Ecological Questions 36 (2025) 3: 107-126 http://dx.doi.org/10.12775/EQ.2025.030

Multi-criteria decision modelling for forest fire risk mapping
in protected areas of Mayurbhanj District, Odisha:
A Case study in a geomorphologically diverse touristic landscape

Swati Sharma'*, Siddhartha S. Parasar?, Kanwarpreet Singh3

! Division of Research and Development, Lovely Professional University, Jalandhar, India-144411
ZAmity Institute of Geoinformatics and Remote Sensing, Amity University, India
*Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
*Corresponding Author e-mail: swati.9238@gmail.com

Received: 1 August 2025 / Accepted: 5 September 2025

Abstract. Forest fires are one of the most serious environmental disasters that endanger the natural forest ecosystem. Forest fire catastrophes
have recently received a lot of attention because of their escalating numbers and the effects of global climate change. Recognizing fire
occurrence and their patterns is important in identifying fire risks to mitigate the potential fire-prone areas surrounding human settlements
and potential protected areas. Additionally, smoke emissions from fires endanger public health and natural systems, plus the added impact of
natural triggers such as rainfall may cause debris floods or landslides initiated from the burnt areas. This study seeks to highlight burnt area
mapping of the environmentally protected area of Mayurbhanj District, Odisha, India, which was devastated in the year 2021 due to a massive
forest fire event. The main aim of this study was to create a map that would be a reliable risk indicator of forest fire zones in a defined region
of interest, which is important and famous as a unique Geotourism and recreational destination. The study of the forest fire probability (risk
zones) involved the investigation of an array of pertinent natural and geomorphological independent variables, such as vegetation type, climate,
topography, road buffer, historical fire data, etc. Multi-criteria decision model (MCDM), i.e., analytic hierarchy processes (AHP) and Fuzzy
Analytic Hierarchy Processes (FAHP) were used to comparatively assign weightage as per their influence on the prevailing fire risk. Results
indicate that 1,058 km” (30.79% of the study area) is highly susceptible to wildfires, posing a significant threat to biodiversity. Satellite-derived
fire risk indices and historical MODIS fire data effectively delineate high-risk zones after the severe 2021 wildfire, highlighting the urgent need
for mitigation. By leveraging modelling and geospatial analytics, this study presents a scalable wildfire risk management approach, offering
valuable insights for policymakers and disaster mitigation authorities in fire-prone landscapes of touristic importance.
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1. Introduction One of the main global threats to the natural forest system

at present is the forest fire events globally that have expo-

Humans rely on forests as a key resource for numerous nentially increased over the past decade, leading to changes
purposes, including recreation, clean air, firewood, natural  in their spatial coverage and affecting the natural climatic
raw materials, medicinal herbs, etc, and are an abode for  patterns, along with the hydrological networks (Dhar et
millions of different types of plants and animal species. al., 2023). According to a few studies, the intense heat and
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dryness brought on by climate change are what set oft wild-
fires in many parts of the world (Yue et al., 2013). Speaking
in the Indian context, approximately 36% of the nation’s
forests are at risk of fire, with over 10% of them being ex-
tremely prone to fire, according to a recent forest survey
of India (FSI) report [https://fsi.nic.in/forest-fire-activi-
ties]. Due to several interferences, which are natural and
man-made fire events, have negatively impacted the forests’
health, and they are unable to produce commodities and
offer ecological services (Dhar et al., 2023 Tamrakar &
Sharma, 2024). Ninety-eight million hectares of forest were
destroyed by forest fires in 2015 on Earth as per the report
by the Food and Agriculture Organisation, 2020. For woods
that are prone to fire, continuous protection, observation,
and mapping are essential (Chand et al., 2006). Bobsien
and Hoffmann (1998) stated in their research that fire has
a significant global, regional, and local influence on the
economy, environment, and socio-culture. The processes
part of cloud microphysics, precipitation, and atmospheric
circulation can all be impacted by fire-related aerosol and
their ability to increase cloud condensation nuclei (CCN)
concentrations in the atmosphere by an order of magnitude
(Andreae et al., 2004; Ramanathan et al., 2001). According
to several experts, fire managers, and fire management
organisations, climate change is seen more in longer fire
seasons, with big to extremely large flames in the forest
(Bowman et al., 2021; Jolly et al., 2015; Sankey et al., 2018).

Modern methods and tools are emphasized in forest fire
prevention and for devising control plans to manage and
avoid fire events. Numerous studies offer suggestions for
the mapping, tracking, and prevention of forest fires using
satellite remote sensing (Jain et al., 1996). Ahmad et al. (2018)
and Potic et al. (2017) discovered that one effective method
for determining the danger and trend of a forest fire is to use
geospatial analytics using GIS and Remote Sensing, where
satellite data can be used to identify forest fires in various
land uses (Kaufman et al., 1998), and the remote sensing
methods and Geographic Information System (GIS) are
now frequently used globally to evaluate and forecast the
frequency of fires (Abedi Gheshlaghi et al., 2020; Giglio et
al., 2006; Roy et al., 2002; Oskouei et al., 2024). Any kind of
disaster risk study requires an assessment of the integrated
spatial-temporal pattern of hazardous natural events, yet this
component is frequently overlooked, and the bulk of studies
take these two dimensions into account independently
(Loboda & Csiszar, 2007; Middendorp et al., 2013) where,
especially for the forest fire risk studies, analyze the MODIS
satellite data, which uses thermal and intermediate infrared
bands that pinpoint the fire sites and detect thermal
abnormalities with comparatively higher precision, with
repeated cycles of observation over an area (Pereira et al.,
2017; Roy et al., 2002). A “fire risk zone” is an area where

there is a high probability of fires, considering the natural
and anthropogenic factors, plus the past events that might
harm the nearby areas (Erten et al., 2004; Jaiswal et al., 2002).
To reduce the potential consequences of forest fires, a precise
risk zone map is necessary (Jaiswal et al., 2002).

In India, forest fire events are usually recorded from
mid-February till the end of June, and these occurrences
have a significant effect on biodiversity, soil ecology,
the environment, and human health in forest regions
(Mutthulakshmi et al., 2020). Furthermore, a major factor in
the rise in forest fire events in India, like in other countries,
has been climate change, which includes less precipitation,
rising temperatures, and an increase in the frequency of
droughts (Keenan, 2015). Also, anthropogenic activities
have contributed in the increasing number of forest fires
(Simioni et al., 2020) and for this reason, creating fire risk
maps early for the vulnerable and affected areas is essential
for spotting future threats and their inevitable effects on the
environment and societal infrastructure (Ghorbanzadeh et
al.,, 2019). Additionally, forest fire risk maps are incredibly
useful tools for lowering vulnerability and improving
ecological risk in the decision-making process for working
on the most essential parameter that triggers or enhances
the fire event (Gong et al., 2022). Numerous conditioning
factors for forest fires are mostly extracted from remote
sensing (RS) techniques and processed by geographic
information systems (GIS), which may help to create
several of these risk maps (Lamat et al.,2021). Such analysis
considers a wide range of factors, including temperature
and humidity, alongside geo-environmental factors like
elevation, aspect, slope angle, waterbody presence, and
land use patterns etc. (Panwar & Chaudhary, 2019; Arca et
al., 2020; Lamat et al.,, 2021; Moayedi & Khasmakhi, 2023;
Tiwari et al., 2021; Shi et al., 2023; Nur et al., 2023 and Teke
& Kavzoglu, 2025).

In this study, a protected forest cover in Mayurbhanj
District, commonly known as Similipal Biosphere Reserve,
in one of the eastern Indian states, Odisha (Fig. 1),is famous
for its rich biodiversity and natural resources (Dash &
Behera, 2018), has been investigated which has witnessed
several forest fire events over a decade and the most powerful
event that destroyed a large part of this area in the year 2021,
which lasted for at least 2 weeks [https://www.thehindu.
com/news/national/other-states/simlipal-park-fire-under-
control-rainfall-helps/article34051180.ece]. Due to this
catastrophe, there was extensive environmental damage
and various faunal species were forced into nearby human
habitations [https://www.indiatoday.in/india/story/habitat-
burnt-in-simlipal-forest-fire-wild-animals-enter-human-
areas-in-odisha-1777385-2021-03-09]. The factors causing
and aggravating the occurrence of forest fires were rated and
weighted as per their prevailing importance and extent in
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the study area for which a subjective analytic technique for
multi-criteria decision-model (MCDM) was used. In an
integrated approach, Analytical Hierarchy Process (AHP) -
Fuzzy AHP were leveraged to assign weights to hydro-
geological and environmental factors, for ascertaining the
most important causal component of forest fire in the study
area, which can be mitigated and managed to restrict the
fire events in the future. To delve further into the analysis,
the factors were structured to get insight into the causes that
contributed to the maximum risk of forest fires in previous
years, as well as for which forest fire risk maps using the
AHP-Fuzzy AHP approach were generated for the area of
interest (AOI). The maps divided the study area based on
their exposure to future risk levels, ranging from very low to
very high likelihood of experiencing a forest fire.

This study provides a piece of relevant information for
fire risk management and prevention by targeting the right
type of causal factors for mapping fire zones with high-risk
potential. The study also highlights the fuzzy approach to
improve the decision-making process while rating the
factors in the multi-criteria decision model, which has been
validated using the ROC-AUC approach for analysing the
success rate of the risk maps generated. Such a study can
be the precursor to underscore the importance of targeting

the burnt areas, which have high elevations and moderate to
steep slopes, to assess the post-fire debris flow hazards based
on rainfall threshold analysis.

2. Study Area

The region under study includes the Similipal Bio-Reserve
in the protected regime of Mayurbhanj District in Odisha,
India, covering an area of about 3,430 km?” The area extends
from 86°15°43”E - 22°04’39”N to 86°36’58”E - 21°01'21"N
(Long-Lat) (Fig. 1) and falls under the boundaries of the
state of Jharkhand and Odisha in India. The terrain elevation
ranges from the highest point of 1,124 m and the lowest goes
up to 21 m above the mean sea level. The annual rainfall
varies from 1200mm to 2000mm, and the temperature
ranges from 9°C to 35°C in the study area (Singha et al.,
2024).

Forest fires are a consistent occurrence in this region,
particularly in the initial four months of the year, i.e., from
January to April. Among these months of the year, only one
stands out, the month of March, as having the highest num-
ber of fire events. The past 12-year fire event data (MODIS
Data) was analysed from the study area, which shows 2021
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Figure 1. Study area location map
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as the year with the highest number of fire occurrences. This
dataset was revised for a confidence of more than 30% (Fig.
2), showing the trends of the fire event occurrences that re-
mained the same with 2021 as the year of the highest record-
ed forest fires in the Similipal bio-reserve. Furthermore, the
occurrence of most events of spring fires was observed for
March for over a decade. The 2021 forest fires that occurred
in the Similipal bio-reserve stand out as a very destructive
event, ably proving the necessity and urgency of practical
fire management and prevention approaches. The referred
data, as shown in Figure 2, shows why this area was chosen
for risk mapping and how this problem can aggravate other
geological processes like debris flows, landslides, etc., in this
region if precipitation occurs post-fire and can effectively
destroy the natural habitat of various flora and fauna.

3. Methodology

To assess comprehensively the risk of forest fires, thematic
maps of certain natural and anthropogenic factors were used
to map their spatial variations in the study area and to rate
them as per their impact on the prevailing fire occurrences.
These maps therefore were strictly constructed for this
specific study using the different software tools and data
sources as mentioned in Table 1. The Array-5 satellite sensor
in conjunction with the ALOS-PALSAR digital elevation
model (DEM) with 12.5 m resolution was used to deliver in-
depth topographical data. USGS Earth Explorer Landsat-8
data served as a valuable source of land cover information.
To build on existing research the landforms and geological
details were sourced from the Bhukosh link for obtaining
geological and geomorphological data. With the help of
ArcMap software, these maps were created at the required
resolution and homogenised. The creation of thematic
maps, such as LULC, NDVI, NDM]I, road-to-fire distance
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buffer, LST, slope, aspect, and elevation maps contributed
the information to comprehend the risk factors in a better
recognized and organized manner.

The multi-criteria decision approach i.e. AHP (Analytic
Hierarchy Process) was employed to allocate scores to the
chosen thematic factors and their sub-classes as per their im-
portance and relevance for causing the fire events in the study
area which depicted the most important causal factors of for-
est fires that need to be managed for sustainable preservation
of this protected area i.e. Similipal bio-reserve. AHP is useful
for handling both quantitative and qualitative criteria in mul-
ti-criteria decision-making problems based on the judgments
of decision makers, but many decision-making problems have
fuzziness and vagueness, which can lead to decision mak-
ers’ imprecise judgments in conventional AHP approaches
(Bouyssou et al., 2000). In addition to the rating-weighting of
the thematic factors through AHP, the criteria were fuzzified
to remove any redundancies in the judgments while applying
AHP-based decisions. The resulting AHP values (weights)
were registered with the respective thematic maps and the
weighted overlay was applied to extract the fire risk map. The
weights obtained from applying the fuzzy analytical hierarchy
process (FAHP) method were also used to generate another
forest fire risk map. The resultant map’s accuracies were based
on the Area Under the Curve (AUC) method using the overlay
with the past fire event data of the study area. Figure 3 presents
the methodology used in this study.

It is the very basis of a reliable and scientifically strong
system to evaluate the risk of wildfires using highly
sophisticated remote sensing data coupled with an analytical
approach. It enabled an understanding of the study area’s
present conditions and the application of specific forest
improvement measures. This study has also highlighted the
tuture risk toward the secondary geological hazards (debris
flow, landslides) if triggered with heavy precipitation post
a heavy fire event owing to the presence of steep slopes with
high elevation in some parts of the study area.
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Figure 3. Shows the
methodology adopted

S.NO. Name of the data tl;:}l; T}(;I::a()f Resolution Layers extracted from the data Source of the data
1.LAND USE LAND COVER MAP
2.NDVIMAP
L. LANDSAT 8 TIFF |Raster |30m 3 NDMI MAP https://earthexplorer.usgs.gov/
4.LST MAP
2 MODIS DATA SHP | Point 1. FIRE EVENT MAP hitps://firms.modaps.cosdis.
nasa.gov/download/
1. ELEVATION MAP
3. ALOS PALSAR TIFF |Raster |12.5m 2.SLOPE MAP European Space Agency
3.ASPECT MAP
4. Geomorphology 250k SHP |Feature |1:250000 1. GEOMORPHOLOGICAL MAP hetps://bhukosh.gsi.gov.in/
Bhukosh/
5. Geology 2m SHP |Feature |1:2000000  |2.GEOLOGICAL MAP hitps:/bhukosh.gsi.gov.in/
Bhukosh/
6. Study area boundary SHP |Polygon 1.STUDY AREA BOUNDARY Google Earth Pro
7. Google Earth road shapefile |SHP |Polyline 1.ROAD TO FIRE BUFFER MAP Google Earth Pro
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4. Data Processing, Results, and Discussion
4.1. Contributing Factor Maps

A. Land Use and Land Cover Map (LULC)

The term Land Use and Land Cover (LULC) refers to how
land is used for agriculture, conservation, development,
recreation, animal habitats, urban areas, or any other activity
(Prakasam, 2010; Rawat & Kumar, 2015; Reis, 2008; Seyam et
al.,2023). In this study, the LULC map (Figure 4(a)) indicated
7 land cover classes in Similipal bio-reserve, namely water
bodies, vegetation cover, shrubs, low-lying vegetation,
barren land, high relief area, and uncultivated Area. The
map classes were further reclassified by applying AHP,
giving vegetation cover the highest rank and water bodies
the lowest, concerning the natural cause of fire activity. The
forest fire point vector dataset from the year 2010 to 2022
was overlaid on the LULC map (Fig. 4), indicating fire events
in various map classes.

B. Normalized Difference Vegetation Index Map (NDVI)
Kriegler et al. (1969) suggested a straightforward band
transformation that produced a novel simplified picture
known as the normalized difference vegetation index
(NDVI) i.e. near-infrared (NIR) radiation minus red
radiation divided by near-infrared radiation plus red
radiation (equation 1) (Huang et al., 2021; Kriegler et al.,
1969). NDVI values vary from -1 to 1, regardless of radiance,
reflectance, or DN input. In general, its values are negative for
water bodies, near zero for rocks, sands, or concrete surfaces,
and positive for vegetation, such as crops, shrubs, grasses,
and forests (Huang et al., 2021). The NDVI map (Figure
4(b)) in this study was reclassified into 5 classes applying
AHP, namely very low, low, medium, high, and very high,
with very high given the highest rank of 5 and very low
given the lowest rank of 1, each class indicating the amount
of vegetation in a particular area. The fire events from
2010-2022 are overlaid on the NDVI map, and it indicates
how the areas with high to very high vegetation cover have
encountered more forest fires than those areas having very
low or low vegetation cover. In this study, NDVT is given the
highest priority rather than LST as land surface temperature
greatly increases post-fire events (Vlassova et al., 2014), and
the temperature difference between the unburned areas and
burned areas was on average 7.6°C.

Mathematically,

NIR - red

eq.1
NIR + red

NDVI =
NDVI = Normalized Difference Vegetation Index,
NIR = Near Infrared,
Red = Red Band.

C. Normalized Difference Moisture Index Map (NDMI)

The structure of the plants is inextricably linked to the
moisture content that exists within them (Basak et al., 2023).
If an area has high moisture content, it suggests healthy trees
and more vegetation, thus being fuel for a forest fire. The value
of NDMI is between +1 to -1 (Taloor et al., 2021) (equation
2). The NDMI map (Figure 4(c)) generated for this study was
reclassified into 5 classes applying AHP, namely very low, low,
medium, high, and very high, depending upon the moisture
index. Very high class was given the highest rank of 5 and
very low was given the lowest rank of 1. The forest fire data
from 2010-2022 were overlaid with the NDMI map, which
showed that the areas having very high to high moisture
content experienced maximum fire events than the areas
with low to very low moisture content.
Mthematically,

NIR - SWIR
NIR + SWIR

NDMI = eq.2

NDMI = Normalized Difference Moisture Index,
NIR = Near Infrared,
SWIR = Short Wave Infrared.

D. Land Surface Temperature Map (LST)

An LST map indicates the temperature of an item within
a pixel, which can include various land cover categories
(Taloor et al.,2021), and in the present study area (Fig. 5(a))
LST shows a maximum of 63.28°F, which is 17.37°C, and
aminimum of 51.20°F, which is equal to 10.67°C. The forest
fire events data were overlaid on the LST map, and it indicates
that the areas having lower land surface temperature are
experiencing more forest fire events. This comes from
a scientific understanding that areas with dense vegetation
tend to have a cooling effect on the land, whereas areas with
very little vegetation or that are barren absorb more solar
energy and lack the cooling effect, resulting in higher surface
temperature (Vlassova et al., 2014). The LST map was further
reclassified applying AHP into 5 classes, namely: very high,
high, medium, low, and very low, giving the very low LST
class the highest rank and very high LST the lowest rank. The
process to find the LST of an area from Landsat 8 imagery is
given below (equations 3,4, 5,6,7 and 8):

Step 1. Top of Atmosphere (TOA) Radiance:

TOA = ML * Qcal + AL eq. 3
where,
TOA = Top of Atmosphere Radiance,
ML = Radiance Multiband (Band 10),
AL = Radiance Add Band (Band 10),
Qcal = Band 10.
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Step 2: Brightness Temperature (BT):

BT =K,/In (K;/TOA + 1) - 272.15 eq. 4
where,

BT = Brightness temperature,

TOA = Top of Atmosphere,

K; = K; constant Band (Band 10),

K, = K, constant Band (Band 10).

Step 3: Normalized Difference Vegetation Index (NDVI):

NDVI = (NIR - Red)/(NIR + Red) eq. 5
where,

NDVI = Normalized Difference Vegetation Index,

NIR = Near Infrared,

Red = Reb Band.

Step 4: Proportion of vegetation (PV):

PV={(NDVI-NDVImin)/(NDVImax+NDVImin)} 2 eq.6
where,

PV = Proportion of vegetation,

NDVI = Normalized Difference Vegetation Index,
NDVI,,;, = Minimum value of NDVT,

NDVI,,., = Maximum value of NDVI.

Step 5: Emissivity

E=0.004* PV +0.986 eq.”7
where,

E = Emissivity,

PV = Proportion of Vegetation.

Step 6: Land Surface Temperature (LST)

LST = BT/(1+(A * BT/CA2 ) * In (E)) eq.8
where,

LST = Land Surface Temperature,

BT = Brightness Temperature,

A=10.8

CA2 =14388

E = Emissivity.

E. Road Buffer Map
Identifying the distance of past fire events to nearby roads in
a study area might help identify potential fire and high-risk
regions for human activities (Chuvieco & Congleton, 1989).

For this study, the distance for the road buffer was taken as
1 km, 2 km, 5 km, 8 km, 10 km, 12 km, 15 km, 18 km, 20
km, 22 km, 25 km, and 28 km, keeping in view the nearest
distance to the fire event in the past. From the road buffer
map (Fig. 5(b)) it can be inferred that many fire events took
place within the range of 1 km to 5 km from the road in the
period of 2010-2022, giving a rough idea of anthropogenic
influence in causing forest fires. This map was reclassified
applying AHP, giving 1 km the highest rank and eventually
28 km the lowest in terms of the risk to fire activity.

E Geology Map

The Geological data was obtained from the Bhukosh website
[https://bhukosh.gsi.gov.in/Bhukosh/Public]. The map was
generated by further extracting the information according to
the AOI using the clip feature. Since the geological map was in
shapefile format of scale 1:2000000, firstly it was reprojected
according to the coordinate system and then was converted
using the conversion tool from feature to raster format. The
geological map (Fig. 6(a)) shows 17 formation details, and
they were reclassified again by applying AHP. Since geological
formations do not have much of an influence in causing forest
fires so, the 17 classes were reclassed according to the number
of fire events that took place over each formation in the past
12 years giving broad information about the classes more
prone and less prone as per the spatial distribution of the fire
activities. The geology map (Fig. 9) was thus generated, and
the forest fire events were overlaid on it.

G .Geomorphology Map

The Geomorphological data was obtained from the Bhukosh
website [https://bhukosh.gsi.gov.in/Bhukosh/Public] and the
map was generated by the same process used to generate the
geological map. The initial shapefile was of scale 1:250000
and the thematic map (Fig. 6(b)) shows 9 geomorphological
features classified applying AHP, giving the highest rank to
highly dissected Hills and valleys, and the lowest rank to
Water Bodjes.

H. Elevation Map

The Elevation map was generated using the ALOS-PALSAR
digital elevation model (DEM) of 12.5 m resolution. The
elevation map (Fig. 7(a)) shows a maximum elevation point
of 1,124 meters above mean sea level. The map was further
reclassified applying AHP into 5 elevation classes. The
forest fire events data from 2010-2022 was overlaid on the
elevation map, giving us a clear view of how places according
to their elevation were affected by the forest fire events.

I. Aspect Map
There are different definitions of aspect in literature, which
represent the maximum slope direction of the land surface
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(Tanoli et al., 2017); or for any point, the aspect represents
the direction of the maximum variation of the degree of
the height value (Chen et al., 2013). It also indicates the
maximum altitude change towards the downward slope
direction (Bourenane et al., 2015; Zhuang et al., 2015). The
clockwise sides of a slope between 0° and 360°, is measured
in degrees from the North, are referred to as the aspect
(Hadji et al., 2016; Lee, 2005). The aspect typically spans from
0° to 360° and is split into groups at 45°, the directions are
North, Northeast, East, Southeast, South, Southwest, West,
and Northwest (Fig. 7(b)) in a clockwise manner (Cellek,
2021; Geiger et al., 2009; Warren, 2008; Singh, 2018).

J. Slope Map
The slope map was also generated using the ALOS PALSAR
digital elevation model (DEM) of 12.5 m resolution. The slope
map in Figure 7(c) was reclassified using AHP into 5 classes:
very low, low, medium, high, and very high. The classes were
ranked by giving the highest rank to a very low inclined slope,

LLAND USE LAND COVER MAP
SIMLIPAL BIORESERVE

86°200"E 86°40'0"E 87°00"E 86°200"E
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86°40'0"E.

and the lowest rank to a very high inclined slope. With a high
degree of slope, the possibility of slope instability increases,
and resins, oils, and fats held in plants and debris are vaporized,
much like at high temperatures experienced during a fire. Both
the soil and the atmosphere are exposed to these vapours;
condensing into the lower, colder soil under the surface, the soil
vapours reorganize into the hydrophobic layer, which is a layer
that repels water [https://www.csus.edu/indiv/k/kusnickj/
geology140/fire.html]. Changes in vegetation, surface cover
conditions, and hydrological processes following a forest fire
can raise the likelihood and severity of slope instability events,
which can have long-term effects on the regions in front of
or above the slopes. The first four to six months following
the fire are often the most vulnerable due to the possibility of
heavy rainfall during the season and the lack of regrowth of
vegetation (Nunes & Lourengo, 2017; Arujo et al., 2020) and
rainfall can often act as the primary cause of slope instability
events, according to Esteves et al. (2012), Zézere et al. (2015),
and Mahajan et al. (2022).

NORMALIZED DIFFERENCE MOISTURE INDEX MAP
SIMLIPAL BIORESERVE
86°20'0"E 86°40'0"E

8T°00"E 87°0°0"E

22°30'0°N
22°30'0"N

22°300°N

22°0'0"N
22°0'0"N

D Study Area Boundary

(c)

22°30'0°N
m?'ﬂ"N

22°00"N
2°00°N
200N

:I Study Area Boundaryj|

I vwATER BODIES 7 []Study Area Boundary | | VERY LOW
I vEGETATION . [l VERY LOW . §- - LOW g
E I svinues £k B LOW tz 2
81 [ LOW LYING VEGETATION 3 & [ IMEDIUM & - MEDIUM
" [ | BARRENLAND b [ HIGH B G
P I 11GH RELIEF AREA B VERY HIGH B very sicu
. UNCULTIVATED LAND 0 40 Km o o 0 S
; FIRE EVENTS e -_FIRE EVENTS ! A A FIRE EVENTS
SO2UVE o30E BT e 86°200°E 86°400"E 87°00°E

86°40'0"E 87°00"E

Figure 4. (a) Land Use Land Cover Map, (b) Normalized Difference Vegetation Index Map & (c) Normalized Difference Moisture Index
Map depicting moisture-related vegetation conditions. Fire event points (2010-2022) are overlaid with thematic classes

Table 2. Continuous data Classification for NDVI, NDMI, LST, Slope, and Elevation Maps

Map Sub-Class NDVI Class Value | NDMI Class Values LST Cla:ss Values Slope Class Values Elevation Class
(°F) Value (m)
Very Low 0.034-0.10 0.167-0.029 61.08-64.09 0-10° 21-230
Low 0.109-0.243 0.029-0.089 64.09-65.22 10°-20° 230-419
Medium 0.243-0.298 0.089-0.136 65.222-66.40 20° -30° 419-616
High 0.298-0.344 0.136-0.167 66.40-67.71 30° -40° 616-791
Very High 0.3445-0.744 0.167-0.272 67.71-72.19 >40° 791-1124
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4.2. Models Applied

A. Analytical Hierarchy Process

In this study, the forest fire risk map (Fig. 8) was firstly
generated by combining all the factor maps namely: LULC
map (Fig.4a), NDVI map (Fig. 4b), NDMI map (Fig. 4c), LST
map (Fig. 5a), Road to fire distance map (Fig. 5b), Geology
Map (Fig. 6a), Geomorphology map (Fig. 6b), Elevation map
(Fig. 7a), Aspect map (Fig. 7b) and Slope map (Fig. 7c). Each
factor and its impact on causing the forest fire was weighted
and categorized, and appropriate weights were assigned to
each sub-class in the factor maps with certain class values
(Table 2). A higher number indicates that the factor is more
relevant to causing fires in a region (Pandey & Ghosh, 2018).
The weights were assigned using AHP, considering the past
literature, general characteristics of the study area, and the
general relation between factors and fire activity based on
previous studies in this field.

The AHP technique is one of the most used MCDMs
(Rahmati et al,, 2015) and in many regions of the world,
AHP and geospatial techniques have been effectively used
to identify fire risk zones (Chavan et al., 2012; Chowdhury
& Hassan, 2013, 2015; Matin et al., 2017; Nuthammachot &
Stratoulias, 2021; Pourghasemi et al., 2016; Van Hoang et al.,
2020). When a decision maker must choose amongst several
criteria, the AHP approach ranks the choices and helps them
choose the best one (Ozdagoglu & Ozdagoglu,2007). In AHP,
preferences for alternatives are derived through pairwise
comparisons which involve comparing two choices based on
a single criterion and indicating a preferred option. The 1-9
scale is the typical preference scale (Table 3) used for AHP; it
falls between “equal importance” and “extreme importance”
Within the pairwise comparison matrix, a value of 9 signifies
a factor that is significantly more important than the other,
a value of 1/9 denotes a component that is significantly less
important than the other, and a value of 1 shows a factor of
equal significance (Ozdagoglu & Ozdagoglu, 2007; Sarkis

Table 5. Comparison matrix for the factor used in the study

& Talluri, 2004). Intermediate values such as 2, 4, 6, and 8
indicate intermediate importance.

Table 3. Relative Importance of the Scale from 1-9

Scale 1 3 5 7 9
T

Equal Moderate |Strong Very Extreme
Impor- Strong

Impor- Impor- Impor- Impor-
tance Impor-

tance tance tance tance

tance

The values 2, 4, 6, and 8 show indecisiveness between
the factors.

Now, the consistency ratio value must be below 0.01;
otherwise, the comparison matrix must be re-examined,
or it can be considered inconsistent. The consistency ratio
(C.R.) is obtained by comparing the consistency index (C.I.)
with the appropriate set of numbers, each of which is an
average of the random index (R.I.) of a randomly generated
reciprocal matrix using the scale 1/9,1/8, 1, 8,9 to see if it is
about 0.10 or less. If it is not less than 0.10, the problem is
revised for the judgments (Saaty, 1987).

The formula for CR is:

CR =CI/RI eq.9

CI is the consistency index and is mathematically
obtained by:

Cl=(Amax - n)/(n-1) eq. 10

R.Iis the random consistency index and the values for 10
factors (Saaty, 1987) are given below in Table 4.

Table 4. R.I table for 10 factors

n 1 2 3 4 5 6 7 8 9 10
Random

Consistency | 0 0 10.58/0.90|1.12|1.24|1.32|1.41|1.45|1.49
Index (R.I)

The resultant consistency ratio (CR) for contributing
factors came out to be 0.097 based on Table 5 and the

Factors LULC NDVI NDMI LST ROSEETO GEOLOGY I(’;}Eljgi/[(? (fY-' E,{:IE 0V£ " | ASPECT | SLOPE | WEIGHTAGE | RANK
LULC 1 1/6 1/5 1/3 7 8 7 5 1/3 3 0.08 5
NDVI 6 1 3 9 9 9 7 7 0.318 1
NDMI 5 1/3 1 8 9 7 7 5 0.208 2
LST 3 1/4 1/2 1 8 9 7 7 5 0.143 3
ROADTOFIRE | 1/7 1/9 1/8 1/8 1 1 1/3 1/3 1/8 1/6 0.014 9
GEOLOGY 1/8 1/9 1/9 1/9 1 1 YV 1/4 1/8 1/7 0.013 10
GEOMOR-

PHOLOGY 1/7 1/9 1/7 1/7 3 2 1 1/3 1/7 1/5 0.02 8
ELEVATION 1/5 1/7 1/7 1/7 1 1/7 1/3 0.029 7
ASPECT 3 1/5 1/3 1/2 7 1 5 0.186

SLOPE 1/3 1/7 1/5 1/5 3 1/5 1 0.052 6
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principal Eigen Value The resultant consistency ratio (CR)
for contributing factors came out to be 0.097 based on Table
5 and the principal Eigen Value resulted in 11.301. The sub-
classes of each factor map were also rated (Appendix 1) to
give them new values according to their relevance in causing
the fire events; hence, the judgements were used to generate
the forest fire risk map (Fig. 8), by following the weighted
overlay approach, combining the factor maps with the
already assigned weights.

The resultant forest fire risk map was classified into 5
classes: Very High, High, Medium, Low, and Very Low (Ta-
ble 6). The Principal Eigen Value of the pair-wise comparison
AHP matrix of the forest fire risk index map is 5.315, with
a consistency ratio value of 0.07.

Table 6 shows the factors that were selected for this study,
including the sub-classes in each factor and how AHP was
applied for comparative matrix generation. The principal ei-
genvalue and also the CR value of the individual factors are
given (Appendix 1). In Land Use Land Cover (LULC), the
priority was from highest to lowest as vegetation > Low Lying
Vegetation > Shrubs > High Relief Area > Uncultivated Land
> Barren Land > Water Bodies. Vegetation gets the highest
priority in LULC as the presence of vegetation can initiate fire
and provide the ground for the fire to grow and create devas-
tating consequences. Water body on the other hand, because
of its inability to catch fire is given the lowest priority, as the
presence of water can put off the fire and will never allow the
fire to grow. In the Normalized Difference Vegetation Index
(NDVI), the areas with very high vegetation cover are given
the highest priority as vegetation provides ground and acces-
sories for the fire to initiate and spread. In the Normalized
Difference Moisture Index (NDMI), the areas with very high
moisture content indicate the presence of very high vegetation
resulting in giving us the highest priority to areas indicating
very high moisture content. Vegetations have a cooling ef-
fect on the ground leading to lowering the temperature of
the surface, whereas areas with very low to zero vegetation
show higher surface temperature, as the soil absorbs more
heat energy coming from the sun, hence in the land Surface
Temperature factor, the areas with very low to low surface
temperatures are given high priority than the areas with high
surface temperature. In the Road to Fire distance factor, the
areas in close proximity to the road are given higher priority
as vegetation near such roads is in constant danger of getting
ignited knowingly or unknowingly due to anthropogenic fac-
tors or actions. Hence several fire events occurred between
1 to 5 km from the road. In Geology, there are a total of 17
subclasses, out of which Similipal Gp. (Similipal lava), The
Palaeo-Proterozoic formation is given the highest priority as
this formation has encountered fire events ranging between
the year 2010 — 2022, and the lowest priority to Basic Intrusive,
Archaean- Palaeo-Proterozoic formation. In geomorphology,

the highest priority was given to Highly Dissected Hills and
Valleys, as due to their slope dead leaves and branches could
be found acting as fuel to the fire, the slope helps the fire to
spread, and due to its dissected terrain, the wind pattern gets
unpredictable, results in aiding the fire, wind patterns keep
changing in such terrains which makes it very hard to contain
the fire. Hence, the highest priority is given to highly dissected
hills and valleys. And the lowest priority is given to water bod-
ies. In case of elevation, the highest priority was given to high
to medium elevation, because this study has experienced a lot
of fire events in areas from high to medium elevation in the
past. Aspect plays an important role in forest fire, and since the
area of study is in the northern hemisphere, the south-facing
slopes were given the highest priority, and the priority scale
was South > East > West > North > Flat. For the slope factor,
the highest priority was given to areas with very low to low
inclined slopes. Looking through the historic fire event data
from 2010 - 2022 and overlaying it over the slope map, it can
be concluded that in the AOI, areas with very low to low slope
conditions have experienced a higher amount of forest fire
events. Hence, the priority was given to areas with low to very
low slope conditions.

FOREST FIRE RISK MAP
SIMLIPAL BIORESERVE
36“29'0"E 86’49'0"E 87‘0|'0“E
N
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8
|:| Study Area Boundary
I VERY LOW RISK
. | LOWRISK .
81 " | mEDIUM RISK &
| HIGH RISK
I VERY HIGH RISK
* Fire Events

86°200"E 86°400"E 87°00"E
Figure 8. Forest fire risk map of Similipal Bio-reserve using the
AHP model, classifying the area into very low to very high sus-

ceptibility zones
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Table 6. Comparison matrix of Forest Fire Risk Map classes

Table 8. Fuzzy geometric mean Values

Factors 1\;:;/1 High | Medium | Low lez Weightage | Rank
Very High 1 2 9 9 0.0463 1
High 1/2 1 7 9 0.337 2
Medium 1/5 1/5 3 7 0.12 3
Low 1/9 1/7 1/3 1 3 0.052 4
Very Low 1/9 1/9 1/7 1/3 1 0.029 5

B. Fuzzy Analytical Hierarchy Process (FAHP)

It is possible to think of the fuzzy AHP methodology as
an improved analytical technique that evolved from the
conventional AHP (Bouyssou et al., 2000). Although AHP
is useful for handling both quantitative and qualitative
criteria of multi-criteria decision-making problems based
on the judgments of decision makers, many decision-making
problems have fuzziness and vagueness, which can lead to
decision makers’ imprecise judgments in conventional
AHP approaches (Ozdagoglu & Ozdagoglu, 2007). As
a result, a large body of research has demonstrated that, in
comparison to classic AHP approaches, fuzzy AHP provides
a comparatively more adequate description of these types
of decision-making processes. Fuzzy AHP is an extension
of Saaty’s theory (Boender et al., 1989; Buckley, 1985a, b;
Lootsma, 2013; Ribeiro, 1996; Van Laarhoven & Pedrycz,
1983). In this study as well, the Fuzzy-AHP method was
applied, and changes were observed in the weightage
(Table 7) given to each factor in the simple AHP model.

After creating thistable calculation for the Fuzzy geometric
mean values were calculated (Table 8). Mathematically, it can
be calculated using the following formula:

Fuzzy Geometric mean value (Aij, Bi, Ci) =
(al a2 a3...an)% ,(bl*b2*b3...bn)% (€l % €2 c3...cn)%
Here,
n = no. of factors,

Factors Fuzzy GM values (Ai, Bi, Ci)

LULC (1.1,1.35,1.67)
NDVI (4.46,5.14,5.74)
NDMI (2.66,3.34,4.02)
LST (2.03,2.58,3.10)
Road to Fire Distance (0.21,0.23,0.27)
GEOLOGY (0.20,0.22, 0.26)
GEOMORPHOLOGY (0.27,0.33,0.40)
ELEVATION (0.4,0.5,0.6)

ASPECT (1.68,2.08,2.62)
SLOPE (0.7,0.86,1.05)

Now the fuzzy weights of each factor (table 9) are given by:

Al Bi Ci

Fuzzy weight (A,B,C) = (E’? Ci)'(Z’-‘ Bi)'(Z’-‘ Ai)
=1 =1 =1

eq.12

where Ai, Bi, and Ci are individual Fuzzy GM values of the
factors,
and n = no. of factors.

Table 9. Fuzzy Weights

Factors Fuzzy Weights (A, B, C)
LULC (0.055,0.081,0.1219)
NDVI (0.233,0.3084,0.419)
NDMI (0.133,0.2004, 0.2934)
LST (0.1015,0.1548,0.2263)
Road to Fire Distance (0.0105,0.0138,0.0197)
GEOLOGY (0.01,0.0132,0.0189)
GEOMORPHOLOGY (0.0135,0.0198,0.0292)
ELEVATION (0.02,0.03,0.0438)
ASPECT (0.084,0.1248,0.1912)
SLOPE (0.035,0.0516,0.0766)

eq. 11 Now the weights of each factor were calculated (Table 10)

using the given formula:

and al, a2, a3,....,, b1, b2 b3....,, c1,c2, c3.... indicates the Weights (Wi) = A+133+C eq. 13
values given to each factor.
Table 7. Fuzzy AHP table

ROAD | GEO- | GEOMOR-

FACTORS LULC NDVI NDMI LST TO FIRE| LOGY | PHOLOGY ELEVATION| ASPECT SLOPE
LULC (1,1,1) (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/4,1/3,1/2)| (6,7,8) | (7,8,9) (6,7,8) (4,56) |(1/4,1/3,1/2) (2,3,4)
NDVI (5,6,7) (1L,1,1) (2,34) (345 | (999 | (999 | (999 (6,7,8) (4,5,6) (6,7,8)
NDMI (4,5,6) (1/4,1/3,1/2)|  (1,L,1) (1,2,3) (7,8,9) | (99,9 (6,7,8) (6,7,8) (2,3,4) (4,5,6)
LST (2,3,4) (1/5,1/4,1/3)| (1/3,1/2,1) (1,1,1) (7,8,9) | (9,99 (6,7,8) (6,7,8) (1,2,3) (4,5,6)

ROSEETO (1/8,1/7,1/6) | (1/9,1/9,1/9) | (1/9,1/8,1/7) | (1/9,1/8,1/7) | (LL,1) | (LL,1) | (1/4,1/3,1/2)| (1/4,1/3,1/2) |(1/9,1/8,1/7) | (1/7,1/6,1/5)

GEOLOGY |(1/9,1/8,1/7) | (1/9,1/9,1/9) | (1/9,1/9,1/9) | (1/9,1/9,1/9)| (1,1,1) | (1,1,1) | (1/3,1/2,1) |(1/5,1/4,1/3)|(1/9,1/8,1/7)| (1/8,1/7,1/6)

s [(UB1/7,116) | (1/9,1/9,119)| (1U81/7,1/6) (U U7,16)| (234) | (123) | (LLY)  |(UAL3,12) | (U8V7,1/6)| (1/6,1/5,1/4)

ELEVATION | (1/6,1/5,1/4) | (1/8,1/7,1/6) | (1/8,1/7,1/6) | (1/8,1/7,1/6)| (2,3,4) | (3,4,5) (2,3,4) (L,L,1) |(1/8,1/7,1/6) | (1/4,1/3,1/2)

ASPECT (2,3,4) (1/6,1/5,1/4) | (1/4,1/3,1/2) | (1/3,1/2,1) | (7,8,9) | (7,8,9) (6,7,8) (6,7,8) (1,1,1) (4,5,6)
SLOPE | (1/4,1/3,1/2)|(1/8,1/7,1/6) | (1/6,1/5,1/4) | (1/6,1/5,1/4)| (5,6,7) | (6,7,8) (4,5,6) (2,3,4) (1/6,1/5,1/4) (L,L,1)
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Table 10. Weightage table

Table 12. Ranks and Weightage of Factors using FAHP

Factors Weights (Wi) Factors Normalized Weights (W) Ranks
LULC 0.086 LULC 0.082 5
NDVI 0.317 NDVI 0.305 1
NDMI 0.209 NDMI 0.201 2
LST 0.161 LST 0.155 3
Road to Fire Distance 0.0146 Road to Fire Distance 0.014 9
GEOLOGY 0.014 GEOLOGY 0.013 10
GEOMORPHOLOGY 0.021 GEOMORPHOLOGY 0.02 8
ELEVATION 0.031 ELEVATION 0.03 7
ASPECT 0.133 ASPECT 0.128 4
SLOPE 0.054 SLOPE 0.052 6

Now all the weights were added and checked if it is = 1.
Therefore, Xiz; Wi gave a value of 1.0406 which is greater
than 1 so the Normalized weights were again calculated
(Table 11), mathematically which can be obtained by:

by each raster’s cell value in the model builder (Hassan et
al., 2020). Finally, a forest fire risk map was generated using
weighted overlay analysis and the weight values obtained
during the FAHP rating-weighting (Fig. 9).

FOREST FIRE RISK MAP
SIMLIPAL BIORESERVE
86°20'0"E

86°40'0"E 87°0'0"E

N

Normalized Weights (W) = # eq. 14
Table 11. Normalized Weight Table
Factors Normalized Weights (W)

LULC 0.082
NDVI 0.305
NDMI 0.201
LST 0.155
Road to Fire Distance 0.014
GEOLOGY 0.013
GEOMORPHOLOGY 0.02
ELEVATION 0.03
ASPECT 0.128
SLOPE 0.052

Now;, the sum of the normalized weights i.e. YW gave
the sum value 1. A slight difference in the weightage of
the factors from the weightage obtained by applying AHP
was observed. Hence Fuzzy AHP was used to reduce the
fuzziness in the decision-making process in the comparison
matrix of AHP which helped to get a more accurate result.
Now according to the normalized weights, ranks were given
to the factors (Table 12).

C. Weighted Overlay (WO) for FAHP-Rated Factors
The weighted overlay method encrusts information based
on factor layers to get a composite result. To provide
a single, integrated analysis, it weighs each data layer
according to its relative value and these weighted layers are
then superimposed (Alharbi, 2024; Merchan et al., 2023).
Applying the weighted overlay analysis involves overlapping
all the GIS thematic layers and multiplying the weight value
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Figure 9. Forest fire risk map of the Similipal Biosphere Reserve
generated using the Fuzzy Analytic Hierarchy Process (FAHP),

providing refined susceptibility zoning
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Mathematically,

Index Map = F1 * Weightage + F2 » Weightage +
F3 x Weightage + F4 x Weightage +
F5 *x Weightage + F6 * Weightage+F7 » Weightage +
F8 » Weightage + F9 Weightage + F10 » Weightage
eq. 15

Here in this study, F1, F2, F3, F4, F5, F6, F7, F8, F9, and F10
indicate the factor maps i.e. LULC map, NDVI map, NDMI
map, LST map, road to fire distance map, geology map,
geomorphology map, elevation map, aspect map, and slope
map respectively.

Following the creation and categorization of the forest
fire risk maps, a unique map known as the burn severity
map (Fig. 10) was produced using the annual fire data of the
year 2021, which indicated the level of damage experienced
in the study area due to previous extreme forest fire events.

To generate the burn severity, the following formula was
used:

__ NIR—-SWIR
Burn Severity = NIR 7 SWIR
where NIR = Near Infrared Band,
SWIR = Short Wave Infrared Band.
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Figure 10. Burn Severity Map

A correlation between NDVI-burn severity and NDMI-
burn severity was analysed using two scatter correlation
graphs (Fig. 11 and Fig. 12), and they indicated a positive
correlation; hence increase in vegetative cover increased
burn severity, and also an increase in moisture index in the
study area indicated an increase in vegetation cover, and
hence the burn severity also increased.

The forest fire risk maps generated by applying AHP
(Fig. 8) and FAHP (Fig. 9) delineate the land surface under
very high risk to very low risk towards forest fire. The forest
fire risk map generated using AHP indicates that out of the
total AOI, 866 km” area extent is under a very high-risk zone
that comprises around 25.21% of the total study area. The
forest fire risk map generated by FAHP indicates that out of
the total area, 1058 km? is under a very high-risk zone that
comprises 30.79% of the total area. The historical fire events
data aligns with the areas that are labelled as very high-risk
zones for forest fire when the MODIS data is plotted with
the index maps for the accuracy check.

Analysing the final risk maps also indicates that the
areas that are under high risk are often associated with high
vegetation, which is also associated with an increased amount
of moisture; hence, it can be seen that the areas with high
vegetation indicated by the NDVI map have a resemblance
to the areas with high moisture content indicated in the
NDMI map. A large amount of vegetation also creates
a huge amount of debris, making such areas susceptible to
debris flow and landslides due to the introduction of the
rainy season soon after the forest fires. During forest fire, as
the temperature increases the oils, resins, and fats stored in
the plants get evaporated into the atmosphere and they also
penetrate the ground and create a hydrophobic layer [https://
www.csus.edu/indiv/k/kusnickj/geology140/fire.html] that
induces slope instability as soon as there is rain as the run off
will increase and the water won’t be able to penetrate the soil
due to the presence of the hydrophobic layer. With this high
runoff speed, the soil along with the debris created during
the forest fire will start to flow and the accumulation of such
flow can lead to debris floods. Such instability in slope can
also induce a landslide, as the rain after the forest fire makes
a favourable condition that can induce slope instability on
highly inclined slopes, loss of vegetation, high runoft speed
etc. Tables 13 and 14 present the area occupied by zones that
were categorized according to their risk level to forest fire in
the Forest Fire Risk Map, applying the AHP model (Fig. 8)
and FAHP model (Fig. 9), respectively.


https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
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Table 13. Area under different zones according to FFRM applying

Table 14. Area under different zones according to FFRM applying

AHP FAHP
Zones Area (km?) Zones Area (km?)
Very Low Risk 213 Very Low Risk 202
Low Risk 395 Low Risk 296
Medium Risk 845 Medium Risk 722
High Risk 1116 High Risk 1158
Very High Risk 866 Very High Risk 1058
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Figure 13. Success Rate Curve for index maps based on AHP and FAHP models

4.3. Validation

To validate the performance of AHP and FAHP-based
index maps an accuracy check was run using the area
under the curve (Success Rate Curve) method (Fig. 13),
giving a value of 84.82 and 84.87 for AHP and FAHP-based
models, respectively. The results show almost similar success
rates for AHP and FAHP models and indicate good user
consistency in choosing the rating of the criteria and the
sub-criteria. Appendix 2 shows the pixel coverage of burn
severity in various parts of the study area with respect to
the pixel distribution in forest fire risk classes of AHP and
FAHP-based maps.

5. Conclusions

Statistics from this study revealed that more than 50% of the
total study area falls under high and very high risk of forest
fires. This emphasizes the vulnerability towards forest fires in
the study area which pose a serious threat to its biodiversity
and environment. The fact is that the 2021 forest fire brought
into evidence the biggest natural threat prevailing in this
region that can lead to the loss of ecological habitat to many
species if proper steps to mitigate the risk are not taken.
This study presents the methodology and techniques for
assessing and mapping the areas at risk to future forest fires.
The application of the Analytic Hierarchy Process (AHP)
and Fuzzy AHP indicated the important factors that raise
the probability of forest fires in this area the study has also
shown how to extract forest fire risk information from
satellite images and when combined with historical forest fire

event data (such as MODIS fire data used) it can demarcate
the zones of forest fire risk with reliable results.

The study also indicated that the fire events in the
forest reserve region take place between January and April,
inferring that the area is susceptible to forest fire during the
pre-monsoon season, which indicates that the dry season
results in the accumulation of dead leaves, branches, and
trees, which act as fuel to the fire. These factors should be
kept in mind, and regular surveillance by the fire department
and forest department must be carried out to minimize the
dry season products, especially in area that has maximum
natural vegetation cover.

While both methods inferred NDVI and NDMI as
dominant drivers of forest fires, FAHP resulted in relatively
higher normalized weights compared to AHP. This suggests
that the uncertainty in judgment accounted for, vegetation
density, and moisture index were greater as controlling
factors of fire risk in the Similipal Bioreserve. Whereas, the
factors such as slope and aspect resulted in minor weightage
shifts between AHP and FAHP, indicating topographic
controls as secondary factors to fuel the forest fire.

Furthermore, this study can be taken as a stepping
stone to research the post-fire debris flow hazards using the
slope maps and fire-risk zones mapped from the present
study. Looking at the recent global climate change and
extreme temperatures in many parts of India, if the forest
fire events increase in various regions, it will also increase
the requirement for the assessment of debris-flow hazards
through additional field-verified inventories of postfire
rainfall-triggered events. Such studies are required for
informed decision-making in disaster-prone areas.
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