Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu oraz fermentu z owoców rokitnika zwyczajnego otrzymanego w procesie fermentacji z wykorzystaniem grzyba herbacianego kombuchy

Comparison of cosmetic and dermatological properties of extract and ferment of sea buckthorn fruit obtained by fermentation using kombucha tea fungus

Aleksandra Ziemlewiska, Katarzyna Klimczak, Martyna Zagórska-Dziok, Zofia Nizioł-Lukaszewska

Katedra Technologii Produktów Kosmetycznych i Farmaceutycznych, Wyższa Szkoła Informatyki i Zarządzania, ul. Sucharskiego 2, 35-225 Rzeszów; e-mail: aziemlewiska@wsiz.edu.pl

Słowa kluczowe: rokitnik zwyczajny, kombucha, właściwości kosmetyczne, fermenty, ekstrakty roślinne

Keywords: Hippophae rhamnoides L., kombucha, cosmetic properties, ferments, plant extracts

Streszczenie

Kombucha to napój o działaniu prozdrowotnym wytwarzany poprzez fermentację słodzony herbaty przy użyciu symbiotycznych kultur bakterii należących do rodzaju Acetobacter i Gluconobacter oraz drożdży z rodzaju Saccharomyces wraz z kwasem glukurorowym. W pracy porównano właściwości kosmetyczne i dermatologiczne ekstraktu z owoców rokitnika zwyczajnego (Hippophae rhamnoides L.) oraz jego fermentu otrzymanego w procesie fermentacji za pomocą grzyba herbacianego. W tym celu fermentowane i niefermentowane ekstrakty porównano pod względem składu chemicznego, poddając je analizie chromatograficznej HPLC/ESI-MS. Oceniono aktywność antyoksydacyjną badanych próbek z wykorzystaniem testów DPPH i ABTS. Określono także cytotoksyczność, przeprowadzając testy Alamar Blue i Neutral Red, oceniające stopień żywotności oraz metabolizm komórek skóry: fibroblastów i keratynocytów. Potencjalne właściwości przeciwstarzeniowe określono na podstawie ich zdolności do hamowania aktywności metaloproteinaz: kólagnazy i elastazy. Ponadto zostały przeprowadzone testy aplikacyjne, które wykazały pozytywne wpływ ekstraktów oraz fermentów na transepidermalną ucieczkę wody z naskórka (TEWL) oraz nawilżenie skóry. Uzyskane wyniki wskazują, że zarówno ekstrakt z owoców rokitnika zwyczajnego, jak i ferment otrzymany za pomocą kombuchy mogą stanowić cenny składnik produktów kosmetycznych.
Summary

Kombucha is a health-promoting beverage produced by fermenting sweetened tea using symbiotic cultures of bacteria belonging to the genus Acetobacter, Gluconobacter and yeast of the genus Saccharomyces along with glucuronic acid. The study compared the cosmetic and dermatological properties of sea buckthorn (*Hippophae rhamnoides* L.) fruit extract and its ferment obtained through a fermentation process using a tea fungus. For this purpose, the fermented and non-fermented extracts were compared in terms of chemical composition using the HPLC/ESI-MS chromatographic method. The antioxidant activity of the tested samples was evaluated using DPPH and ABTS assays. Cytotoxicity was also determined by conducting Alamar Blue and Neutral Red assays assessing cell viability and metabolism using skin cell lines: fibroblasts and keratinocytes. Potential anti-aging properties were determined by their ability to inhibit the activity of metalloproteinases: collagenase and elastase. In addition, application tests have been carried out showing positive effects of the extracts and ferments on TEWL and skin hydration. The results indicate that both sea buckthorn fruit extract and ferment obtained with kombucha can be valuable ingredients in cosmetic products.

Wstęp

Rokitnik zwyczajny (*Hippophae rhamnoides* L.) to krzew należący do rodziny Elaeagnaceae, który słynie ze swoich cennych właściwości prozdrowotnych i jest szeroko stosowany w przemyśle spożywczym jako naturalne źródło substancji aktywnych [1]. Rośлина ta znajduje jednak o wiele więcej zastosowań, m.in. w przemyśle kosmetycznym i farmaceutycznym. Od lat utrzymywanym się trendem w produkcji kosmETYków jest sięganie po surowce pochodzenia naturalnego, w tym ekstrakty roślinne. W Polsce roślina ta występuje naturalnie wzdłuż wybrzeży Bałtyku i jest objęta częściową ochroną [2]. Z roku na rok przybywa również plantacji rokitnika, gdyż popyt na jego owoce stale rośnie. Jagody rokitnika są często przedmiotem badań, które koncentrują się przede wszystkim na jej właściwościach antyoksydacyjnych, przeciwbakteryjnych czy przeciwpargetniczych [3]. Za właściwości antyoksydacyjne rokitnika w dużej mierze odpowiada dysmutaza ponadtenkowa oraz proantocyjaniny, które wykazują działanie ochronne dla mitochondriów przed stresem oksydacyjnym wywołanym przez wolne rodniki, m.in. *H₂O₂* [4].

Innowacyjnym podejściem jest poddanie ekstraktów roślinnych procesowi fermentacji, który wzmacnia ich działanie prozdrowotne [5]. Biofermenty wykazują wzmożone działanie przeciwbakteryjne oraz redukujące ilość wolnych rodników, wpływających na szybsze starzenie się organizmu. Badania wskazują, że poddanie surowców roślinnych fermentacji z udziałem konsorcjum mikroorganizmów SCOBY
Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

umożliwia uzyskanie nowych, cennych właściwości, które można modyfikować, dobierając odpowiednje warunki fermentacji [6]. Warto zaznaczyć, że procesowy fermentacji można poddać nie tylko pięknie wybarwione owoce rokitnika, ale również pozostałe części rośliny, które wykazują wiele pożądanych właściwości [7, 8]. Rokitnik zwyczajny stanowi doskonały surowiec kosmetyczny ze względu na swoje działanie przeciwstarzeniowe, odżywcze oraz antybakteryjne. Ostatnia z właściwości jest ściśle związana z utrzymaniem prawidłowego mikrobiomu skóry, z którego zaburzeniem wiąże się liczne problemy dermatologiczne, jak trądzik, łuszczycy czy atopowe zapalnie skóry [9]. Olej z nasion badanej rośliny wykazuje działanie antybakteryjne, regenerujące oraz nawilżające dla skóry poprzez ochronę przed nadmierną utratą wody z naskórka [10, 11]. Ponadto stosowanie kosmetyków z rokitnikiem może regulować wydzielanie sebum. Badania wykazały, że odlew z H. rhamnoides zawiera znaczącą ilość witaminy C, znajdującej wiele zastosowań w przemyśle kosmetycznym [12], mającej właściwości rozjaśniające, przyspieszającej regenerację skóry i gojenie się ran [13]. Wysoka zawartość polifenolowych obecnych w ekstrakcie wpływa na stymulację syntetyz elastyny oraz kolagenu, poprawiając radę i nawilżenie skóry oraz redukując oznaki starzenia [14].

Cel pracy stanowiła ocena potencjału biologicznego ekstraktu i fermentu owoć rokitnika zwyczajnego pod kątem zastosowania w kosmetologii i dermatologii. Ekstrakt z owoców rokitnika poddano procesowi fermentacji za pomocą grzyba herbacianego kombuchy (SCOBY). Otrzymane ekstrakty oraz fermenty następnie poddano kompleksowej ocenie biochemicznej oraz analizie fитochemicznej.

Materiał i metody badań

Technologia otrzymywania ekstraktów oraz procedura przeprowadzenia procesu fermentacji

Ekstrakty z owoców rokitnika zwyczajnego (Hippophae rhamnoides L.) otrzymano poprzez znieczyszczenie 15 g rozdrobnionych owoców z 250 ml wody destylowanej o temperaturze pokojowej (około 20°C). Ekstrakcję prowadzono przez 24 godziny na mieszadle magnetycznym. Otrzymane ekstrakty zostały prędko przetworzone przez sytuacji wykonane z bibuły filtracyjnej Whtama nr 10. Otrzymane ekstrakty poddano procesowi fermentacji. W tym celu do ekstraktu dodano 25 g sacharozu (stężenie końcowe 10,0% m/v). Następnie dodano 5 g grzybka herbacianegoSCOBY oraz 25 ml startera kombuczy. Fermentację prowadzono w sterylnych szklanych zlewkach przez okres 14 dni. Po zakończeniu procesu fermentacji otrzymane ferment przefiltrowano przez jąłową gazę. Otrzymany ekstrakt i ferment odparowano do sucha, rozcieńczono wodą oczyszczoną o temperaturze pokojowej (około 20°C) do finalnych stężeń i poddano dalszym analizom.
Oznaczenie zawartości aktywnie biologicznych związków
Analizę chromatograficzną HPLC związków aktywnych w otrzymywanym ekstrakcie oraz fermentie przeprowadzono przy użyciu kolumny RP18 Titan (Supelco, Sigma-Aldrich) (10 cm x 2,1 mm, wielkość cząstek 1,9 μm). Temperatura termostatu wynosiła 20°C. Jako fazę ruchomą zastosowano mieszaninę acetonitryla z 0,05% kwasem mrówkowym (rozpuszczalnik A) i wody z 0,05% kwasem mrówkowym (rozpuszczalnik B) przy przepływie 0,2 ml/min. Badane próbki rozdzielono, stosując elucję gradientową według programu: 0–32 min od 10% A do 20% A (od 90% B do 80% B) oraz 32–60 min od 20% A do 40% A (od 80% B do 60% B). Chromatogramy zarejestrowano w zakresie 200–400 nm. Warunki LC-MS: parametry pracy źródła jonów były następujące: temperatura gazu suszającego 325°C, przepływ gazu suszącego 5 l/min, ciśnienie nebulizatora 30 psi, napięcie kapilary 3500 V, fragmentatora 170 V i skimmera 65 V. Jony pozyskiwano w zakresie od 100 do 1050 m/z.

Pomiar zdolności antyoksydacyjnej metodą redukcji rodnika DPPH
Zdolność zmiatań wolnych rodników w owocach rokitnika oznaczono za pomocą zmodyfikowanej metody opisanej przez Branda-Williamsa [15]. Do analizy właściwości antyoksydacyjnych badanych ekstraktów pobrano po 100 μl ekstraktu w stężeniach: 100, 250, 500, 1000, 1500 oraz 2000 μg/ml, następnie dodano 100 μl 4 mM roztworu DPPH i zmierzono absorbancję przy długości fali λ = 540 nm. Pomiary zostały wykonane co 5 min przez 30 min z wykorzystaniem czytnika mikropłytet Filtr Max 5 (ThermoScientific). Próbę kontrolną w tym doświadczeniu stanowiło 100 μl wody destylowanej z 100 μl DPPH. Pomiary analizowano w trzech powtórzeniach dla każdego stężenia.

Do obliczenia procentu zmiatań wolnego rodnika DPPH wykorzystano równanie:

\[
\text{% zmiatań DPPH} = \frac{A_k - A_b}{A_k} \times 100,
\]

gdzie:
Ak – absorbancja próbki kontrolnej,
Ab – absorbancja próbki badanej.

Pomiar zdolności antyoksydacyjnej metodą redukcji rodnika ABTS
Druga metoda przeprowadzona w celu oceny właściwości antyoksydacyjnych bazowała na roztworze ABTS [16]. Zmieszano 7 mM roztworu ABTS z 2,4 mM roztworem nadtlenku potasu w równych proporcjach i inkubowano przez 14 godzin w temperaturze pokojowej. Po tym czasie otrzymany roztwór rozeznieczono w metanolu do uzyskania absorbancji równej około 1,0 (λ = 734 nm). Kolejno pobrano po 1 ml próbek kontrolnych (o stężeniach: 100, 250, 500, 1000, 1500 oraz 2000 μg/ml) i zmieszano z 1 ml roztworu ABTS, a następnie wykonywano pomiary absor-
Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

banacji (λ = 734 nm) z wykorzystaniem spektrofotometru UV/Vis Aquamate Helion (Thermo Fisher Scientific, Waltham, MA, USA). Kontrolę w tym doświadczeniu stanowił 1 ml roztworu ABTS zmieszany z 1 ml metanolu. Do obliczeń wykorzystano równanie:

\[
\% \text{ redukcji ABTS} = \frac{1 - A_s}{A_c} \times 100,
\]

gdzie:
As – absorbancja próbki,
Ac – absorbancja próbki kontrolnej.

Testy cytotoxiczności

Procedura prowadzenia hodowli komórkowej

Oceny cytotoxiczności badanych ekstraktów dokonano na dwóch liniach komórkowych: ludzkich keratynocytach (HaCaT) oraz fibroblastach (BJ) pozyskanych z ATCC (American Type Culture Collection; Manassas, VA, 20108, USA). Komórki wyhodowano w medium hodowlanym DMEM suplementowanym L-glutaminą, 5% surowicą bydlęcą (FBS) oraz antybiotykami (100 μg/ml penicyline i 1000 μg/ml streptomycyny, Gibco). Hodowlę prowadzono w inkubatorze w temp. 37°C i 5% stężeniu CO₂.

W celu przeprowadzenia testów cytotoxiczności oba typy komórek zostały wyrzucane na płytki 96-diołówowe o stężeniu 10 000 komórek/olek. Następnie komórki zostały traktowane ekstraktami z owoców rokitnika zwyczajnego o stężeniach: 100, 250 oraz 1000 μg/ml.

Alamar Blue

Pierwszym z przeprowadzonych testów cytotoxiczności był test Alamar Blue (AB) (Sigma, R7017), dzięki któremu oceniono żywość komórek w odpowiedzi na badane ekstrakty. Test ten umożliwia określenie poziomu aktywności enzymów oddechowych w badanych komórkach. Poczynowo komórki BJ oraz HaCaT wyrzucano na 96-diołówowe płytki i poddano 24-godzinnej inkubacji z badanymi ekstraktami o stężeniach: 100, 250 oraz 1000 μg/ml. Na kolejnym etapie komórki traktowano roztworem resazuryny o stężeniu 60 μM i prowadzono inkubację komórek przez 2 h w temp. 37°C w cieczności. Po tym czasie przeprowadzono pomiar fluorescencji z wykorzystaniem czytnika mikroptytek (FilterMax F5, Molecular Devices, Silicon Valley, CA, USA) przy długości fali 570 nm. Dla każdego badanego ekstraktu wykonano trzy niezależne eksperymenty. Wyniki przedstawiono jako procent żywości komórek HaCaT oraz BJ w porównaniu do kontroli przyjętej jako 100%.

71
Neutral Red

Do oceny metabolizmu oraz proliferacji badanych komórek wykorzystano test oparty na barwniku – czerwieni obojętnej (Neutral Red) (Sigma-Aldrich), postępując zgodnie z procedurą opisaną wcześniej przez E. Borenfreunda i J.A. Pueuera [17]. Do przeprowadzenia powyższego testu komórki wysiano na płytki 96-dolko- we w gęstości 10 000 komórek/dólekok. Na kolejnym etapie komórki (zarówno BJ, jak i HaCaT) traktowano analizowanymi ekstraktami z rokitnika o stężeniach 100, 250 oraz 1000 μg/ml przez 24 godziny. Komórki nietraktowane badanymi prób- kami (ani ekstraktem, ani fermentem) hodowane w medium DMEM stanowiły w tym doświadczeniu grupę kontrolną. Po inkubacji medium z badanymi ekstrak- tami zostało usunięte, a do komórek dodano świeżą pożywkę z dodatkiem barwi- nika Neutral ReC o stężeniu 40 μg/ml. Po 2-godzinnej inkubacji komórki w każdym dolku przemyto sterylnym PBS-em i dodano po 150 μl na każdy dołek roztworu odbarwiającego (etanol/kwas octowy/woda destylowana w stosunku odpowiednio 50:1:4). Następnie komórki poddano lagodnemu wytrząsaniu przez 10 min, aż do uwolnienia barwnika z komórki i utworzenia jednorodnego roztworu. W celu oceny żywotności komórek wykonano pomiar gęstości optycznej (OD) barwnika uwolnionego z komórek, mierząc absorbancję przy długości fali λ = 540 nm z wyko- rzystaniem czynnika mikroplatek FilterMax F5 (Molecular Devices, Silicon Valley, CA, USA). Dla każdego stężenia analizowanego ekstraktu oraz fermentu przygoto- wano trzy powtórzenia. Wyniki przedstawiono jako procent żywotności komórek traktowanych badanymi stężeniami ekstraktu i fermentu z rokitnika, przyjmując żywotność komórek kontrolnych na poziomie 100%.

Oznaczenie aktywności hamowania kolagenazy

W celu oceny właściwości przeciwstwarzeniowych badanych próbek dokonano oce- nny zdolności hamowania aktywności enzymu odpowiedzialnego za degradację włókien kolagenowych – kolagenazy. W tym celu wykorzystano zestaw fluorometryczny (Abaam, ab211108). Analizy przeprowadzono na płytkach 96-dolkowych dla stężeń ekstraktu i fermentu wynoszących 100 oraz 500 μg/ml. Na pierwszym etapie kolagenazę (COL) rozpuszczono w buforze reakcyjnym (CAB), a następnie dodano analizowane próbki. Kontrolę inhibitora przygotowano przez zmieszanie inhibitora kolagenazy (1,10-fenantrolina (80 mM)) z kolagenazą i buforem CAB. Natomiast kontrolę enzymu przygotowano przez zmieszanie rozciekowego COL z CAB. Dodatkowo bufor CAB został zastosowany jako kontrola tła. Tak przygoto- wane próbki poddano 15-minutowej inkubacji w temperaturze pokojowej. Następ- nie sporządzono mieszanię reakcyjną poprzez zmieszanie substratu kolagenazy z CAB. Przygotowaną mieszanią dodano do wszystkich analizowanych próbek i dokładnie wymieszano. Wykonano pomiar fluorescencji przy długości fali wzbu-
Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

dzenia \(\lambda = 490 \) nm i emisji \(\lambda = 520 \) nm z wykorzystaniem czytnika mikropytek (FilterMax F5, Molecular Devices, Silicon Valley, CA, USA). Pomiarów dokonywano w trybie kinetycznym przez 60 min w temp. 37°C. Do obliczenia zdolności hamowania aktywności COL przez analizowane próbki wykorzystano wzór:

\[
\% \text{ inhibicji aktywności kolagenazy} = \frac{\text{kontrola enzymu} - \text{próbka badana}}{\text{kontrola enzymu}} \times 100%.
\]

Oznaczenie aktywności hamowania elastazy

Do oceny zdolności inhibicji elastazy neutrofilowej (NE) odpowiedzialnej za rozpad włókien elastynowych wykorzystano zestaw fluorometryczny (Abcam, ab118971). Analizie poddano analogiczne stężenia badanych próbek jak w przypadku testu z kolagenazą, a oznaczenia wykonano zgodnie z instrukcją producenta. Doświadczenie przeprowadzono na 96-dółkowych, czarnych płytkach z przezroczystym dnem. Na pierwszym etapie przygotowano roztwory enzymu NE, substratu dla NE oraz kontrolę inhibitora (SPCK). W kolejnym kroku wszystkie studzienki uzupełniono rozcieńczonym roztworem NE. W kolejnych studzienkach umieszczono próbki testowe, kontrolę inhibitora oraz kontrolę enzymu, a także próbkę kontrolną, którą stanowił bufor testowy. Płytkę z badanymi próbokami poddano inkubacji przez 5 min w temp. 37°C. Po tym czasie do każdego dolka dodano mieszanię reakcyjną składającą się z buforu testowego i substratu NE i niezwłocznie zmierzono fluorescencję w trybie kinetycznym przy użyciu czytnika mikropytek (FilterMax F5, Molecular Devices, Silicon Valley, CA, USA). Zdolność do hamowania aktywności NE przez badane próbki z rokitnika obliczono ze wzoru:

\[
\% \text{ inhibicji aktywności NE} = 1 - \frac{\Delta\text{RFU kontroli inhibitory}}{\Delta\text{RFU kontroli enzymu}} \times 100%.
\]

Pomiar transpidermalnej ucieczki wody z naskórka (TEWL) oraz nawilżenia skóry

W celu wykonania pomiarów stopnia nawilżenia skóry oraz transpidermalnej ucieczki wody z naskórka wykorzystano aparat do badania skóry TEWAmeter TM 300 oraz sondę Corneometer CM 825 podłączoną do adaptera MPA (Courage + Khazak Electronic, Kolonia, Niemcy). Badaniu poddano 10 osób w wieku 26–38 lat. Na przedmiocie każdego z ochotników zaznaczono na skórze obszary o wymiarach 2 × 2 cm, na które nanoszono 20 μl każdej z analizowanych próbek (o stężeniu 300 μg/ml). Pole kontrolne w tym badaniu stanowił obszar nietraktowany żadną próbką badaną. Analizowane próbki pozostawiono do wyschnięcia i przeprowadzono pomiary po 60, 120, 180, 240 i 300 min. Na ostateczny wynik
składała się średnia arytmetyczna (dotycząca każdej badanej osoby) z 5 niezależnych pomiarów w przypadku analizy poziomu nawilżenia skóry oraz 20 pomiarów w przypadku badania TEWL.

Analiza statystyczna

Analizę statystyczną uzyskanych wyników przeprowadzono z wykorzystaniem programu GraPhad Prism 6.0 (GraphPad Software, Inc., Sand Diego CA). Wartości badanych parametrów wyrażono jako średnią arytmetyczną ± odchylenie standardowe (SD). Wszystkie wyniki poddano dwukierunkowej analizie wariancji (ANOVA) a następnie testowi wielokrotnych porównań Tukeya. Istotność statystyczną określono na poziomie ***p < 0,0001, **p < 0,001, *p < 0,01 oraz *p < 0,05 w porównaniu z kontrolą.

% inhibicji aktywności NE = 1 - \(\frac{\Delta RFU kontroli inhibitora}{\Delta RFU kontroli enzymu} \) × 100%.

Wyniki i dyskusja

Oznaczenie zawartości związków biologicznie czynnych

Zawartość związków biologicznie aktywnych obecnych w fermentowanym i niefermentowanym ekstrakcie z rokitnika oznaczono metodą HPLC/ESI-MS. Zidentyfikowane związki oraz ich zawartość (w µg/g ekstraktu/fermentu) przedstawiono w Tabeli 1. Uzyskany profil związków polifenolowych był zbliżony do podanych w literaturze [18, 19]. Otrzymane wyniki wykazały, że zarówno ekstrakt z rokitnika, jak i ferment są bogate w kwasy fenolowe, m.in. kwas prookatechowy, oraz flawonoidy, takie jak: kwercetyna-3-O-rutozof czy izoramnetyna-3-O-glukozyd-7-O-ramnozyd i izoramnetyna-3-O-glukozyd. Chromatogram przedstawiający identyfikację polifenoli przedstawiono na Rysunku 1. Jak wykazano w Tabeli 1, oznaczone związki biologicznie czynne były zróżnicowane pod względem ich zawartości w ekstrakcie oraz fermentacji. Ferment otrzymany za pomocą kombuchy okazał się bardziej obfit w kwas protokatechowy i flawonoidy. Różnica w zawartości tych kwasów jest nawet 8 razy większa w przypadku związku nr 2 (14,56 µg/g ± 0,24 w fermentacji i 1,8 µg/g ± 0,08 w ekstrakcie).

Rysunek 1. Chromatogram związków polifenolowych zawartych w fermentacji owoców rokitnika.

Figure 1. Chromatogram of biologically active compounds contained in sea buckthorn ferments.
Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

Ponadto związek nr 4 występuje w ilości 162,75 μg/g ± 6,68 w fermencie, podczas gdy w ekstrakcie nie zidentyfikowano go w ogóle. Badania wskazują, że podczas procesu fermentacji następuje wzrost zawartości niektórych związków fenolowych oraz czas fermentacji wpływa na wzrost i zawartość tych związków. Różnice pomiędzy ekstraktami fermentowanymi i niefermentowanymi mogą również wynikać z faktu, że złożone związki fenolowe mogą być degradowane do mniejszych cząsteczek podczas procesu fermentacji [3].

Tabela 1. Zawartość związków polifenolowych w ekstrakcie i fermencie z owoców rokitnika.

<table>
<thead>
<tr>
<th>Pik</th>
<th>(T_s) (min.)</th>
<th>Obserwowana masa jonów ([M-H]^-) (m/z)</th>
<th>Związek</th>
<th>Wzór</th>
<th>Zawartość (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ferment</td>
</tr>
<tr>
<td>1.</td>
<td>10,29</td>
<td>153,016</td>
<td>Kwas protocatechowy</td>
<td>C7H6O4</td>
<td>23,36 ± 0,18</td>
</tr>
<tr>
<td>2.</td>
<td>50,45</td>
<td>609,1488</td>
<td>Kwarctynę-3-O-rutozyd</td>
<td>C27H32O16</td>
<td>14,56 ± 0,24</td>
</tr>
<tr>
<td>3.</td>
<td>51,56</td>
<td>623,1645</td>
<td>Izoaramnetyna-5-O-glu-kożyd-7-O-ramnozyd</td>
<td>C28H32O16</td>
<td>102,75 ± 3,51</td>
</tr>
<tr>
<td>4.</td>
<td>54,86</td>
<td>623,164</td>
<td>Izoaramnetyna-3-O- rutozyd</td>
<td>C28H32O16</td>
<td>102,75 ± 6,68</td>
</tr>
<tr>
<td>5.</td>
<td>55,71</td>
<td>477,1062</td>
<td>Izoaramnetyna-3-O-glukożyd</td>
<td>C22H22O12</td>
<td>20,06 ± 1,74</td>
</tr>
</tbody>
</table>

Ocena właściwości antyoksydacyjnych

Ocenę zdolności do neutralizowania wolnych rodników badanego ekstraktu oraz fermentu z owoców rokitnika przeprowadzono przy użyciu dwóch niezależnych metod: DPPH oraz ABTS. DPPH (2,2-difenyl-1-pikrylohydrazy) ma zdolność do tworzenia stażnego kationorodka, którego metanolowy roztwór DPPH charakteryzuje się cennymi wodną barwią, która przechodzi w kolor żółty, w przypadku gdy analizowany związek cechuje się właściwościami antyoksydacyjnymi. W teście ABTS rodniki odczynnika ABTS (2,2'-azobis[3-etylobenzotiazolino-6-sulfonian]) tworzone są podczas reakcji chemicznych z nadziarczanem potasu, a zdolność ich redukcji przez antyoksydanty jest zależna od czasu trwania reakcji, stężenia przeciwnieniacza oraz jego aktywności. Następnie zanik barwy roztworu, przy czym spadek intensywności zabarwienia jest proporcjonalny do zawartości w nim przeciwnieniaczy. Starzenie się skóry wynikające z nadmiernej ekspozycji na wolne rodniki, które powodują powstanie stresu oksydacyjnego, jest dużym wyzwaniem dla przemysłu kosmetycznego. Towarzyszący nam stres, niewłaściwa dieta,
zmęczenie to tylko niektóre czynniki wpływające na uwalnianie wolnych rodników w organizmie, prowadząc tym samym do wielu niekorzystnych zmian. Miarą aktywności przeciwdziałającej jest wartość parametru IC₅₀, który określa stężenie przeciwdziałające powodujące 50% spadek początkowego stężenia rodników. Uzyskane wyniki korelują z doświadczeniami innymi: badaczy, którzy również obserwowali właściwości antyoksydacyjne rokitnika [20, 21]. Wyniki otrzymane w ramach tej pracy dowodzą, że fermenty wykazują silniejsze działanie antyoksydacyjne w porównaniu do badanych ekstraktów z rokitnika, co wskazuje na zagadnienie procesu fermentacji otrzymanych ekstraktów. Wyższa aktywność antyoksydacyjna fermentów jest związana prawdopodobnie z większą zawartościąwiązków biologicznie czynnych, co zostało potwierdzone analizami chromatograficznymi.

Tabela 2. Ocena właściwości antyoksydacyjnych metodą DPPH i ABTS.

Table 2. Assessment of antioxidant properties by DPPH and ABTS methods.

<table>
<thead>
<tr>
<th>Ekstrakt</th>
<th>Ferment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test zmiatań rodników DPPH</td>
<td></td>
</tr>
<tr>
<td>IC₅₀ [μg/ml]</td>
<td>1709,28 ± 14,39</td>
</tr>
<tr>
<td>Test zmiatań rodników ABTS</td>
<td></td>
</tr>
<tr>
<td>IC₅₀ [μg/ml]</td>
<td>247,85 ± 3,26</td>
</tr>
</tbody>
</table>

źródło: opracowanie własne.

Ocena cytotoxiczności

Ocenie cytotoxiczności względem badanych ekstraktów i fermentów z rokitnika poddano dwie ludzkie linię komórkowe: keratynocyty (HaCaT) oraz fibroblasty (BJ). Analizy przeprowadzono z wykorzystaniem dwóch testów: Alamar Blue oraz Neutral Red. Stosowana w ćwiczeniu Alamar Blue resztyfikacyjna (7-hydroksy-3H-fencokszyny-3-on 10-tlenek) o barwie niebieskiej ulega redukcji do rezorułyny o barwie różowej fluorescencji poprzez oddychanie tlenowe komórek aktywnych metabolicznie, dzięki czemu jest wykorzystywana jako wskaźnik ich żywotności [22]. Z kolei barwnik Neutral Red ma zdolność do przenikania przez błony komórkowe i akumulacji w żywych, niuszczonych lizosomach. Na podstawie uzyskanych wyników (wykres 1) można zaobserwować wyraźną różnicę w żywotności oraz aktywności metabolicznej obu typów komórek w odpowiedzi na traktowanie ekstraktem oraz fermentem z rokitnika. Przeprowadzone analizy pokazały, iż zarówno ekstrakt, jak i ferment z rokitnika nie wykazują cytotoxicznego działania na oba typy komórek skóry. Co więcej, badania przeprowadzone z wykorzystaniem obu te-
Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

stów wykazali również, iż zarówno ekstrakt, jak i ferment pozytywnie wpływają na aktywność metaboliczną oraz integralność błon w komórkach skóry w warunkach in vitro we wszystkich analizowanych stężeniach.

Zarówno w przypadku keratynocytów (HaCaT), jak i fibroblastów (BJ) zaobserwowano bardziej korzystny wpływ fermentu w porównaniu do ekstraktu, co sugeruje, iż fermenty z rokitnika mogą stanowić bezpieczny składnik preparatów przeznaczonych do mycia czy pielęgnacji skóry. Jednak biorąc pod uwagę tendencję spadkową w żywotności komórek poddanych wrażającym stężeniom badanych próbek, należy odpowiednio dobrać ich stężenie w preparatach docelowych, by nie wywierać efektu cytotoksycznego.

Pozitivityny wpływ rokitnika na komórki skóry został potwierdzony również przez innych autorów, którzy dowiedli, że olej z rokitnika częściowo zapobiega powstawaniu reaktywnych form tlenu po podaniu keratynocytów i fibroblastów promieniowaniu UV oraz zmniejsza w nich ekspresję receptorówannabinoidowych. Olej ten zwiększa również poziom nieenzymatycznych przeciwtleniaczy, takich jak glutatjion (GSH), tioredoxyną (Tlx), witaminę E i A, oraz stymuluje aktywność Nrf2, co prowadzi do zwiększonej aktywności enzymów antyoksydacyjnych.

Dodatkowo zastosowanie oleju z nasion rokitnika zmniejsza ilość produktów peroksydacji lipidów oraz podwyższa poziom fosfolipidów i wolnych kwasów tłuszczowych po napromieniowaniu UV, co sugeruje, iż może być on postrzegany jako obiecujący naturalny związek fotoochronny skóry [23]. Inni autorzy wskazali również, iż ekstrakty z rokitnika zwiększają syntezę prokolagenu, zmniejszają ekspresję MMP-1, a także hamują wytwarzanie interleukiny IL-1β i IL-6 oraz cyklokoxygenuzy-2 (COX-2) w ludzkich fibroblastach napromieniowanych UVB. Wyniki te wskazują więc, że zarówno ekstrakty, jak i oleje z nasion tej rośliny mogą być postrzegane jako potencjalny środek terapeutyczny mogący znaleźć zastosowanie w zapobieganiu i leczeniu fotostarzenia skóry [24].

Wykres 1. Ocena cytotoxyczności badanych ekstraktów i fermentów na keratynocyty HaCaT (A) oraz fibroblasty BJ (B).

Figure 1. Assessment of cytotoxicity of tested extracts and ferments to HaCaT keratinocytes (A) and BJ fibroblasts (B).
Oznaczenie aktywności hamowania metaloproteinaz

Ludzka skóra zbudowana jest z trzech głównych warstw: naskórka, skóry właściwej oraz warstwy podskórnej [25]. Najbardziej zewnętrzną część stanowi macierz zewnątrzkomórkowa (ECM – extracellular matrix), wypełniająca przestrzeń między komórkami skóry [26]. W skład ECM wchodzą włókn kolagenowe i elastynowe wytwarzane przez fibroblasty, glikozaminoglikany (głównie kwas hialuronowy) oraz glikoproteiny. Macierz zewnątrzkomórkowa jest swoistą barierą, która z jednej strony kontroluje przepływ związków odżywczych w głąb skóry a z drugiej stanowi barierę ochronną dla czynników zewnętrznych, takich jak promieniowanie UV. Ze względu na pełnione funkcje jej degradacja jest ścisłe związana ze starzeniem skóry [27]. Na drodze do utrzymania prawidłowej struktury ECM stają dwa enzymy hydrolizujące białka macierzy metalopeptydazy: kolagenaza oraz elastaza, które przyczyniają się do degradacji włókien kolagenowych i elastynowych, prowadząc do utraty jędrności i do starzenia się skóry [28]. Wiele ekstraktów roślinnych wykazuje działanie hamujące aktywność tych enzymów [29]. Wykres 2 przedstawia zdolność badanych ekstraktów i fermentów o stężeniach 100 i 500 µg/ml do hamowania aktywności kolagenazy i elastazy. W przypadku inhibicji aktywności kolagenazy zarówno dla ekstraktu, jak i fermentu wyniki oscylują na poziomie 30% dla stężenia 100 µg/ml oraz 20% dla stężenia 500 µg/ml. Wartości aktywności hamowania elastazy zarówno dla ekstraktów, jak i fermentów są zbliżone i wynoszą około 35%, z wyjątkiem ekstraktu o stężeniu 100 µg/ml. Wartości procentowe aktywności hamowania metaloproteinaz porównano z powszechnie stosowanymi inhibitorami. Otrzymane wyniki wykazały umiarkowaną zdolność hamowania metaloproteinaz, co więcej, fermentowany ekstrakt z owoców rokitnika może być również dobrym co ekstrakt surowcem stosowanym w produktach kosmetycznych o działaniu przeciwstarzeniowym.

Wykres 2. Oznaczenie hamowania metaloproteinaz: kolagenazy oraz elastazy przez analizowane ekstrakty oraz fermenty z rokitnika zwyczajnego.

Figure 2. Determination of the inhibition of metalloproteinases: collagenase and elastase by the analyzed sea buckthorn extracts and ferments.
Oznaczenie transepidermalnej ucieczki wody z naskórka (TEWL) oraz nawilżenia skóry

Stopień nawilżenia skóry jest nierozWASHINGTONe złączony z transepidermalną ucieczką wody z naskórka, gdyż oba te parametry ściśle ze sobą korelują. Skóra nawilżona wolniej oddaje wodę, a tym samym pozostaje lepiej odtworzona i elastyczna. W wyniku przeprowadzonych badań można zauważyć, że zarówno ekstrakt, jak i ferment z owoców rokitnika zwyczajnego wpływają pozytywnie na ograniczenie transepidermalnej ucieczki wody z naskórka w porównaniu do kontroli (wykres 3A). Badania przeprowadzono po 60, 120, 180, 240 i 300 min od nałożenia próbki badanej na skórę. Wyniki wykazały, że wraz z czasem maleje poziom TEWL w stosunku do kontroli, przy czym porównując ekstrakt i ferment, nie zauważono istotnych zmian.

Analizując wpływ badanych ekstraktów i fermentów z rokitnika na poziom nawilżenia skóry, można zaobserwować jego znaczący wzrost w przypadku obu badanych próbek (wykres 3B). Zarówno ekstrakt, jak i ferment z rokitnika wpływają korzystnie na wzrost nawilżenia skóry, natomiast w przypadku fermentu wzrost ten jest wyższy w porównaniu do ekstraktu i utrzymuje się w czasie trwania całej analizy. Nasze doniesienia potwierdzają badania nad ekstraktem z rokitnika, w których wykazano jego pozytywne działanie na skórę, dzięki obecności związków biologicznie czynnych [30].

Wykres 3. Wpływ badanego ekstraktu oraz fermentu na TEWL (A) oraz poziom nawilżenia skóry (B) w czasie 5 h.

Figure 3. The effect of the tested extract and ferment on TEWL (A) and the level of skin hydration (B) within 5 hours.
Podsumowanie

Dzięki szerokiej gamie związków biologicznie aktywnych rokitnik zwyczajny jest surowcem szeroko stosowanym w przemyśle kosmetycznym. Dodatkowo na rynku kosmetycznym pojawia się coraz więcej ekstraktów roślinnych fermentowanych mikroorganizmami, takimi jak: Lactobacillus spp., Bifidobacterium spp. czy grzybem herbacianym SCOBY. Badania wykazały, że ekstrakty, jak i fermenty z owoców rokitnika stanowią uniwersalny surowiec kosmetyczny, który może pełnić wiele funkcji jednocześnie.

Ekstrakt z rokitnika redukuje liczbę wolnych rodzińców, pozytywnie wpływa na żywność i metabolizm komórek skóry, hamuje hydrolityczne działanie metapolpeptydaz takich jak elastaza i kolagenaza, wspomagając zachowanie jądernej i napiętej skóry, a także pozytywnie wpływa na stopień nawilżenia skóry i ograniczanie transepidermałnej ucieczki wody z naskórka. Właściwości te mają ogromne znaczenie dla zapobiegania procesowi starzenia się skóry, redukcji powstałych zmarszczek oraz wpływają na ogólną kondycję skóry poprzez utrzymanie jej bariery ochronnej, co jest ściśle związane z regulacją jej mikroflory bakteryjnej, jak również istotne dla zapobiegania stanom zapalnym prowadzącym do powstawania trądziku lub innych schorzeń dermatologicznych.

Literatura

Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu...

Do cytowania:
Ziemlew ska A., Klimczak K., Zagórska-Dziok M., Nizioł-Łukszewska Z., Porównanie właściwości kosmetycznych i dermatologicznych ekstraktu oraz fermentu z owoców rokitnika zwyczajnego otrzymanego w procesie fermentacji z wykorzystaniem grzyba herbacianego kombuchy, Herbalism, 2023, 1(9), s. 67–82.