4.0) which permits unerstried, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 01.03.2020. Revised: 18.04.2020. Accented: 30.04.2020.

FEATURES OF THE EXCHANGE OF ELECTROLYTES AND NITROGENOUS **METABOLITES UNDER DIFFERENT OPTIONS OF URIC ACID EXCHANGE IN HEALTHY FEMALE RATS**

Igor S. Bombushkar¹, Anatoliy I. Gozhenko¹, Inna V. Korda², Nataliya S. Badiuk¹, Walery Zukow³, Igor L. Popovych^{1,4}

¹Ukrainian Scientific Research Institute of Medicine for Transport, Odesa prof.gozhenko@gmail.com; badiuk ns@ukr.net

²IY Horbachevs'kyi National Medical University, Ternopil' kordai@tdmu.edu.ua ³Nicolaus Copernicus University, Torun', <u>zukow@umk.pl</u> ⁴OO Bohomolets' Institute of Physiology, Kyïv <u>i.popovych@biph.kiev.ua</u>

Abstract

Background. We previously identified 4 variants-clusters of uricemia and uricosuria both in rats and in humans. It was shown that the clusters differ from each other in the constellation of immune, autonomic and endocrine parameters, which correlate with uricemia and uricosuria. The aim of this study was to identify the electrolytes and nitrogenous metabolites, the combination of which differentiates previously formed quantitative and qualitative variants of uric acid metabolism in rats. Materials and Methods. Experiment was performed on 60 healthy female Wistar rats 220-300 g. The plasma and urine levels of the uric acid, urea, creatinine, calcium, phosphates, chloride, magnesium, sodium and potassium (also in erythrocytes) as well as glucose (in plasma only) were determined. Results. 10 metabolic parameters characteristic of four variants of uric acid exchange were identified: the concentration of glucose, urea, phosphates, magnesium and potassium in plasma, and the latter in erythrocytes, as well as the excretion of creatinine, urea, phosphates and calcium with urine. The accuracy of discrimination of clusters based on the totality of this metabolic constellation together with uricemia is 95%. The cumulative determining influence of the parameters of uric acid exchange (due to the significant advantage of uricosuria over uricemia) on the constellation of metabolic parameters is 56%. Diuresis and excretion of phosphates and potassium are subject to the maximum positive determination from the side of uric acid; excretion of calcium, creatinine and urea are determined to a lesser extent; levels of creatinine, urea and potassium in the plasma are even less, and magnesiumuria is subject to the minimum

determination. **Conclusion.** Uric acid is naturally associated with the state of electrolytes and nitrogenous metabolites exchange in healthy female rats.

Keywords: uricemia, uricosuria, electrolytes, nitrogenous metabolites, relationships, female rats.

INTRODUCTION

We previously identified 4 variants-clusters of uricemia and uricosuria both in rats [1-3] and in humans [4-6]. Using the method of discriminant analysis, it was shown that the clusters differ from each other in the constellation of immune [3,5,6], autonomic and endocrine [7] parameters, which to one degree or another correlate with uricemia and uricosuria. Even earlier in our laboratory, the connection of uricemia with parameters of electrolytes and nitrogenous exchange in urological patients was revealed [8]. Therefore, the aim of this study was to identify the electrolytes and nitrogenous metabolites, the combination of which differentiates previously formed quantitative and qualitative variants of uric acid metabolism in rats.

MATERIAL AND METHODS

Experiment was performed on 60 healthy female Wistar rats 220-300 g. Of these, 10 remained naïve, while others received drinking water of various compositions during the week. The day after the completion of the drinking course animals were placed in individual chambers with perforated bottom for collecting daily urine. The experiment was completed by decapitation of rats in order to collect as much blood as possible. The plasma and urine levels of the uric acid (uricase method), creatinine (by Jaffe's color reaction by Popper's method), urea (urease method by reaction with phenolhypochlorite), glucose (in plasma only; glucose-oxidase method), calcium (by reaction with arsenase III), phosphates (phosphatemolybdate method), magnesium (by reaction with colgamite), chloride (mercury-rhodanidine method), sodium and potassium (both also in erythrocytes; by flamming photometry) were determined. The analyzes were carried out according to the instructions described in the manual [9].

The analyzers "Pointe-180" ("Scientific", USA) and "Reflotron" (Boehringer Mannheim, BRD) were used with appropriate sets and a flamming spectrophotometer "CΦ-47".

Digital material is statistically processed on a computer using the software package "Statistica 5.5".

RESULTS AND DISCUSSION

The discriminant analysis procedure [10] included in the model, in addition to uricemia, 10 variables characteristic of four clusters (Tables 1 and 2). They represent the concentration of glucose, urea, phosphates, magnesium and potassium in plasma, and the latter in erythrocytes, as well as the excretion of creatinine, urea, phosphates and calcium with urine. Other registered parameters of metabolism, primarily uricosuria and urine osmolality, as well as excretion of sodium, chloride, magnesium and phosphates as well as plasma levels of

creatinine, calcium, chloride and sodium, and the latter in erythrocytes, were outside the discriminant model.

Table 1.	Summary	of the	step-by-step	analysis	of r	metabolic	variables	ranked	by	the .	Λ
criterion	1										

Variable	F to	p-value	Lambda	F-value	p-value
Enter	entrer				
Uricemia	45,6	0,000000	0,290	45,6	0,000000
Magnesium Plasma	9,9	0,000026	0,189	23,9	0,000000
Phosphates Plasma	5,6	0,002132	0,144	17,8	0,000000
Phosphates Excretion	5,1	0,003749	0,112	15,1	0,000000
Potassium Plasma	4,3	0,008442	0,090	13,4	0,000000
Urea Plasma	3,5	0,021897	0,074	12,1	0,000000
Potassium Ervthrocytes	2.7	0.055483	0.064	11.0	0.000000
Creatinine Excretion	1,7	0,173862	0,058	9,9	0,000000
Glucose Plasma	1,2	0,330486	0,054	9,0	0,000000
Urea Excretion	1,1	0,349804	0,050	8,2	0,000000
Calcium Excretion	1,2	0,308472	0,047	7,6	0,000000

The identifying information contained in the 11 discriminant variables is condensed into three roots. The first root contains 71,9% of the discriminant power (r*=0,915; Wilks' Λ =0,047; $\chi^2_{(33)}$ =158; p<10⁻⁶), second - 24,0% (r*=0,795; Wilks' Λ =0,286; $\chi^2_{(20)}$ =65; p=10⁻⁶), and the third only 4,1% and, moreover, is insignificant (r*=0,474; Wilks' Λ =0,775; $\chi^2_{(9)}$ =13; p=0,158).

Further, on the basis of the coefficients given in the Table 3 (see the appendix), the individual root values were calculated with subsequent visualization of cluster members in their information field.

In the Table 4 metabolic parameters are grouped and ranked according to their structural coefficients, and together with discriminant variables, variables that did not enter the model, but still carry recognizable information, are also considered.

Table 2. Summary of the analysis of discriminant functions for metabolic variablesranked by structural coefficient

		Cluster	rs of Uric a	acid Excha	ange (n)	Pa	rameters	s of Wilk	s' Statis	tics	
	Variables currently in	S+Un+	Sn+U±	SnUn+	S-Un-	Wil-	Parti-	F-re-	p-	Tole-	Norm
	the model	(9)	(19)	(17)	(15)	ks' Λ	al A	move	level	rancy	(10)
	Uricemia,	1379	865	554	259	0.154	0.302	35.4	10-6	0.840	662
	μM/L	11.0	10.0	12.6	0.6		- ,	,		- ,	0.7
	Creatinine Excretion	11,9	12,6	12,6	8,6	0,052	0,903	1,65	0,190	0,460	8,7
ł	Potassium Ervthrocy-	89.6	87.3	86.2	85.0						87.0
	tes, mM/L	0,0	07,5	00,2	05,0	0,055	0,847	2,77	0,052	0,771	07,0
İ	Glucose Plasma,	5,63	5,27	5,29	5,28	0.050	0.026	1.22	0.214	0.000	4,95
	mM/L					0,050	0,926	1,22	0,314	0,889	
	Urea Plasma,	5,29	8,76	9,29	9,39	0.056	0.824	3.27	0.029	0.656	7,42
	mM/L	0.04	0.50	1.07	0.45		0,02.	<i>c</i> , <i>_</i> ,	0,022		0.00
	Magnesium Plasma,	0,84	0,78	1,27	0,45	0,067	0,690	6,88	0,001	0,809	0,88
	Phosphates Plasma	0.84	1 1 1	1 10	0.46						0.72
	mM/L	0,04	1,11	1,17	0,10	0,078	0,596	10,4	10-4	0,630	0,72
İ	Calcium Excretion,	2,60	4,17	4,27	2,89	0.050	0.026	1.22	0.200	0.275	2,90
	μM/100 g•24h					0,050	0,920	1,23	0,308	0,275	
	Potassium Plasma,	3,63	3,37	3,87	3,25	0.061	0 767	4 66	0.006	0.642	4,23
	mM/L			10.1		0,001	0,707	.,	0,000	0,012	
	Phosphates Excretion,	9,0	12,7	10,4	9,3	0,052	0,895	1,80	0,160	0,229	9,4
	Urea Excretion	231	264	224	144						169
	$\mu M/100 g \cdot 24h$	2.51	204	227	177	0,054	0,865	2,39	0,081	0,151	107
ł	Variables currently not	S+Un+	Sn+U±	SnUn+	S-Un-	Wil-	Parti-	F to	p-	Tole-	Norm
	in the model	(9)	(19)	(17)	(15)	ks' Λ	al A	enter	level	rancy	(10)
	Uricosuria,	7,00	6,63	5,46	3,31	0.047	0 999	0.01	0 999	0.478	5,72
	μM/100 g•24h					0,047	0,777	0,01	0,777	0,470	
	Osmolality Urine,	611	550	523	530	0,046	0,986	0,21	0,889	0,729	559
	MUSM/L Sodium Exerction	201	18/	140	118					-	125
	ыМ/100 g•24h	201	104	149	110	0,046	0,996	0,07	0,977	0,517	155
ł	Chloride Excretion,	213	190	136	154	0.046	0.004	0.04	0.067	0.600	144
	μM/100 g•24h					0,046	0,984	0,24	0,867	0,692	
	Creatinine Plasma,	50	81	97	81	0.044	0.942	0.92	0.439	0.219	73
	μM/L	100		100	10.5	0,011	0,742	0,72	0,137	0,217	100
	Potassium Excretion,	193	214	182	185	0,044	0,950	0,79	0,503	0,283	189
	Magnesium Excretion	2.81	3.62	1 56	5.02						3 30
	uM/100 g•24h	2,01	3,02	ч,50	5,02	0,046	0,989	0,17	0,915	0,557	5,50
İ	Sodium Erythrocytes,	23,1	23,6	23,1	20,4	0.045	0.000	0.47	0.702	0.500	22,0
	mM/L		-			0,045	0,969	0,47	0,703	0,588	
	Sodium Plasma,	129,4	128,7	130,8	127,4	0.046	0.978	0.33	0.802	0.746	128,6
-	mM/L	2.02	2.60	0.41	0.70	,					2.25
	Calcium Plasma,	2,92	2,69	2,41	2,78	0,044	0,943	0,91	0,445	0,783	3,35
	IIINI/L Chloride Plasma	03.8	92.0	0/ 8	90.7						0/ 2
	mM/L	95,0	92,0	,0,79	, ,	0,045	0,958	0,65	0,587	0,639	,5
- 1	-	1	1	1	1	1	1	1	1		

Step 11, N of vars in model: 11; Grouping: 4 grps; Wilks' Λ: 0,0466; approx. F₍₃₃₎=7,6; p<10⁻⁶

	Standardized Coefficients					
Variable	Root 1	Root 2	Root 3			
Uricemia	-0,975	-0,230	0,094			
Magnesium Plasma	-0,267	0,589	-0,682			
Phosphates Plasma	-0,539	0,711	0,593			
Phosphates Excretion	0,078	0,117	1,408			
Potassium Plasma	-0,447	0,548	0,167			
Urea Plasma	0,162	0,624	0,042			
Potassium Erythrocytes	-0,386	-0,333	0,127			
Creatinine Excretion	-0,099	0,359	-0,736			
Glucose Plasma	-0,147	-0,320	0,002			
Urea Excretion	-0,963	-0,206	-0,629			
Calcium Excretion	0,527	0,159	0,310			

Table 3. Standardized and unstandardized coefficients and constants for discriminant metabolic variables

	Raw Coefficients				
Variable	Root 1	Root 2	Root 3		
Uricemia	-0,0040	-0,0010	0,0004		
Magnesium Plasma	-0,6112	1,3477	-1,5617		
Phosphates Plasma	-1,2330	1,6275	1,3584		
Phosphates Excretion	0,0149	0,0223	0,2690		
Potassium Plasma	-0,5778	0,7096	0,2156		
Urea Plasma	0,0577	0,2219	0,0150		
Potassium Erythrocytes	-0,0617	-0,0532	0,0202		
Creatinine Excretion	-0,0214	0,0774	-0,1585		
Glucose Plasma	-0,1864	-0,4069	0,0028		
Urea Excretion	-0,0056	-0,0012	-0,0036		
Calcium Excretion	0,2278	0,0689	0,1339		
Constant	12,9270	-0,7885	-3,6300		

	Correlat	tions Varia	ables-Roots	S+Un+	Sn+U-+	SnUn+	S-Un-
Root 1(71,9%)	Root 1	Root 2	Root 3	-3,39	-1,05	+0,06	+3,30
Uricemia	-,663	-,325	,101	+2,10	+0,59	-0,32	-1,18
Uricosuria	curren	ntly not in	the model	+0,24	+0,17	-0,05	-0,45
Creatinine Excretion	-,133	,168	,077	+0,74	+0,90	+0,88	-0,03
Potassium Erythrocytes	-,102	-,057	-,006	+0,38	+0,04	-0,12	-0,29
Glucose Plasma	-,047	-,077	-,150	+0,62	+0,29	+0,31	+0,30
Sodium Erythrocytes	curren	ntly not in	the model	+0,23	+0,35	+0,24	-0,37
Sodium Excretion	curren	ntly not in	the model	+0,79	+0,59	+0,17	-0,19
Chloride Excretion	curren	ntly not in	the model	+0,70	+0,47	-0,09	+0,10
Osmolality Urine	currently not in the model			+0,37	-0,06	-0,26	-0,21
Urea Plasma	,170	,235	,262	-1,24	+0,78	+1,09	+1,15
Magnesium Excretion	curren	ntly not in	the model	-0,24	+0,15	+0,61	+0,83
Root 2(24,0%)	Root 1	Root 2	Root 3	-1,88	+0,28	+1,63	-1,08
Magnesium Plasma	-,142	,426	-,585	-0,07	-0,17	+0,64	-0,72
Phosphates Plasma	-,193	,411	,132	+0,28	+0,85	+1,02	-0,57
Calcium Excretion	-,023	,225	,195	-0,20	+0,83	+0,90	-0,01
Potassium Plasma	-,094	,183	-,017	-0,85	-0,69	-0,51	-1,39
Creatinine Plasma	curren	ntly not in	the model	-0,93	+0,35	+1,02	+0,34
Sodium Plasma	curren	ntly not in	the model	+0,16	+0,02	+0,43	-0,23
Chloride Plasma	currently not in the model			-0,08	-0,33	+0,07	-0,50
Calcium Plasma	currently not in the model			-0,42	-0,65	-0,92	-0,56
Root 3(4,1%)	Root 1 Root 2 Root 3		-0,53	+0,71	-0,48	-0,03	
Phosphates Excretion	-,038	,108	,446	-0,06	+0,52	+0,16	-0,02
Urea Excretion	-,101	,085	,199	+0,46	+0,71	+0,41	-0,19
Potassium Excretion	curren	ntly not in	the model	+0,03	+0,21	-0,05	-0,03

 Table 4. Correlations between metabolic variables and roots, centroids of clusters and

 Z-values of clusters

Fig. 1 shows that the extreme left zone of the first root axis is occupied by members of the **S+Un+** cluster. Such localization reflects the combination of hyperuricemia with increased (and maximal for the sample) levels of creatinine excretion, erythrocyte potassium and glycemia, and a reduced level of urea in the plasma. Worthy of attention are the maximum normal levels of uricosuria, erythrocyte natriuresis, and urine osmolality for the sample, and elevated levels of natriuria and chlorideuria, instead of minimal normal magniuria. The opposite polar position is occupied by the members of the **S-Un-** cluster, which are characterized by a combination of hypouricemia with a reduced content of potassium in erythrocytes, normal, but minimal for the sample, uricosuria, creatinineuria, and glycemia, instead, maximally elevated levels of urea in plasma and magnesia. Members of the other two clusters occupy an intermediate position along the axis of the first radical and are partially mixed.

Mixing also takes place along the axis of the second radical, but to a lesser extent. At the same time, members of the **SnUn+** cluster are characterized by maximally increased levels of magnesium, phosphatemia, and calciuria (as well as abnormal creatinineemia and natriemia) in combination with minimally reduced potassium (as well as maximally reduced calcium).

An additional unclear demarcation of these clusters occurs along the axis of the third radical, due to the maximally increased excretion of phosphates and urea (as well as potassium) in the members of the Sn+U-+ cluster.

Despite the visual mixing, in the information space of the three discriminant roots, the last two clusters are statistically significantly separated from each other, which is confirmed by the calculation of the squares of the Mahalanobis distances between them, not to mention even the visually clear separation of the first two clusters (Table 5).

Fig. 1. Scattering of individual values of the first and second (top) and first and third (bottom) discriminant metabolic roots of rats of different clusters

criteria (di=11,5) and p-levels (below the dia								
Clusters	S-Un-	S+Un+	SnUn+	Sn+U-+				
S-Un-	0	46	18	21				
S+Un+	19,2	0	24	12				
	10-6							
SnUn+	10,7	10,6	0	5				
	10-6	10-6						
Sn+U-+	13,3	3,6	3,0	0				
	10-6	10-4	0.005					

Table 5. Squares of Mahalanobis distances between clusters (above the diagonal) and F-criteria (df=11,5) and p-levels (below the diagonal)

The application of classification functions (Table 6) enables the retrospective identification of the first two clusters without error, and the other two with 1 and 2 errors, which gives a total accuracy of 95,0% (Table 7).

	S-Un-	S+Un+	SnUn+	Sn+U-+
Variable	p=,250	p=,150	p=,283	p=,317
Uricemia	0,032	0,060	0,043	0,049
Magnesium Plasma	0,443	4,229	6,779	3,770
Phosphates Plasma	15,39	21,65	23,18	23,98
Phosphates Excretion	1,478	1,226	1,369	1,644
Potassium Plasma	11,63	14,81	15,32	15,27
Urea Plasma	0,059	-0,512	0,466	0,122
Potassium Erythrocytes	2,858	3,304	2,905	3,069
Creatinine Excretion	-1,476	-1,316	-1,126	-1,396
Glucose Plasma	11,99	13,56	11,49	12,25
Urea Excretion	0,044	0,084	0,060	0,064
Calcium Excretion	-1,650	-3,296	-2,263	-2,446
Constant	-182,7	-268,9	-220,4	-237,3

 Table 6. Coefficients and constants of classification functions for metabolic accompaniment of clusters of uric acid metabolism

Table 7. Classification matrix for uric acid excha	nge clusters
--	--------------

Rows: observed classifications; columns: predicted classifications

	Percent	S+Un+	Sn+U-+	SnUn+	S-Un-
Clusters	Correct	p=,150	p=,317	p=,283	p=,250
S+Un+	100	9	0	0	0
Sn+U-+	94,7	0	18	1	0
SnUn+	88,2	0	2	15	0
S-Un-	100	0	0	0	15
Total	95,0	9	20	16	15

At the last stage, we will analyze the connections between the parameters of uric acid and electrolyte-nitrogen exchanges. The correlation matrix shows that uricemia is significantly associated with plasma levels of urea and creatinine and magnesia (Table 8).

 Table 8. Matrix of correlations between parameters of uric acid and electrolyte-nitrogen exchanges

	Uricemia	Uricosuria
Variable		
CrE	0,15	0,39
Diur	0,09	0,54
CrP	-0,28	0,13
KE	0,09	0,46
MgE	-0,30	-0,06
CaE	-0,03	0,33
PE	0,02	0,50
UreaE	0,12	0,35
UreaP	-0,31	0,06
KP	0,05	0,20

However, when constructing a regression model by stepwise exclusion, the program left creatinineuria in the model, excluding creatinineemia. As a result, the determination rate was 26% (Table 9).

	R=0,509; R^2=0,259; Adjusted R^2=0,219; F(3,6)=6,5; p=0,0007									
	Beta	St. Err.	В	St. Err.	t(56)	p-value				
N=60		of Beta		of B						
Intercpt			926,31	179,17	5,17	0,000003				
Cr E	0,353	0,127	31,84	11,41	2,79	0,007176				
Mg E	-0,394	0,128	-60,43	19,55	-3,09	0,003108				
Urea P	-0,282	0,117	-39,98	16,62	-2,41	0,019495				

Table 9. Regression model for metabolic parameters and uricemia

Instead, the connections of uricosuria are more numerous and stronger. The descending series consists of: daily diuresis, urinary excretion of phosphates, potassium, creatinine, urea and calcium. Interestingly, with stepwise elimination, the last two parameters were not included in the regression model, while plasma potassium was. The rate of determination of the listed parameters by uricosuria is 39% (Table 10).

Table 10. Regression model for metabolic parameters and uricosuria

	R=0,621; R^2=0,386; Adjusted R^2=0,329 F(5,5)=6,8; p=0,00006						
	Beta	St. Err.	В	St. Err.	t(54)	p-value	
		of Beta		of B			
N=60							
Intercpt			-0,071	1,853	-0,04	0,969	
Cr Excr	-0,404	0,238	-0,268	0,158	-1,70	0,096	
Diurese	1,023	0,452	4,301	1,900	2,26	0,028	
K Excr	0,338	0,144	0,011	0,005	2,34	0,023	
P Excr	-0,388	0,350	-0,234	0,211	-1,11	0,272	
K Plasma	0,123	0,111	0,496	0,450	1,10	0,275	

According to the results of the canonical correlation analysis, the total determining influence of the parameters of uric acid exchange (due to the significant advantage of uricosuria over uricemia) on the constellation of parameters of electrolyte and nitrogen exchange reaches 56% (Fig. 3).

Fig. 3. Scatterplot of canonical correlation between uricosuria and uricemia (X axis) and metabolic parameters (Y axis) of female rats

The factor loadings on the metabolic canonical root indicate that diuresis and excretion of phosphates and potassium are the most positively determined; calcium, creatinine and urea excretion are less determined; creatinine, urea and potassium levels in plasma are even less determined, and magnesiumuria is the least determined (Table 11).

Table 11. Factor structure of canonical roots of uric acid and neuro-endocrine adaptation factors

	left set		
Variable	R		
Uricosuria	-0,910		
Uricemia	-0,070		
	right set		
Variable	R		
Creatinine Excretion	-0,490		
Diurese	-0.765		
Creatinine Plasma	-0,373		
Potassium Excretion	-0,639		
Magnesium Excretion	-0,098		
Calcium Excretion	-0,519		
Phosphates Excretion	-0,745		
Urea Excretion	-0,460		
Urea Plasma	-0,289		
Potassium Plasma	-0,278		

CONCLUSION

Uric acid is naturally associated with the state of electrolytes and nitrogenous metabolites exchange in healthy female rats.

A detailed discussion will be conducted after the publication of the results of a similar study in humans.

CONFORMITY TO ETHICAL STANDARDS

Experiments on animals have been carried out in accordance with the provisions of the Helsinki Declaration of 1975, revised and supplemented in 2002 by the Directives of the National Committees for Ethics in Scientific Research.

The conduct of experiments was approved by the Ethics Committee of the SR Institute of Medicine of Transport. The modern rules for the maintenance and use of laboratory animals complying with the principles of the European Convention for the Protection of Vertebrate Animals used for scientific experiments and needs are observed (Strasbourg, 1985).

REFERENCES

1. Gozhenko AI, Smagliy VS, Korda IV, Zukow W, Popovych IL. Cluster analysis of uric acid exchange parameters in female rats. Journal of Education, Health and Sport. 2019; 9(11): 277-286.

2. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Features of immune status in different states of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2019; 9(12): 167-180.

3. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual problems of transport medicine. 2019; 4(58): 123–131.

4. Smagliy VS, Gozhenko AI, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Variants of uric acid metabolism and their immune and microbiota accompaniments in patients with neuroendocrine-immune complex dysfunction. Actual problems of transport medicine. 2020; 1(59): 114–125.

5. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between parameters of uric acid exchange and immunity as well as microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(1): 165-175.

6. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. Relationships between changes in uric acid parameters metabolism and parameters of immunity and microbiota in patients with neuroendocrine-immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(2): 212-222.

7. Popovych IL, Bombushkar IS, Badiuk NS, Korda IV, Zukow W, Gozhenko AI. Features of the state of neuro-endocrine factors of adaptation under different options of uric acid metabolism in healthy female rats. Journal of Education, Health and Sport. 2020; 10(3): 352-362.

8. Ivassivka SV, Popovych IL, Aksentiychuk BI, Flyunt IS. Physiological Activity of Uric Acid and its Role in the Mechanism of Action of Naftussya Water [in Ukrainian]. Kyïv: Computerpress; 2004: 163.

9. Goryachkovskiy AM. Clinical Biochemistry [in Russian]. Odesa: Astroprint; 1998: 608.

10. Klecka WR. Discriminant Analysis [trans. from English in Russian] (Seventh Printing, 1986). In: Factor, Discriminant and Cluster Analysis. Moskva: Finansy i Statistika; 1989: 78-138.