
26

Diachenko Liliia, Lazoriak Oleksandr, Dobrovolsky Yurii, Prokhorov Georgii, Shumyliak Liliia. Neural networks for the
Recognition of X-ray Images of Ailments for Covid-19. Journal of Education, Health and Sport. 2022;12(6):26-38. eISSN 2391-8306.
DOI http://dx.doi.org/10.12775/JEHS.2022.12.06.002
https://apcz.umk.pl/JEHS/article/view/JEHS.2022.12.06.002
https://zenodo.org/record/6490613

The journal has had 40 points in Ministry of Education and Science of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of December 21, 2021. No. 32343.
Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical Culture Sciences (Field of Medical sciences and health sciences); Health Sciences (Field of Medical Sciences and Health Sciences).

Punkty Ministerialne z 2019 - aktualny rok 40 punktów. Załącznik do komunikatu Ministra Edukacji i Nauki z dnia 21 grudnia 2021 r. Lp. 32343. Posiada Unikatowy Identyfikator Czasopisma: 201159.
Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu).

© The Authors 2022;
This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike.
(http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 03.04.2022. Revised: 20.04.2022. Accepted: 26.04.2022.

Neural networks for the Recognition of X-ray Images of Ailments for
Covid-19

Liliia Diachenkoa, Oleksandr Lazoriaka, Yurii Dobrovolskya, Georgii Prokhorova,
Liliia Shumyliaka

a Yuriy Fedkovych Chernivtsi National University, Kotsyubynsky 2, Chernivtsi, 58012,
Ukraine

l.dyachenko@chnu.edu.ua (Liliia Diachenko);
oleksandr.lazoriak@chnu.edu.ua (Oleksandr Lazoriak);
y.dobrovolsky@chnu.edu.ua (Yurii Dobrovolskyi),
g.prokhorov@chnu.edu.ua (Georgii Prokhorov),
l.shumylyak@chnu.edu.ua (Liliia Shumyliak)

Abstract
This investigation analyzes the current state of neural networks, considers the available types,
optimizers used for training, describes their benefits and disadvantages. The task of computer
vision is defined and the answer to the question why the use of neural networks is an
important task today is given. The powerful neural network from Google was proposed as an
example and its algorithm is described in detail. Studies have shown how to configure models
to get high performance.

Keywords: Convolutional neural network, computer vision, optimizers, X-rays, model,
Covid-19, machine learning.

1. Introduction

At the moment, the task of recognizing X-rays images of patients with Covid-19 is
extremely important. Proper recognition of indicators of the disease in the early stages, can
significantly increase the chances of rapid recovery of a patient. Of course, the recognition of
images can be done manually by highly qualified doctors, but in periods of pandemia , such
staff is usually not enough, and in some medical institutions (especially in small towns) the
amount of such a specialists in principle is limited. Therefore, automating the recognition of
such images is of a high need.

http://dx.doi.org/10.12775/JEHS.2022.12.06.002
https://apcz.umk.pl/JEHS/article/view/JEHS.2022.12.06.002
https://zenodo.org/record/6490613

27

One of the ways of automations of recognizing such images is n Artificial Neural
Networks, which is used for computer vision tasks [1]. Recognition of objects in images and
their classification is a task that significantly reduces the cost of various resources (time,
money, etc.). An example is DeepFake [2,3], which allows you to replace people's faces with
video and is distributed as an open source.

2. Review of neural network development tools

To create an efficient and modern neural network, it is important to use modern methods
and tools of development. The necessary tools are: a programming language, a virtual
environment that would allow you to easily run the application on another personal computer
and a framework for working with neural networks.

The most commonly used programming language among scientists and engineers is
Python [4]. It has several advantages over competitors in the paradigm of scientific work.
First of all, it is the speed of mastery and strong support of the community. Many Python
libraries for AI and ML, which significantly reduce costs and speed up development. Simple
syntax and readability help test complex processes quickly and make the language
understandable to everyone.

As you can see, Python has many advantages, but there are some limitations: because it is
an interpreted language, Python can be slower than other compiled languages; Matlab lacks
Python counterparts for several toolkits; MatPlotLib also has some problems, including the
lack of a unified interfaces.

Popular frameworks are Pandas [5], Numpy [6], Scipy [7]. The list of libraries for working
with neural networks includes PyTorch [8], Theano [9], Caffe [10], TensorFlow [11] and
others.

There are several technologies in the development of artificial intelligence.
Apache MxNet [12] is a fast and flexible open source deep learning framework that

supports state-of-the-art neural network technology, including convolutional neural networks
and long-term short-term memory. Compared to TensorFlow, MXNet has less open source
community, bug fixes and other features take longer due to a lack of basic community
support. Although MxNet is widely used by many technical organizations, MxNet is not as
popular as Tensorflow.

PyTorch [13] is an open source Python machine learning library based on the Torch
machine learning library and well optimized for graphics processing (GPU). Deep neural
networks and tensor calculations with acceleration on the graphics card are key features of
the library. Disadvantages include the lack of interfaces for monitoring and visualization,
such as TensorFlow. Also, PyTorch is a new deep learning system that currently has less
community support.

Theano [14] is a Python library that allows you to define, optimize, and evaluate
mathematical expressions using multidimensional arrays. The main purpose of the library is
to work quickly with large neural networks. The disadvantage is that it has a complex syntax
compared to Tensorflow, so it will not be the best choice for beginners.

Keras [15] is one of the main open source libraries for neural networks and machine
learning. The feature is that it can work with Tensorflow, Deeplearning4j, MXNet, Microsoft
Cognitive Toolkit (CNTK), Theano. Also, it implements optimizers, neural layers, layer
activation functions, initialization schemes, cost functions and control models. Keras is not a
full-fledged ML full library, but instead extends the functionality of other libraries.

Tensorflow [16] is an open library for machine learning. Provides an API for working with
programming languages ​ ​ such as Java, C ++, Haskell, Go and Python. In this library you
can build neural networks for speech recognition, highlighting faces in photos, determining

28

the similarity of images and more. It has an excellent architecture that allows it to run on
phones, servers and desktops. The main advantage is abstractions, which allow you to focus
on the logic of the application, rather than on the small details of the implementation of
certain algorithms. Disadvantages include the fact that TensorFlow is a bit slow compared to
frameworks such as MxNet and CNTK, debugging can be a daunting task and a lack of
OpenCL support.

To solve this problem, it was first decided to use existing open source models. Our model
is based on the DenseNet model [17]. The advantages include the fact that a tight connection
achieves fewer parameters and higher accuracy compared to ResNet [18] and Res - Pre-
Activation ResNet [19].

In DenseNet, each layer receives additional inputs from all previous layers and passes its
own function maps to all subsequent layers. Concatenation is used. Each layer receives
"collective knowledge" from all previous layers.

Because each layer receives function maps from all previous layers, the network can be
thinner and more compact, ie the number of channels can be smaller. Growth rate k is the
additional number of channels for each layer.

For each layer of the composition apply the packet rate of pre-activation (BN) and ReLU,
then 3 × 3 convolution. This is an idea from Pre-Activation ResNet [20].

The monk_v1 framework was used to quickly implement a convolutional neural network.
This library implements an add-on to Tensorflow [21] and Keras [22] and contains popular
open source models. DenseNet described above was selected from the list. As a result, an
accuracy of 45.45% was obtained when passing the test data. When classifying images using
this neural network, which is based on the DenseNet model, the results shown in Figures 1, 2,
3 were obtained.

Figure 1: An example of the X-ray classification of a healthy person

29

Figure 2: An example of the classification of X-rays of a sick person for viral pneumonia

Figure 3: An example of the classification of X-rays of a sick person on coronavirus-19
As you can see in the images, this model could not learn well on the dataset and makes

mistakes. Although the patient's picture could be classified correctly, but today the accuracy
of 66% is very low.

The problem with this solution is the scale of coverage of possible categories of images
with which the used model can work. Therefore, for specific tasks, it is better to use your own
models.

That is why it was decided to develop our own model that would increase the accuracy of
image recognition to an acceptable level.

30

3. Implementation and description of the software applcation
3.1. Architecture of a proposed model for a neural network

The list of layers included in the convolutional neural network includes: input layer, 2D
convolution layers (Conv2D), aggregation layers for two-dimensional inputs (MaxPolling2D),
layer of the average spatial data aggregation operation (AveragePo), input smoother (Flatten),
ordinary tightly connected layers (Dense). The hierarchy of layers in the model is presented

in Figure 4.
Figure 4: Representation of the hierarchy of model layers
Figure 5 shows the total number of parameters that can be learned and not.

Figure 5: Representation of the number of parameters found by the model based on the
input data

31

As can be seen from Figure 5 of the 14 million parameters found by the model, only
almost 33,000 are suitable for training.

3.2. Data set in use

Neural network learning is impossible without data, so one of the important tasks is to
build a quality dataset.

There are the following sites that contain an open database of open licenses. These include
CrowdANALYTIX, DrivenData, crowdAI and Kaggle.

CrowdANALYTIX, DrivenData, crowdAI are platforms for data forecasting competitions.
Data is accessed after the user joins the competition.

Kaggle is a platform for date scientists, which competes in forecasting and data processing
solutions. Any registered user can download a data set, and other users will offer their own
solutions for the data set. The most important reason for choosing is that the data is available
without joining the competition, as is necessary in others. That's why Keggle allows you to
download data and build your own large datasets from multiple datasets. That is why the
Kaggle platform was chosen.

The dataset used was developed according to the following scheme: the first part is data
and images of healthy chest images of people, which are designed to teach and verify the
original results, the second one - consists of images of sick people on covid-19, annotations
in format json and image metadata. The structure of the created dataset is shown in Figure 6.

Figure 6: File structue of the used dataset.

32

3.3. Data flow diagram of the developed software application

Figure 7 shows a data flow diagram of the created software product, from which we can
see the sequence of processing and manipulation of data, starting with loading images that
need to be recognized and ending with the output of recognition results with forecast.

Figure 7: Data flow diagram of the developed software.

3.4. Application components and interfaces

The software product consists of:
• Script for data representation
• implementation of Artificial neural network (ANN);
• implementation of access to the trained model and output of results.

A squeak was used to clear some of the data, which allowed for better output and reduced
noise. In the module where the ANN is implemented, the model is created, trained with
representative data after script cleaning and saving the model for further use and API
architecture. In the module where the model is accessed, it is downloaded and activated for
further use. The output of forecasts is also in this module.

In the first module there is work with data, their last preparation for training. Figure 8
shows the images that were prepared and displayed as an array using the matplotlib library.

33

Figure 8: An array of prepared data of chest images of healthy people

Figure 9 shows the last preparation for learning these chest images of sick people in the
form of an array.

Figure 9: Array of chest images of patients with Covid-19

After the learning process, a general graph is displayed on the prepared data (see Fig. 10)
to understand the effectiveness of the created model and training data using the matplotlib
library. The graph shows the main criteria for evaluating the model.

The x-axis shows the percentage scale, where 0 corresponds to 0%, and 1 corresponds to
100%, and the y-axis shows the number of epochs (cycles) of training. As can be seen from
the graph, the metrics accuracy of verification and accuracy go to 1, which is a good result
for the model and means high accuracy of image classification, which was the goal. And the
parameter of loss (error) goes to the minimum values ​ ​ during all epochs of training.

34

Figure 10: Graph of losses and accuracy of the model

In the third module there is a connection of the created model for the analysis of input
images and assignment of their class. The image (see Fig. 11) which shows the tested attempt
is a picture of the diseased chest and, as can be seen from the result, the neural network
performed the task correct.

Figure 11: Display the result of the image check

35

Healthy chest image recognition will also be tested. The neural network also performs this
task correctly (see Fig. 12).

Figure 12: Display the result of the image check

A number of iterations of the test were performed (12 times the chest images alternated in
any form), the result was reliable answers during all iterations. That is, using our own model
and optimized dataset, we have increased the accuracy of X-ray recognition by more than
30%.

All the processes that take place during the creation of the application were run on a
powerful remote virtual machine, which reduced the learning time of ANN. On a virtual
machine, the speed of one epoch (see Figure 13) took from 6 seconds 402 milliseconds to 3
seconds 160 milliseconds.

36

Figure 13: Display the speed of training in seconds for each era

4. Conclusion

This investigation analyzes the current state of neural networks, identifies the tasks of
computer vision and answers why the use of neural networks is an important task today. Also,
the available types of neural networks were considered, the optimizers used for training
described their advantages and disadvantages.

Research has shown how to configure models to get high performance in the end, and this
has influenced the requirements for your own model.

As an example of the use of open models for neural networks, an open model SNM was
created and it was demonstrated why their use is not suitable for specific tasks (recognition
accuracy was within 66%).

A functioning convolutional neural network was developed for the classification of images
of chest images, which allowed to increase the recognition accuracy compared to open
models by more than 30%. This allows us to conclude that the model architecture used and
the optimizer are the most optimal for this task. Iterative testing demonstrated the
effectiveness of the neural network. Also, the evaluation of the model could be seen on the
accuracy coefficients and on the loss functions (accuracy coefficients go to 1, and the loss
(error) parameter goes to the minimum values ​ ​ during all epochs of training).

This allows us to conclude that the created ANN can be successfully used for X-ray
recognition of patients, providing recognition accuracy of up to 100%

37

References

[1] Ballard Will. Hands-On Deep Learning for Images with TensorFlow: Packt
Publishing Ltd., Birmingham, 2018.

[2] Aldwairi, M., Alwahedi A., Detecting Fake News in Social Media Networks.
Procedia Computer Science, 141, 2018, pp. 215–222. doi:
10.1016/j.procs.2018.10.171.

[3] Fletcher, J., Deepfakes, Artificial Intelligence, and Some Kind of Dystopia: The New
Faces of Online Post-Fact Performance. Theatre Journal, 70(4), 2018, pp. 455–471.
doi:10.1353/tj.2018.0097.

[4] Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., et
al., Theano: a Python framework for fast computation of mathematical expressions,
2016. URL: https://arxiv.org/abs/1605.02688.

[5] Daniel Y. Chen., Pandas for Everyone: Python Data Analysis. Addison-Wesley
Professional, Boston, 2017.

[6] Mahesh Ravishankar and Vinod Grover, Automatic acceleration of Numpy
applications on GPUs and multicore CPUs. CoRR, 2019. URL:
http://arxiv.org/abs/1901.03771.

[7] Virtanen, P., Gommers, R., Oliphant, T.E. et al., SciPy 1.0: fundamental algorithms
for scientific computing in Python, Nat Methods 17, 2020, pp. 261–272. URL:
https://doi.org/10.1038/s41592-019-0686-2.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer,
Automatic differentiation in pytorch, in: NIPS Workshop, Long Beach, CA, 2017.

[9] Theano Development Team, Theano: A Python framework for fast computation of
mathematical expressions, 2017. URL: https://arxiv.org/abs/1605.02688.

[10] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, Mohak Shah,
Comparative study of caffe, neon, theano, and torch for deep learning, Workshop
track – ICLR 2016, San Juan, Puerto Rico, 2016.

[11] L. Yuan, Z. Qu, Y. Zhao, H. Zhang and Q. Nian, A convolutional neural network
based on TensorFlow for face recognition, IEEE 2nd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), 2017, pp. 525-
529. doi: 10.1109/IAEAC.2017.8054070.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang, MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems, ML Systems
workshop at NeurIPS, Montréal, Canada, 2015.

[13] The PyTorch team, Torch Script. URL: https://pytorch.org/docs/stable/jit.html.
[14] Partho Sen, Santosh Lamichhane, Vivek B Mathema, Aidan McGlinchey, Alex M

Dickens, Sakda Khoomrung, Matej Orešič, Deep learning meets metabolomics: a
methodological perspective, Briefings in Bioinformatics, Volume 22, Issue 2, March
2021, pp. 1531–1542. URL: https://doi.org/10.1093/bib/bbaa204

[15] Taylor B Arnold, KerasR: R Interface to the Keras Deep Learning Library, Journal
of Open Source Software, 2(14), (2017) 296, doi:10.21105/joss.002961

[16] A. M. Taqi, A. Awad, F. Al-Azzo and M. Milanova, "The Impact of Multi-
Optimizers and Data Augmentation on TensorFlow Convolutional Neural Network
Performance," 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), 2018, pp. 140-145. doi: 10.1109/MIPR.2018.00032.

[17] Y. Zhu and S. Newsam, DenseNet for dense flow, IEEE International Conference on
Image Processing (ICIP), 2017, pp. 790-794. doi: 10.1109/ICIP.2017.8296389.

38

[18] Riaz Ullah Khan, Xiaosong Zhang, Rajesh Kumar, and Emelia Opoku Aboagye,
Evaluating the Performance of ResNet Model Based on Image Recognition, in:
Proceedings of the 2018 International Conference on Computing and Artificial
Intelligence (ICCAI 2018), Association for Computing Machinery, New York, NY,
USA, 2018, pp. 86–90. doi:/10.1145/3194452.3194461.

[19] H. Kim, S. Park and J. Paik, Pre-Activated 3D CNN and Feature Pyramid Network
for Traffic Accident Detection, 2020 IEEE International Conference on Consumer
Electronics (ICCE), 2020, pp. 1-3, doi: 10.1109/ICCE46568.2020.9043125.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, U-net: Convolutional
networks for biomedical image segmentation, in: International Conference on Medical
image computing and computerassisted intervention, Springer, 2015, pp. 234–241.

[21] D. Demirović, E. Skejić and A. Šerifović–Trbalić, Performance of Some Image
Processing Algorithms in Tensorflow, 25th International Conference on Systems,
Signals and Image Processing (IWSSIP), Maribor, Slovenia, 2018, pp. 1-4, doi:
10.1109/IWSSIP.2018.8439714.

[22] Ahmed Fawzy Gad, Practical Computer Vision Applications Using Deep Learning
with CNNs With Detailed Examples in Python Using TensorFlow and Kivy, Apress
Media LLC: Welmoed Spahr, 2018. 421 p.

	1.Introduction
	2.Review of neural network development tools
	3.Implementation and description of the software app
	3.1.Architecture of a proposed model for a neural netw
	3.2.Data set in use
	3.3.Data flow diagram of the developed software applic
	Figure 7: Data flow diagram of the developed softw
	3.4.Application components and interfaces

	4.Conclusion
	References

