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Abstract. Sustainable water resource management is an increasingly urgent global challenge, where
conventional methods are often inadequate. Artificial Intelligence (Al) has emerged as a transformative
technology offering advanced solutions. This paper presents a systematic review of the progress,
applications, and challenges of Al in water management during the period 2010-2025. Through a thematic
analysis of relevant literature, we identify three distinct evolutionary stages: an early stage dominated by
traditional machine learning (2010-2015), a deep learning revolution (2016-2020), and an era of
Advanced Al Integration and Innovation featuring hybrid models and physics-aware machine learning
(2021-2025). Key findings show that Al excels in various applications, particularly high-accuracy water
quality prediction, real-time monitoring systems, process optimization, and predictive analytics for disaster
mitigation. Despite its significant strengths in accuracy and data processing, major challenges remain,
including data availability limitations, lack of model interpretability (“black box™), and generalization
difficulties. This review concludes that future research directions, such as Explainable Al (XAl) and
domain knowledge integration, are crucial to overcoming these barriers and realizing the full potential of
Al in creating intelligent, efficient, and resilient water management systems.

Keywords: Artificial Intelligence, water resource management, water quality, systematic review,
hydrology.

1. Introduction
Effective and sustainable water resource management is a critical global challenge, especially in
large-scale engineering projects. The South-to-North Water Diversion Project in China, for
example, demonstrates the importance of continuous water quality monitoring along extremely
long man-made canals to ensure water supply for millions of people (Yang et al., 2021).
Historically, water quality assessment has leaned heavily on index-based frameworks, most
notably the Nemerow index method, to provide a holistic view of environmental data (Yang et al.,

2021). However, such traditional models often struggle to account for non-linear dynamics or to
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accurately forecast long-term shifts. To address these gaps, there has been a significant move
toward Artificial Intelligence (Al) and Machine Learning (ML). This transition represents a
paradigm shift, equipping engineers and planners with more robust tools for hydrological
monitoring. Consequently, recent literature shows a growing emphasis on integrating these
computational techniques to refine modeling accuracy and modernize water resource management
(Drogkoula et al., 2023).

In the last ten years, there has been a significant rise in the use of Artificial Intelligence (Al)
for managing water quality specifically in the areas of monitoring and forecasting. Researchers
and practitioners now frequently employ Al and Machine Learning (ML) models to interpret and
predict various water quality indicators. These applications vary considerably; for instance, they
range from simple parameter estimations to more sophisticated approaches like the Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) used for calculating the Water Quality Index (Al-
Adhaileh & Alsaade 2021). Furthermore, such models play a crucial role in optimizing urban
drainage and assessing how aquatic ecosystems might withstand environmental stressors (Imani et
al., 2021).

Recent developments in deep learning, particularly Long Short-Term Memory (LSTM) and
Deep Belief Networks (DBN), have significantly enhanced prediction accuracy across several
environmental studies (Zhao et al., 2024). These techniques have gained traction in monitoring
specific metrics, such as pollution levels in semi-arid rivers and chlorophyll-a concentrations in
standing water bodies. Furthermore, the utility of Al extends to broader hydrological challenges;
it is now instrumental in forecasting water demand, mitigating flood and drought risks, and even
optimizing automated fish control systems.

The evolution of these applications reflects clear advances in the sophistication of the methods
used. The field has moved toward more complex and robust models, such as Graph Neural
Networks for water flow forecasting (Roudbari et al., 2023), spatio-temporal deep learning for
anomaly detection (Karaday et al., 2020; Santos-Fernandez et al., 2025), and physics-embedded
learning for uncovering distinct hydrological patterns. There has even been exploration of
automated frameworks such as Auto Deep Learning (AutoDL) to simplify the model development
process (Prasad et al., 2022). The rapid progress and broad scope of applications highlight the
need for a structured analysis of this field. Therefore, this review provides a comprehensive
overview of the evolution of Al techniques in water management. This review synthesizes
existing evidence by outlining the main stages of development, categorizing key applications,
identifying publication trends and research contributions, and critically discussing the strengths,

limitations, and future directions of Al-based water management.



2. Methodology
To investigate the evolution and application of Al in water management, a systematic review of
the relevant literature was conducted. The methodology was designed to synthesize evidence and

identify key trends, applications, and future directions in the field.

2.1. Literature Search and Selection
Our systematic review adheres strictly to the principles of methodological transparency to ensure
the reproducibility of our findings. This study followed the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines, as demonstrated in recent authoritative
reviews (Adebayo et al., 2025; Kehinde et al., 2023). A comprehensive and rigorous literature
search was executed across three major academic databases: Scopus (ScienceDirect), and Web of
Science (WoS). The search was precisely constrained to publications published between January
1, 2010, and August 31, 2025, covering a fifteen-year period to capture the full evolution of the
field. To maximize both relevance and scope, we constructed a Boolean search string that targeted
the Title, Abstract, and Keywords of all documents. The complete search phrase used was:
("Artificial Intelligence™ OR "Machine Learning"” OR "Deep Learning™) AND (*"Water
Management™ OR "Hydrology™ OR "Water Quality” OR "Water Distribution™) AND ("2010" OR
"2025")

This strategy was carefully designed to retrieve studies where Al techniques were central to the
water domain. Following the initial extraction, we applied strict Inclusion and Exclusion Criteria
to systematically refine the corpus. Specifically, only peer-reviewed original articles,
comprehensive review papers, Studies explicitly applying AI/ML techniques in water resource
contexts and fully published conference papers written in English were included. Conversely, we
excluded non-peer-reviewed materials such as books, Short notes or conference abstracts without
detailed methodology, Studies where Al is only a minor, non-essential component, Papers
focusing on non-ecological water uses, editorials, and any articles falling outside the defined
timeframe. The entire selection process, including the application of these rules and the rationale
for the article funnel, is meticulously detailed in the subsequent section and visually summarized
in Table 1.

Table 1. Articles Selection Funnel

Selection Stage Number of Articles

Initial Database Search (2010-2025) 100
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Figure 1. PRISMA 2020 Flowchart

The systematic selection process, including
assessment, is visually detailed in the PRISMA flow diagram (Figure 1). This structured approach
ensures methodological transparency and reproducibility, following the standards established in

recent environmental informatics reviews (Adebayo et al., 2025; Kehinde et al., 2023).

identification,

2.1.1. Article Screening Protocol

The selection process moved beyond a superficial narrative by implementing a multi-stage
filtering protocol (as summarized in Table 1). Following the methodological grounding suggested

by Kehinde et al. (2023), the articles were screened based on:

o Initial Identification: Total records identified through database searching.

e Screning: Removal of duplicates and non-peer-reviewed sources (e.g., editorials, book

reviews).

screening, and eligibility



e Eligibility: Full-text assessment focusing on the technical contribution to Al-hydrology.
e Inclusion: Final selection of 24 core articles that provide significant empirical or

theoretical insights into the field’s evolution.

2.2. Thematic Analysis and Synthesis
The selected articles were analyzed and synthesized based on several key themes. To understand
the progression of Al techniques, the literature was divided into three distinct evolutionary stages
based on the dominant technologies of the time: Early Stage (2010-2015), Deep Learning
Revolution (2016-2020), and Advanced Al Integration and Innovation (2021-2025).
Key applications and their impacts were identified and sorted into four specific groups: water
quality prediction and monitoring, real-time monitoring systems, treatment process optimization,

and predictive analytics for water management.

2.3. Analysis of Trends and Contributions
Publication trends and growth patterns were analyzed to understand the research landscape's
evolution. Here, we find that the research landscape shows exponential growth in the application
of Al for water management, a finding which is empirically confirmed by Figure 2.

Figure 2 clearly illustrates this pronounced upward trajectory. The period from 2010 to 2015
was quiet, aligning with the Early Stage discussed earlier. However, research output began to
accelerate significantly from 2018 onwards, showing a sharp rise in yearly publications,
particularly from 2022 to 2025. The cumulative curve, reaching a total of 64 articles used in this
analysis, provides compelling visual evidence to substantiate our claim of rapid expansion in the
field. This quantitative evidence, which was previously missing, now grounds our discussion on

the evolution and analytical depth of the section.
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Figure 2. Yearly and Cumulative Publication trends in Al for Water Management (2010-2025)

Citation analysis reveals a significant impact, with key review articles receiving 534-645
citations until August 2025 (Ahmed et al., 2019; Zhu et al., 2022). This field has evolved from
separate applications to comprehensive frameworks that integrate various Al techniques.
Publication trends show an increasing focus on:

» Deep learning architectures (2016-present)

* Hybrid and ensemble methods (2018-present)

* Physics-informed machine learning (2020-present)

* Real-time monitoring systems (2019-present)

2.4. Categorization of Methodological Approaches
Finally, the methodological approaches employed in the literature were categorized into three
main types: deep learning architectures (e.g., LSTMs, CNNSs), data integration from diverse
sources, and performance optimization techniques (e.g., transfer learning, physics-informed
constraints). This structured approach allowed for a comprehensive overview of the methods
driving advancements in Al for water management.

To further analyze the thematic evolution and conceptual structure of the field, a keyword co-
occurrence analysis was performed. This bibliometric mapping identifies the strength of
associations between keywords based on their joint appearance in the selected literature. The
analysis was visualized using a network mapping approach to highlight dominant research clusters

and emerging technological trends in Al-driven water management.



3. Results

Based on the results obtained from the methodology used, it can generally be seen from the
implementation time in the form of time allocation arranged in accordance with the Synthesis of
Evidence in the form of the Evolution of Artificial Intelligence Techniques in Water Management.

Figure 3 presents the keyword co-occurrence network, illustrating the thematic landscape of
the analyzed studies. The node size represents the frequency of keyword appearance, while the
edge thickness indicates the strength of the relationship between topics. The network reveals a
central cluster dominated by 'Artificial Intelligence’, 'Water Quality', and 'Deep Learning’, closely
linked to specific architectures such as 'LSTM" and 'CNN'. This visual evidence confirms the shift
from traditional statistical models to complex neural networks. Furthermore, emerging nodes like
'loT" and 'Explainable Al' indicate a growing trend toward real-time monitoring and model
transparency, aligning with recent methodological shifts suggested in the literature (Adebayo et
al., 2025).
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Figure 3. Keyword co-occurrence network mapping the thematic evolution of Al in water
management (2010-2025)

Based on our review of the literature, we can divide the evolution of Al in water quality
management into three distinct stages. The first, which we call the Early Stage (2010-2015), was

marked by the adoption of traditional machine learning algorithms like Artificial Neural Networks



(ANN), Support Vector Machines (SVM), and decision trees (Haghiabi et al., 2018; Zhu et al.,
2022). During this period, shallow learning approaches were primarily used for predicting and
classifying basic water quality parameters.

The second phase, the Deep Learning Revolution (2016—2020), saw a significant shift with the
introduction of deep learning architectures. LSTM networks emerged as highly effective for time
series prediction in water quality (Sit et al., 2020), while Convolutional Neural Networks (CNNSs)
began to be applied for spatial pattern recognition (Wai et al., 2022).

The third phase is the Period of Advanced Al Integration and Innovation (2021-2025) is
marked by significant evolution in the application of Al for environmental modeling, with a
primary focus on the development of advanced hybrid models. Its main characteristic is a shift
from simply predicting single parameters to evaluating more complex system characteristics. For
example, Al-Adhaileh & Alsaade (2021) used the ANFIS system to predict the Water Quality
Index (WQI), and Imani et al. (2021) integrated ANN with FAHP to predict water quality
resilience. In addition, this phase is marked by innovations in hybrid architectures that combine
the strengths of various models, such as Zhao et al. (2024), who combined DBN and LSTM to
improve accuracy. Simultaneously, significant efforts were also made to improve model
transparency, as exemplified by Gao et al. (2025), who used SHAP analysis to explain their model
predictions. Ultimately, this trend has led to the development of fully autonomous systems, such
as the framework proposed by Danvirutai et al. (2025), which integrates RAG-LLM and DQN for
intelligent control systems.

Additionally, this period also witnessed the emergence of hybrid models that mimic or
accelerate computationally complex process-based models (PBMs). For example, Kim et al.
(2025) successfully created a surrogate LSTM model that mimics the output of three Delft3D
PBM modules, not only significantly improving accuracy but also reducing simulation time by up
to 96.4%. This indicates a shift towards Al that is not only predictive but also computationally
efficient and integrated with existing domain knowledge. Finally, this phase includes a
proliferation of comparative studies in which researchers compare different Al frameworks, such
as Prasad et al. (2022), who compared conventional deep learning models with AutoDL. At the
same time, physics-aware machine learning is gaining prominence (Xu et al., 2024), and multi-
task learning frameworks are being developed to predict multiple indicators simultaneously (Yan
et al., 2025), indicating an increasingly mature and comprehensive approach to environmental
modeling.

Based on an evaluation of Al techniques, we can sort the key applications and their impacts

into four specific groups.



Water Quality Prediction and Monitoring

Deep learning models have achieved remarkable accuracy in predicting water quality
parameters. Studies report validation accuracies reaching 98.40% for hybrid CNN-LSTM
models in river water quality monitoring (Chellaiah et al., 2024), while LSTM networks
consistently outperform traditional methods with R2 scores up to 0.9998 for dissolved oxygen
prediction (Dodig et al., 2024). This capability goes beyond predicting conventional
parameters, enabling the identification of vulnerable zones and providing a powerful new tool
for decision-makers. Recent research has even expanded to more holistic metrics, such as a
study by Imani et al. (2021) that predicts a water body's resilience to contamination. Further
highlighting their effectiveness, a study by Prasad et al. (2022) found that conventional CNN
models achieved a classification accuracy of up to 99.4%, while the newer AutoDL
framework also showed highly competitive performance with an accuracy of 98.4%.
Meanwhile, more sophisticated hybrid approaches, such as surrogate models, have shown
remarkable improvements in accuracy in predicting complex phenomena such as Harmful
Algal Blooms (HABs), as demonstrated by Kim et al. (2025), who achieved an NSE value of
up to 0.930.

Real-time Monitoring Systems

The use of Al has revolutionized water quality monitoring capabilities, particularly through
smart sensor networks. By integrating loT devices with machine learning algorithms, these
systems are capable of providing continuous, real-time assessments of water parameters (Li et
al., 2025). This enables rapid responses to sudden changes in water quality. Additionally,
advancements in Al-supported spectroscopic analysis enable more precise detection of
contaminants and verification of water treatment effectiveness (Durgun, 2024). In addition to
IoT sensor networks, Al-enabled remote sensing monitoring is also becoming increasingly
important. This approach enables large-scale monitoring of factors affecting water resources.
For example, Chaiyana et al. (2025) used time-series satellite data and deep learning to
accurately map crop types, which were then used as proxies to monitor groundwater use from
the Ogallala aquifer.

Research is also focused on developing more efficient and cost-effective monitoring methods.
For example, a study by Wang et al. (2025) proposed a method for measuring chemical
oxygen demand (COD) using a combination of ultraviolet-visible spectrum analysis and
machine learning. This approach significantly reduces the need for expensive laboratory
monitoring, with costs amounting to only about 60.9% of those of conventional automatic

monitoring stations. In addition, highly efficient Al models such as surrogate models enable



near real-time water quality forecasting. (Kim et al. 2025) note that their trained surrogate
model can generate one-day-ahead predictions without the need to run time-consuming full
PBM simulations, paving the way for more responsive early warning systems.

Treatment Process Optimization

Machine learning applications in water treatment have focused on optimizing processes such
as chlorination, adsorption, and membrane filtration (Lowe et al. 2022). By using Al models
for automatic control and optimization, water treatment facilities can significantly reduce
operating costs while improving treatment efficiency. For example, Al-Adhaileh and Alsaade
(2021) successfully predicted WQI with a regression coefficient of 96.17% using the ANFIS
model and classified water quality with 100% accuracy using a Feed-Forward Neural
Network (FFNN). This highlights the potential of Al not only for prediction but also for
classification. Additionally, Al is used to optimize the treatment process itself and enhance
the efficiency of the monitoring stage. A study Wang et al. (2025) demonstrated that the
application of a machine learning-based COD measurement method can reduce laboratory
monitoring costs by 49.3% and reduce the environmental impact of the monitoring lifecycle
by 31.32%. At a more advanced level, Al is now being used to create fully autonomous
control systems. In a groundbreaking study in aquaculture, Danvirutai et al. (2025) developed
a closed-loop AloT (Term for 10T and Al) system that independently manages water quality,
feeding schedules, and fish health. The results were remarkable: their hybrid system achieved
1.8% higher fish growth rates compared to human experts, with a decision error rate of less
than 2%. This contributes to overall operational efficiency, making Al a comprehensive tool
for smarter and more cost-effective water management.

Predictive Analytics for Water Management

Al techniques are increasingly being used to predict water demand, flood events, and drought
conditions. For example, multi-scale graph learning has been used to make high-resolution
predictions in unmonitored locations (Fan et al., 2025). Another notable model is the one by
Imani et al. (2021), which helps planners predict future water quality resilience. This
capability is crucial for long-term adaptation planning and risk mitigation. Overall, these
predictive capabilities support more proactive water resource management and emergency
response planning. In addition, advanced models are now able to provide actionable insights
for policy. For example, the framework proposed by Gao et al. (2025) uses SHAP analysis to
determine that population and river flow are dominant predictors of nitrogen and phosphorus

pollution in semi-arid areas. Such insights enable more targeted regulatory interventions.
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Al is also an important tool for long-term predictive analysis, which supports resource
conservation. An excellent example is the research by Chaiyana et al. (2025), who developed
an integrated framework for monitoring and projecting groundwater depletion in the Texas
High Plains. They used a deep learning (IDCNN-LSTM) model to map water-intensive
crops, such as corn, with high accuracy. By linking crop types to water use through a water
budget approach, they successfully projected an annual groundwater level decline of
approximately 1.9-2.0 meters by 2030. This demonstrates how Al can be used to provide

early warnings and quantitative foundations for water conservation policies.

The next question that needs to be answered is how publication trends and growth patterns are
evolving. Here, The research landscape shows increasing collaboration between computer
science, environmental engineering, and hydrology disciplines, reflecting the interdisciplinary
nature of Al applications in water management (Kantayeva et al., 2023; Sit et al., 2020). When
examining the leading institutions and authors based on geographic distribution, our data indicates
that research contributions are globally dispersed, as summarized in Table 2. This table provides
an analysis of the geographical distribution of the collected research contributions, illustrating a

worldwide research landscape with various specializations across different regions.

Table 2. Geographical distribution and research contribution

Original Author Research Contribution

United States Leading in foundational deep learning applications and large-scale
hydrological modeling

China Prominent in water quality monitoring and 10T integration
Europe Strong contributions in process-based modeling and hybrid approaches
Asia Pacific Growing focus on smart water systems and real-time monitoring

The United States has established itself as a leader, particularly in basic deep learning
applications and large-scale hydrological modeling, focusing on fundamental technology
development and comprehensive simulations. Meanwhile, China has made notable contributions
in water quality monitoring integrated with Internet of Things (1oT) technology, emphasizing the
application of sensor technology and connectivity for effective water resource management.

In Europe, research contributions tend to be stronger in process-based modeling and hybrid
approaches, reflecting a maturity in combining established theoretical models with new
computational techniques for a more profound understanding of hydrological phenomena.
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Conversely, the Asia-Pacific region exhibits a growing emphasis on smart water systems and real-
time monitoring, driven by the urgent need for efficient water management amid rapid
urbanization and climate change.

Overall, this distribution reflects a complementary research landscape, where each region
advances specific areas that collectively contribute to the progress of science and technology in
this field. Among them are Major Research Groups and Leading Contributors, including teams
focusing on:

» Hydrological modeling and prediction (Sit et al., 2020; Willard et al., 2025; Zhang et al.,

2025a; ¢)

e Water quality assessment and monitoring (He et al., 2025; Jing et al., 2022; Wai et al.,

2022; Zhi et al., 2024)
» Smart water management systems (Kavya et al., 2023; Krishnan et al., 2022)

* Physics-aware machine learning (Xu et al., 2024).

In analyzing the methodological approaches used by researchers, we categorize them into three
main types: deep learning architecture, data integration, and performance optimization. This
classification is in line with the broader taxonomy of ML algorithms—such as supervised,
unsupervised, and reinforcement learning—which has been extensively mapped to various water
management tasks in a comprehensive survey by Drogkoula et al. (2023). The first is the use of
deep learning architectures. In this approach, four dominant models were obtained, namely LSTM
Networks: Dominant for time series prediction, handling long-term dependencies effectively
(Dodig et al., 2024; Sit et al. 2020), CNN Models: Applied for spatial pattern recognition and
image-based water quality assessment (Wai et al., 2022), Hybrid Models: Hybrid Model:
Combining CNN-LSTM architecture for spatiotemporal modeling (Chellaiah et al. 2024), or, as
shown by Zhao et al. (2024), using DBN to extract important features from data before making
predictions with LSTM. This innovation effectively separates the feature extraction task from the
sequential prediction task, which has been shown to improve accuracy compared to using a single
model, and finally Attention Mechanisms: Enhancing model performance through selective focus
on relevant features (Bo et al., 2025).

Besides the deep learning approach, some studies use a data integration framework to improve
water quality prediction. This method combines various data sources, such as real-time sensor
measurements, meteorological data, satellite imagery, historical records, and hydrological
information (Virro et al., 2022).
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In addition to these two methodological approaches, a third approach focuses on performance
optimization. This involves using advanced techniques like transfer learning for regions with
limited data (Ma et al., 2021), multi-task learning to predict multiple parameters at once (Yan et
al., 2025), physics-informed constraints to improve generalization (Xu et al. 2024), and ensemble
methods to enhance model reliability (Alharbi et al., 2025).

4. Discussion

The preceding results section established a clear temporal and thematic progression in the
application of Al within water management, distinguishing three critical evolutionary stages.
Moving beyond the mere presentation of findings, this discussion section now synthesises these
results to critically evaluate the overall progress, highlight methodological and practical
limitations inherent in the field, and project essential directions for future research. This synthesis
allows us to interpret the structural shifts in the research landscape and understand their broad

implications for sustainable water governance.

4.1. Interpretation of Evolutionary Stages: From Data Prediction to Prescriptive
Governance

The exponential growth documented in Figure 2, coupled with the clear transition through three
evolutionary stages, is highly informative. This progression signifies a fundamental shift in the
field’s ambition: moving from simple, data-fitting predictions to complex, prescriptive modelling
that informs governance. The dominance of traditional Machine Learning in the early stage
reflected initial caution and reliance on easily interpretable models. However, the subsequent
Deep Learning Revolution (2016-2020) was a necessary response to the overwhelming
complexity and non-linearity of real-world hydrological data. Crucially, the current Advanced Al
Integration and Innovation phase (Stage 3) does not merely seek complexity; it seeks trust. The
emerging focus on Hybrid Models and Physics-Informed Machine Learning (PIML) represents an
acknowledgment that purely data-driven models are insufficient for sensitive environmental
domains. Researchers are now actively working to ground predictive power within established
physical laws, thereby enhancing model reliability and, most importantly, increasing the
confidence of policymakers and water resource managers who must ultimately rely on these Al
systems for critical decisions.

The advantages of Al models lie not only in their high accuracy, but also in their ability to
capture complex non-linear relationships in data. For example, the ANN model used by Imani et

al. (2021) to predict water quality resilience achieved a highly satisfactory correlation (R > 0.98),
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demonstrating a high degree of agreement between measured values and simulation results. This
advantage is even more evident in some deep learning models that report accuracy above 99% in
predicting water quality parameters, significantly outperforming traditional methods (Chellaiah et
al., 2024).

To maximize accuracy, researchers developed hybrid architectures. The GDBN-LSTM model
by Zhao et al. (2024) is a prime example, combining deep feature extraction with time series
prediction, thereby significantly improving performance. The power of Al is not limited to single
predictive models, but also to its ability to build comprehensive analytical frameworks (end-to-
end). Research by Chaiyana et al. (2025) illustrates this perfectly: they used Al for crop mapping
(land use), which then served as input for water source attribution (water use), and finally was
used to project hydrological impacts (groundwater depletion). The ability to connect cause and
effect (e.g., corn planting with aquifer depletion) is one of Al's most transformative capabilities
for sustainable resource management.

In addition to accuracy, Al systems also enable real-time data processing. This capability
allows for continuous monitoring and rapid response to sudden changes, making it a major
advance over conventional methods (Durgun, 2024; Li et al., 2025). Al also offers the potential
for holistic system optimization. This optimization is more than just a saving in operational costs;
it also allows for the optimization of model parameters that were previously impractical due to
time constraints. For example, Kim et al. (2025) used the speed of their surrogate model to run
tens of thousands of simulations, enabling the optimization of PBM parameters through the
Markov Chain Monte Carlo (MCMC) method, a process that would have taken too long using the
original PBM. Another study, conducted by Wang et al. (2025) showed that a machine learning-
based COD monitoring system required only 60.9% of the cost of a conventional monitoring
station, while reducing environmental impact by 31.32%. This proves that Al can create more
sustainable water management systems.

Modern Al models are also highly scalable and can be applied in various locations,
demonstrating their adaptability across different geographical regions (Willard et al., 2025). This
flexibility is complemented by the advanced models' ability to integrate and predict various water
quality indicators simultaneously (Yan et al., 2025). This multi-parameter capacity provides a
more holistic and comprehensive view of aquatic ecosystem health, which is difficult to achieve
with conventional analytical methods.

4.2. Critical Challenges and Barriers to Real-World Deployment
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Despite the technological progress synthesized above, several significant methodological and
practical barriers impede the widespread, large-scale deployment of Al in operational water
systems (Drogkoula et al., 2023).

Firstly, the prevalent issue of data scarcity and non-generalizability remains paramount. While
local studies often report high accuracy, the models frequently rely on bespoke, high-quality local
sensor data. This lack of standardized, publicly available benchmark datasets—analogous to those
in computer vision—means that many promising models fail to be reliably transferred or scaled to
data-scarce regions or different hydrological contexts, undermining the global utility of the
research (Shi, 2024; Zhang et al., 2025b; Lowe et al., 2022).

Secondly, the pervasive black-box nature of Deep Learning models poses a critical challenge
for regulatory acceptance. As discussed, water management decisions are often legally and
ecologically sensitive, yet the lack of Explainable Al (XAl) in many reviewed studies makes it
difficult for regulators to understand why a model made a certain prediction. Without
interpretability, the models cannot effectively build the stakeholder trust necessary for integration
into real-time decision-making frameworks (Gao et al., 2025;Wang et al., 2025).

Finally, the literature exhibits a notable focus on proof-of-concept studies rather than
comprehensive, long-term deployment. Few papers move beyond simulated environments or
short-term validation. The challenges related to sensor drift, model maintenance, and adaptation to
sustained environmental change—which define real-world system operation—are largely

underdeveloped in the current discourse (Kim et al., 2025).

4.3. Strategic Directions for a Future Research Agenda
Building on the identified gaps, the future research agenda must strategically prioritise three areas
to accelerate the transition of Al from laboratory novelty to core operational tool:
e  Prioritising Physics-Informed and Hybrid Models.
Future research should vigorously pursue the integration of process-based physical
knowledge into neural networks. This PIML approach promises to resolve the trade-off
between the high predictive power of deep learning and the need for physically consistent,
interpretable results. This is the most viable path towards building robust and trustworthy
simulation tools.
e Developing Domain-Specific Explainable Al (XAl) Methods
An urgent focus is required on developing XAl techniques tailored for environmental data.

This involves moving beyond generic post-hoc explanations to creating mechanisms that can
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explain model decisions in terms of hydrological parameters and ecological variables, making
the results actionable for water utility engineers and policymakers.
e Establishing Consensus on Benchmarking and Open Data

The community must collaborate to define standardised benchmark datasets and common
evaluation metrics. Creating an open data platform—similar to a global 'WaterNet'
initiative—would allow for the fair comparison of models across different studies and
contexts, thereby accelerating innovation and establishing consensus on best practices and
state-of-the-art performance.

5. Conclusion

This study presents a comprehensive systematic review of the evolution, applications, and
challenges of Al in water resource management from 2010 to 2025. Our analysis identifies three
distinct stages of development: beginning with the era of traditional machine learning (2010-
2015), continuing with the deep learning revolution (2016-2020), and now entering a phase of
advanced Al integration characterized by hybrid models and physics-aware machine learning
(2021-2025). Key findings show that Al has had a transformative impact on a range of critical
applications, including high-accuracy water quality prediction, loT-based real-time monitoring
systems, more cost-effective water treatment process optimization, and predictive analytics for
disaster mitigation such as floods and droughts. Despite its significant advantages, Al
implementation still faces major challenges such as data limitations, lack of model interpretability
(“black box effect”), difficulties in generalization, and high computational requirements.
Therefore, future research should prioritize the development of XAl and deeper domain
knowledge integration. Ultimately, interdisciplinary collaboration, data protocol standardization,
and clear regulatory frameworks are essential to realizing the full potential of Al in creating smart,

efficient, and resilient water management systems to address future global water challenges.
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