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Abstract. Forest fires are one of the most serious environmental disasters that endanger the natural forest ecosystem. Forest fire catastrophes 
have recently received a lot of attention because of their escalating numbers and the effects of global climate change. Recognizing fire 
occurrence and their patterns is important in identifying fire risks to mitigate the potential fire-prone areas surrounding human settlements 
and potential protected areas. Additionally, smoke emissions from fires endanger public health and natural systems, plus the added impact of 
natural triggers such as rainfall may cause debris floods or landslides initiated from the burnt areas. This study seeks to highlight burnt area 
mapping of the environmentally protected area of Mayurbhanj District, Odisha, India, which was devastated in the year 2021 due to a massive 
forest fire event. The main aim of this study was to create a map that would be a reliable risk indicator of forest fire zones in a defined region 
of interest, which is important and famous as a unique Geotourism and recreational destination. The study of the forest fire probability (risk 
zones) involved the investigation of an array of pertinent natural and geomorphological independent variables, such as vegetation type, climate, 
topography, road buffer, historical fire data, etc. Multi-criteria decision model (MCDM), i.e., analytic hierarchy processes (AHP) and Fuzzy 
Analytic Hierarchy Processes (FAHP) were used to comparatively assign weightage as per their influence on the prevailing fire risk. Results 
indicate that 1,058 km² (30.79% of the study area) is highly susceptible to wildfires, posing a significant threat to biodiversity. Satellite-derived 
fire risk indices and historical MODIS fire data effectively delineate high-risk zones after the severe 2021 wildfire, highlighting the urgent need 
for mitigation. By leveraging modelling and geospatial analytics, this study presents a scalable wildfire risk management approach, offering 
valuable insights for policymakers and disaster mitigation authorities in fire-prone landscapes of touristic importance.

Keywords: forest fire; MCDM; AHP-FAHP; protected areas; Simlipal Biosphere Reserve; risk assessment; geo-environmental hazard.

1. Introduction

Humans rely on forests as a key resource for numerous 
purposes, including recreation, clean air, firewood, natural 
raw materials, medicinal herbs, etc, and are an abode for 
millions of different types of plants and animal species. 

One of the main global threats to the natural forest system 
at present is the forest fire events globally that have expo-
nentially increased over the past decade, leading to changes 
in their spatial coverage and affecting the natural climatic 
patterns, along with the hydrological networks (Dhar et 
al., 2023). According to a few studies, the intense heat and 
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dryness brought on by climate change are what set off wild-
fires in many parts of the world (Yue et al., 2013). Speaking 
in the Indian context, approximately 36% of the nation’s 
forests are at risk of fire, with over 10% of them being ex-
tremely prone to fire, according to a recent forest survey 
of India (FSI) report [https://fsi.nic.in/forest-fire-activi-
ties]. Due to several interferences, which are natural and 
man-made fire events, have negatively impacted the forests’ 
health, and they are unable to produce commodities and 
offer ecological services (Dhar et al., 2023 Tamrakar & 
Sharma, 2024). Ninety-eight million hectares of forest were 
destroyed by forest fires in 2015 on Earth as per the report 
by the Food and Agriculture Organisation, 2020. For woods 
that are prone to fire, continuous protection, observation, 
and mapping are essential (Chand et al., 2006). Bobsien 
and Hoffmann (1998) stated in their research that fire has 
a significant global, regional, and local influence on the 
economy, environment, and socio-culture. The processes 
part of cloud microphysics, precipitation, and atmospheric 
circulation can all be impacted by fire-related aerosol and 
their ability to increase cloud condensation nuclei (CCN) 
concentrations in the atmosphere by an order of magnitude 
(Andreae et al., 2004; Ramanathan et al., 2001). According 
to several experts, fire managers, and fire management 
organisations, climate change is seen more in longer fire 
seasons, with big to extremely large flames in the forest 
(Bowman et al., 2021; Jolly et al., 2015; Sankey et al., 2018).

Modern methods and tools are emphasized in forest fire 
prevention and for devising control plans to manage and 
avoid fire events. Numerous studies offer suggestions for 
the mapping, tracking, and prevention of forest fires using 
satellite remote sensing (Jain et al., 1996). Ahmad et al. (2018) 
and Potic et al. (2017) discovered that one effective method 
for determining the danger and trend of a forest fire is to use 
geospatial analytics using GIS and Remote Sensing, where 
satellite data can be used to identify forest fires in various 
land uses (Kaufman et al., 1998), and the remote sensing 
methods and Geographic Information System (GIS) are 
now frequently used globally to evaluate and forecast the 
frequency of fires (Abedi Gheshlaghi et al., 2020; Giglio et 
al., 2006; Roy et al., 2002; Oskouei et al., 2024). Any kind of 
disaster risk study requires an assessment of the integrated 
spatial-temporal pattern of hazardous natural events, yet this 
component is frequently overlooked, and the bulk of studies 
take these two dimensions into account independently 
(Loboda & Csiszar, 2007; Middendorp et al., 2013) where, 
especially for the forest fire risk studies, analyze the MODIS 
satellite data, which uses thermal and intermediate infrared 
bands that pinpoint the fire sites and detect thermal 
abnormalities with comparatively higher precision, with 
repeated cycles of observation over an area (Pereira et al., 
2017; Roy et al., 2002). A “fire risk zone” is an area where 

there is a high probability of fires, considering the natural 
and anthropogenic factors, plus the past events that might 
harm the nearby areas (Erten et al., 2004; Jaiswal et al., 2002). 
To reduce the potential consequences of forest fires, a precise 
risk zone map is necessary (Jaiswal et al., 2002).

In India, forest fire events are usually recorded from 
mid-February till the end of June, and these occurrences 
have a  significant effect on biodiversity, soil ecology, 
the environment, and human health in forest regions 
(Mutthulakshmi et al., 2020). Furthermore, a major factor in 
the rise in forest fire events in India, like in other countries, 
has been climate change, which includes less precipitation, 
rising temperatures, and an increase in the frequency of 
droughts (Keenan, 2015). Also, anthropogenic activities 
have contributed in the increasing number of forest fires 
(Simioni et al., 2020) and for this reason, creating fire risk 
maps early for the vulnerable and affected areas is essential 
for spotting future threats and their inevitable effects on the 
environment and societal infrastructure (Ghorbanzadeh et 
al., 2019). Additionally, forest fire risk maps are incredibly 
useful tools for lowering vulnerability and improving 
ecological risk in the decision-making process for working 
on the most essential parameter that triggers or enhances 
the fire event (Gong et al., 2022). Numerous conditioning 
factors for forest fires are mostly extracted from remote 
sensing (RS) techniques and processed by geographic 
information systems (GIS), which may help to create 
several of these risk maps (Lamat et al., 2021). Such analysis 
considers a wide range of factors, including temperature 
and humidity, alongside geo-environmental factors like 
elevation, aspect, slope angle, waterbody presence, and 
land use patterns etc. (Panwar & Chaudhary, 2019; Arca et 
al., 2020; Lamat et al., 2021; Moayedi & Khasmakhi, 2023; 
Tiwari et al., 2021; Shi et al., 2023; Nur et al., 2023 and Teke 
& Kavzoglu, 2025).

In this study, a  protected forest cover in Mayurbhanj 
District, commonly known as Similipal Biosphere Reserve, 
in one of the eastern Indian states, Odisha (Fig. 1), is famous 
for its rich biodiversity and natural resources (Dash & 
Behera, 2018), has been investigated which has witnessed 
several forest fire events over a decade and the most powerful 
event that destroyed a large part of this area in the year 2021, 
which lasted for at least 2 weeks [https://www.thehindu.
com/news/national/other-states/simlipal-park-fire-under-
control-rainfall-helps/article34051180.ece]. Due to this 
catastrophe, there was extensive environmental damage 
and various faunal species were forced into nearby human 
habitations [https://www.indiatoday.in/india/story/habitat-
burnt-in-simlipal-forest-fire-wild-animals-enter-human-
areas-in-odisha-1777385–2021–03–09]. The factors causing 
and aggravating the occurrence of forest fires were rated and 
weighted as per their prevailing importance and extent in 
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the study area for which a subjective analytic technique for 
multi-criteria decision-model (MCDM) was used. In an 
integrated approach, Analytical Hierarchy Process (AHP) – 
Fuzzy AHP were leveraged to assign weights to hydro-
geological and environmental factors, for ascertaining the 
most important causal component of forest fire in the study 
area, which can be mitigated and managed to restrict the 
fire events in the future. To delve further into the analysis, 
the factors were structured to get insight into the causes that 
contributed to the maximum risk of forest fires in previous 
years, as well as for which forest fire risk maps using the 
AHP-Fuzzy AHP approach were generated for the area of 
interest (AOI). The maps divided the study area based on 
their exposure to future risk levels, ranging from very low to 
very high likelihood of experiencing a forest fire.

This study provides a piece of relevant information for 
fire risk management and prevention by targeting the right 
type of causal factors for mapping fire zones with high-risk 
potential. The study also highlights the fuzzy approach to 
improve the decision-making process while rating the 
factors in the multi-criteria decision model, which has been 
validated using the ROC-AUC approach for analysing the 
success rate of the risk maps generated. Such a study can 
be the precursor to underscore the importance of targeting 

the burnt areas, which have high elevations and moderate to 
steep slopes, to assess the post-fire debris flow hazards based 
on rainfall threshold analysis.

2. Study Area

The region under study includes the Similipal Bio-Reserve 
in the protected regime of Mayurbhanj District in Odisha, 
India, covering an area of about 3,430 km2. The area extends 
from 86°15’43”E – 22°04’39”N to 86°36’58”E – 21°01’21”N 
(Long-Lat) (Fig. 1) and falls under the boundaries of the 
state of Jharkhand and Odisha in India. The terrain elevation 
ranges from the highest point of 1,124 m and the lowest goes 
up to 21 m above the mean sea level. The annual rainfall 
varies from 1200mm to 2000mm, and the temperature 
ranges from 9°C to 35°C in the study area (Singha et al., 
2024).

Forest fires are a consistent occurrence in this region, 
particularly in the initial four months of the year, i.e., from 
January to April. Among these months of the year, only one 
stands out, the month of March, as having the highest num-
ber of fire events. The past 12-year fire event data (MODIS 
Data) was analysed from the study area, which shows 2021 

Figure 1. Study area location map
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as the year with the highest number of fire occurrences. This 
dataset was revised for a confidence of more than 30% (Fig. 
2), showing the trends of the fire event occurrences that re-
mained the same with 2021 as the year of the highest record-
ed forest fires in the Similipal bio-reserve. Furthermore, the 
occurrence of most events of spring fires was observed for 
March for over a decade. The 2021 forest fires that occurred 
in the Similipal bio-reserve stand out as a very destructive 
event, ably proving the necessity and urgency of practical 
fire management and prevention approaches. The referred 
data, as shown in Figure 2, shows why this area was chosen 
for risk mapping and how this problem can aggravate other 
geological processes like debris flows, landslides, etc., in this 
region if precipitation occurs post-fire and can effectively 
destroy the natural habitat of various flora and fauna.

3. Methodology

To assess comprehensively the risk of forest fires, thematic 
maps of certain natural and anthropogenic factors were used 
to map their spatial variations in the study area and to rate 
them as per their impact on the prevailing fire occurrences. 
These maps therefore were strictly constructed for this 
specific study using the different software tools and data 
sources as mentioned in Table 1. The Array-5 satellite sensor 
in conjunction with the ALOS-PALSAR digital elevation 
model (DEM) with 12.5 m resolution was used to deliver in-
depth topographical data. USGS Earth Explorer Landsat-8 
data served as a valuable source of land cover information. 
To build on existing research the landforms and geological 
details were sourced from the Bhukosh link for obtaining 
geological and geomorphological data. With the help of 
ArcMap software, these maps were created at the required 
resolution and homogenised. The creation of thematic 
maps, such as LULC, NDVI, NDMI, road-to-fire distance 

buffer, LST, slope, aspect, and elevation maps contributed 
the information to comprehend the risk factors in a better 
recognized and organized manner.

The multi-criteria decision approach i.e. AHP (Analytic 
Hierarchy Process) was employed to allocate scores to the 
chosen thematic factors and their sub-classes as per their im-
portance and relevance for causing the fire events in the study 
area which depicted the most important causal factors of for-
est fires that need to be managed for sustainable preservation 
of this protected area i.e. Similipal bio-reserve. AHP is useful 
for handling both quantitative and qualitative criteria in mul-
ti-criteria decision-making problems based on the judgments 
of decision makers, but many decision-making problems have 
fuzziness and vagueness, which can lead to decision mak-
ers’ imprecise judgments in conventional AHP approaches 
(Bouyssou et al., 2000). In addition to the rating-weighting of 
the thematic factors through AHP, the criteria were fuzzified 
to remove any redundancies in the judgments while applying 
AHP-based decisions. The resulting AHP values (weights) 
were registered with the respective thematic maps and the 
weighted overlay was applied to extract the fire risk map. The 
weights obtained from applying the fuzzy analytical hierarchy 
process (FAHP) method were also used to generate another 
forest fire risk map. The resultant map’s accuracies were based 
on the Area Under the Curve (AUC) method using the overlay 
with the past fire event data of the study area. Figure 3 presents 
the methodology used in this study.

It is the very basis of a reliable and scientifically strong 
system to evaluate the risk of wildfires using highly 
sophisticated remote sensing data coupled with an analytical 
approach. It enabled an understanding of the study area’s 
present conditions and the application of specific forest 
improvement measures. This study has also highlighted the 
future risk toward the secondary geological hazards (debris 
flow, landslides) if triggered with heavy precipitation post 
a heavy fire event owing to the presence of steep slopes with 
high elevation in some parts of the study area.

Figure 2. Forest Fire Trend 2010–
2022 (confidence % > 30)
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Table 1. Data chard

S. NO. Name of the data File 
type

Type of 
data Resolution Layers extracted from the data Source of the data

1. LANDSAT 8 TIFF Raster 30m

1. LAND USE LAND COVER MAP
2. NDVI MAP
3. NDMI MAP
4. LST MAP

https://earthexplorer.usgs.gov/

2. MODIS DATA SHP Point 1. FIRE EVENT MAP https://firms.modaps.eosdis.
nasa.gov/download/

3. ALOS PALSAR TIFF Raster 12.5 m
1. ELEVATION MAP
2. SLOPE MAP
3. ASPECT MAP

European Space Agency

4. Geomorphology 250k SHP Feature 1:250000 1. GEOMORPHOLOGICAL MAP https://bhukosh.gsi.gov.in/
Bhukosh/

5. Geology 2m SHP Feature 1:2000000 2. GEOLOGICAL MAP https://bhukosh.gsi.gov.in/
Bhukosh/

6. Study area boundary SHP Polygon 1. STUDY AREA BOUNDARY Google Earth Pro
7. Google Earth road shapefile SHP Polyline 1. ROAD TO FIRE BUFFER MAP Google Earth Pro

Figure 3. Shows the 
methodology adopted
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4. Data Processing, Results, and Discussion

4.1. Contributing Factor Maps

A. Land Use and Land Cover Map (LULC)
The term Land Use and Land Cover (LULC) refers to how 
land is used for agriculture, conservation, development, 
recreation, animal habitats, urban areas, or any other activity 
(Prakasam, 2010; Rawat & Kumar, 2015; Reis, 2008; Seyam et 
al., 2023). In this study, the LULC map (Figure 4(a)) indicated 
7 land cover classes in Similipal bio-reserve, namely water 
bodies, vegetation cover, shrubs, low-lying vegetation, 
barren land, high relief area, and uncultivated Area. The 
map classes were further reclassified by applying AHP, 
giving vegetation cover the highest rank and water bodies 
the lowest, concerning the natural cause of fire activity. The 
forest fire point vector dataset from the year 2010 to 2022 
was overlaid on the LULC map (Fig. 4), indicating fire events 
in various map classes.

B. Normalized Difference Vegetation Index Map (NDVI)
Kriegler et al. (1969) suggested a  straightforward band 
transformation that produced a  novel simplified picture 
known as the normalized difference vegetation index 
(NDVI) i.e. near-infrared (NIR) radiation minus red 
radiation divided by near-infrared radiation plus red 
radiation (equation 1) (Huang et al., 2021; Kriegler et al., 
1969). NDVI values vary from –1 to 1, regardless of radiance, 
reflectance, or DN input. In general, its values are negative for 
water bodies, near zero for rocks, sands, or concrete surfaces, 
and positive for vegetation, such as crops, shrubs, grasses, 
and forests (Huang et al., 2021). The NDVI map (Figure 
4(b)) in this study was reclassified into 5 classes applying 
AHP, namely very low, low, medium, high, and very high, 
with very high given the highest rank of 5 and very low 
given the lowest rank of 1, each class indicating the amount 
of vegetation in a  particular area. The fire events from 
2010–2022 are overlaid on the NDVI map, and it indicates 
how the areas with high to very high vegetation cover have 
encountered more forest fires than those areas having very 
low or low vegetation cover. In this study, NDVI is given the 
highest priority rather than LST as land surface temperature 
greatly increases post-fire events (Vlassova et al., 2014), and 
the temperature difference between the unburned areas and 
burned areas was on average 7.6°C.
Mathematically,

                          NDVI = NIR – red
NIR + red

	 eq. 1

NDVI = Normalized Difference Vegetation Index,
NIR = Near Infrared,
Red = Red Band.

C. Normalized Difference Moisture Index Map (NDMI)
The structure of the plants is inextricably linked to the 

moisture content that exists within them (Basak et al., 2023). 
If an area has high moisture content, it suggests healthy trees 
and more vegetation, thus being fuel for a forest fire. The value 
of NDMI is between +1 to -1 (Taloor et al., 2021) (equation 
2). The NDMI map (Figure 4(c)) generated for this study was 
reclassified into 5 classes applying AHP, namely very low, low, 
medium, high, and very high, depending upon the moisture 
index. Very high class was given the highest rank of 5 and 
very low was given the lowest rank of 1. The forest fire data 
from 2010–2022 were overlaid with the NDMI map, which 
showed that the areas having very high to high moisture 
content experienced maximum fire events than the areas 
with low to very low moisture content.
Mthematically,

                    NDMI =NIR – SWIR
NIR + SWIR

 	 eq. 2

NDMI = Normalized Difference Moisture Index,
NIR = Near Infrared,
SWIR = Short Wave Infrared.

D. Land Surface Temperature Map (LST)
An LST map indicates the temperature of an item within 
a  pixel, which can include various land cover categories 
(Taloor et al., 2021), and in the present study area (Fig. 5(a)) 
LST shows a maximum of 63.28°F, which is 17.37°C, and 
a minimum of 51.20°F, which is equal to 10.67°C. The forest 
fire events data were overlaid on the LST map, and it indicates 
that the areas having lower land surface temperature are 
experiencing more forest fire events. This comes from 
a scientific understanding that areas with dense vegetation 
tend to have a cooling effect on the land, whereas areas with 
very little vegetation or that are barren absorb more solar 
energy and lack the cooling effect, resulting in higher surface 
temperature (Vlassova et al., 2014). The LST map was further 
reclassified applying AHP into 5 classes, namely: very high, 
high, medium, low, and very low, giving the very low LST 
class the highest rank and very high LST the lowest rank. The 
process to find the LST of an area from Landsat 8 imagery is 
given below (equations 3, 4, 5, 6, 7 and 8):

Step 1. Top of Atmosphere (TOA) Radiance:

TOA = ML * Qcal + AL	  eq. 3

where,
TOA = Top of Atmosphere Radiance,
ML = Radiance Multiband (Band 10),
AL = Radiance Add Band (Band 10),
Qcal = Band 10.
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Step 2: Brightness Temperature (BT):

                       BT = K2/ln (K1/TOA + 1) – 272.15 ￼	  eq. 4

where,
BT = Brightness temperature,
TOA = Top of Atmosphere,
K1 = K1 constant Band (Band 10),
K2 = K2 constant Band (Band 10).

Step 3: Normalized Difference Vegetation Index (NDVI):

               NDVI = (NIR – Red)/(NIR + Red)	 eq. 5

where,
NDVI = Normalized Difference Vegetation Index,
NIR = Near Infrared,
Red = Reb Band.

Step 4: Proportion of vegetation (PV):

PV={(NDVI-NDVImin)/(NDVImax+NDVImin)}^2	 eq. 6

where,
PV = Proportion of vegetation,
NDVI = Normalized Difference Vegetation Index,
NDVImin = Minimum value of NDVI,
NDVImax = Maximum value of NDVI.

Step 5: Emissivity

                         E = 0.004 * PV + 0.986	 eq. 7

where,
E = Emissivity,
PV = Proportion of Vegetation.

Step 6: Land Surface Temperature (LST)

                  LST = BT/(1+(λ * BT/C^2 ) * ln (E))	 eq. 8

where,
LST = Land Surface Temperature,
BT = Brightness Temperature,
λ = 10.8
C^2 = 14388
E = Emissivity.

E. Road Buffer Map
Identifying the distance of past fire events to nearby roads in 
a study area might help identify potential fire and high-risk 
regions for human activities (Chuvieco & Congleton, 1989). 

For this study, the distance for the road buffer was taken as 
1 km, 2 km, 5 km, 8 km, 10 km, 12 km, 15 km, 18 km, 20 
km, 22 km, 25 km, and 28 km, keeping in view the nearest 
distance to the fire event in the past. From the road buffer 
map (Fig. 5(b)) it can be inferred that many fire events took 
place within the range of 1 km to 5 km from the road in the 
period of 2010–2022, giving a rough idea of anthropogenic 
influence in causing forest fires. This map was reclassified 
applying AHP, giving 1 km the highest rank and eventually 
28 km the lowest in terms of the risk to fire activity.

F. Geology Map
The Geological data was obtained from the Bhukosh website 
[https://bhukosh.gsi.gov.in/Bhukosh/Public]. The map was 
generated by further extracting the information according to 
the AOI using the clip feature. Since the geological map was in 
shapefile format of scale 1:2000000, firstly it was reprojected 
according to the coordinate system and then was converted 
using the conversion tool from feature to raster format. The 
geological map (Fig. 6(a)) shows 17 formation details, and 
they were reclassified again by applying AHP. Since geological 
formations do not have much of an influence in causing forest 
fires so, the 17 classes were reclassed according to the number 
of fire events that took place over each formation in the past 
12 years giving broad information about the classes more 
prone and less prone as per the spatial distribution of the fire 
activities. The geology map (Fig. 9) was thus generated, and 
the forest fire events were overlaid on it.

G .Geomorphology Map
The Geomorphological data was obtained from the Bhukosh 
website [https://bhukosh.gsi.gov.in/Bhukosh/Public] and the 
map was generated by the same process used to generate the 
geological map. The initial shapefile was of scale 1:250000 
and the thematic map (Fig. 6(b)) shows 9 geomorphological 
features classified applying AHP, giving the highest rank to 
highly dissected Hills and valleys, and the lowest rank to 
Water Bodies.

H. Elevation Map
The Elevation map was generated using the ALOS-PALSAR 
digital elevation model (DEM) of 12.5 m resolution. The 
elevation map (Fig. 7(a)) shows a maximum elevation point 
of 1,124 meters above mean sea level. The map was further 
reclassified applying AHP into 5 elevation classes. The 
forest fire events data from 2010–2022 was overlaid on the 
elevation map, giving us a clear view of how places according 
to their elevation were affected by the forest fire events.

I. Aspect Map
There are different definitions of aspect in literature, which 
represent the maximum slope direction of the land surface 

https://bhukosh.gsi.gov.in/Bhukosh/Public
https://bhukosh.gsi.gov.in/Bhukosh/Public
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(Tanoli et al., 2017); or for any point, the aspect represents 
the direction of the maximum variation of the degree of 
the height value (Chen et al., 2013). It also indicates the 
maximum altitude change towards  the downward slope 
direction (Bourenane et al., 2015; Zhuang et al., 2015). The 
clockwise sides of a slope between 0° and 360°, is measured 
in degrees from the North, are referred to as the aspect 
(Hadji et al., 2016; Lee, 2005). The aspect typically spans from 
0° to 360° and is split into groups at 45°, the directions are 
North, Northeast, East, Southeast, South, Southwest, West, 
and Northwest (Fig. 7(b)) in a clockwise manner (Cellek, 
2021; Geiger et al., 2009; Warren, 2008; Singh, 2018).

J. Slope Map
The slope map was also generated using the ALOS PALSAR 
digital elevation model (DEM) of 12.5 m resolution. The slope 
map in Figure 7(c) was reclassified using AHP into 5 classes: 
very low, low, medium, high, and very high. The classes were 
ranked by giving the highest rank to a very low inclined slope, 

and the lowest rank to a very high inclined slope. With a high 
degree of slope, the possibility of slope instability increases, 
and resins, oils, and fats held in plants and debris are vaporized, 
much like at high temperatures experienced during a fire. Both 
the soil and the atmosphere are exposed to these vapours; 
condensing into the lower, colder soil under the surface, the soil 
vapours reorganize into the hydrophobic layer, which is a layer 
that repels water [https://www.csus.edu/indiv/k/kusnickj/
geology140/fire.html]. Changes in vegetation, surface cover 
conditions, and hydrological processes following a forest fire 
can raise the likelihood and severity of slope instability events, 
which can have long-term effects on the regions in front of 
or above the slopes. The first four to six months following 
the fire are often the most vulnerable due to the possibility of 
heavy rainfall during the season and the lack of regrowth of 
vegetation (Nunes & Lourenço, 2017; Arujo et al., 2020) and 
rainfall can often act as the primary cause of slope instability 
events, according to Esteves et al. (2012), Zêzere et al. (2015), 
and Mahajan et al. (2022).

Figure 4. (a) Land Use Land Cover Map, (b) Normalized Difference Vegetation Index Map & (c) Normalized Difference Moisture Index 
Map depicting moisture-related vegetation conditions. Fire event points (2010–2022) are overlaid with thematic classes

Table 2. Continuous data Classification for NDVI, NDMI, LST, Slope, and Elevation Maps

Map Sub-Class NDVI Class Value NDMI Class Values LST Class Values 
(˚F) Slope Class Values Elevation Class 

Value (m)
Very Low 0.034–0.10 0.167–0.029 61.08–64.09 0–10˚ 21–230

Low 0.109–0.243 0.029–0.089 64.09–65.22 10˚- 20˚ 230–419

Medium 0.243–0.298 0.089–0.136 65.222–66.40 20˚ – 30˚ 419–616

High 0.298–0.344 0.136–0.167 66.40–67.71 30˚ – 40˚ 616–791

Very High 0.3445–0.744 0.167–0.272 67.71–72.19 >40˚ 791–1124

https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
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Figure 7. (a) Elevation Map derived from ALOS-PALSAR DEM with fire events (b) Aspect Map showing slope orientation classes with 
fire events (c) Slope Map with fire events to depict susceptibility trends

 Figure 5. (a) Land Surface 
Temperature (SAT) Map indicating 
surface thermal variability  
(b) Road Buffer Map illustrating 
anthropogenic influence zones

 Figure 6. (a) Geology Map  
(b) Geomorphology Map 
highlighting landform classes such 
as dissected hills, valleys, and plains, 
overlaid with past fire locations
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4.2. Models Applied

A. Analytical Hierarchy Process
In this study, the forest fire risk map (Fig. 8) was firstly 
generated by combining all the factor maps namely: LULC 
map (Fig. 4a), NDVI map (Fig. 4b), NDMI map (Fig. 4c), LST 
map (Fig. 5a), Road to fire distance map (Fig. 5b), Geology 
Map (Fig. 6a), Geomorphology map (Fig. 6b), Elevation map 
(Fig. 7a), Aspect map (Fig. 7b) and Slope map (Fig. 7c). Each 
factor and its impact on causing the forest fire was weighted 
and categorized, and appropriate weights were assigned to 
each sub-class in the factor maps with certain class values 
(Table 2). A higher number indicates that the factor is more 
relevant to causing fires in a region (Pandey & Ghosh, 2018). 
The weights were assigned using AHP, considering the past 
literature, general characteristics of the study area, and the 
general relation between factors and fire activity based on 
previous studies in this field.

The AHP technique is one of the most used MCDMs 
(Rahmati et al., 2015) and in many regions of the world, 
AHP and geospatial techniques have been effectively used 
to identify fire risk zones (Chavan et al., 2012; Chowdhury 
& Hassan, 2013, 2015; Matin et al., 2017; Nuthammachot & 
Stratoulias, 2021; Pourghasemi et al., 2016; Van Hoang et al., 
2020). When a decision maker must choose amongst several 
criteria, the AHP approach ranks the choices and helps them 
choose the best one (Özdağoğlu & Özdağoğlu, 2007). In AHP, 
preferences for alternatives are derived through pairwise 
comparisons which involve comparing two choices based on 
a single criterion and indicating a preferred option. The 1–9 
scale is the typical preference scale (Table 3) used for AHP; it 
falls between “equal importance” and “extreme importance”. 
Within the pairwise comparison matrix, a value of 9 signifies 
a factor that is significantly more important than the other, 
a value of 1/9 denotes a component that is significantly less 
important than the other, and a value of 1 shows a factor of 
equal significance (Özdağoğlu & Özdağoğlu, 2007; Sarkis 

& Talluri, 2004). Intermediate values such as 2, 4, 6, and 8 
indicate intermediate importance.

Table 3. Relative Importance of the Scale from 1–9

Scale 1 3 5 7 9

Impor-
tance

Equal 
Impor-
tance

Moderate 
Impor-
tance

Strong 
Impor-
tance

Very 
Strong 
Impor-
tance

Extreme 
Impor-
tance

The values 2, 4, 6, and 8 show indecisiveness between 
the factors.

Now, the consistency ratio value must be below 0.01; 
otherwise, the comparison matrix must be re-examined, 
or it can be considered inconsistent. The consistency ratio 
(C.R.) is obtained by comparing the consistency index (C.I.) 
with the appropriate set of numbers, each of which is an 
average of the random index (R.I.) of a randomly generated 
reciprocal matrix using the scale l/9, l/8, 1, 8, 9 to see if it is 
about 0.10 or less. If it is not less than 0.10, the problem is 
revised for the judgments (Saaty, 1987).

The formula for CR is:
                                  CR = CI/RI	 eq. 9
CI is the consistency index and is mathematically 

obtained by:
                         CI = (∆max – n)/(n – 1)	 eq. 10
R.I is the random consistency index and the values for 10 

factors (Saaty, 1987) are given below in Table 4.

Table 4. R.I table for 10 factors

n 1 2 3 4 5 6 7 8 9 10
Random 
Consistency 
Index (R.I)

0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The resultant consistency ratio (CR) for contributing 
factors came out to be 0.097 based on Table 5 and the 

Table 5. Comparison matrix for the factor used in the study

Factors LULC NDVI NDMI LST ROAD TO 
FIRE GEOLOGY GEOMOR-

PHOLOGY
ELEVA-

TION ASPECT SLOPE WEIGHTAGE RANK

LULC 1 1/6 1/5 1/3 7 8 7 5 1/3 3 0.08 5
NDVI 6 1 3 4 9 9 9 7 5 7 0.318 1
NDMI 5 1/3 1 2 8 9 7 7 3 5 0.208 2
LST 3 1/4 1/2 1 8 9 7 7 2 5 0.143 3
ROAD TO FIRE 1/7 1/9 1/8 1/8 1 1 1/3 1/3 1/8 1/6 0.014 9
GEOLOGY 1/8 1/9 1/9 1/9 1 1 ½ 1/4 1/8 1/7 0.013 10
GEOMOR-
PHOLOGY 1/7 1/9 1/7 1/7 3 2 1 1/3 1/7 1/5 0.02 8

ELEVATION 1/5 1/7 1/7 1/7 3 4 3 1 1/7 1/3 0.029 7
ASPECT 3 1/5 1/3 1/2 8 8 7 7 1 5 0.186 4
SLOPE 1/3 1/7 1/5 1/5 6 7 5 3 1/5 1 0.052 6
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principal Eigen Value The resultant consistency ratio (CR) 
for contributing factors came out to be 0.097 based on Table 
5 and the principal Eigen Value resulted in 11.301. The sub-
classes of each factor map were also rated (Appendix 1) to 
give them new values according to their relevance in causing 
the fire events; hence, the judgements were used to generate 
the forest fire risk map (Fig. 8), by following the weighted 
overlay approach, combining the factor maps with the 
already assigned weights.

The resultant forest fire risk map was classified into 5 
classes: Very High, High, Medium, Low, and Very Low (Ta-
ble 6). The Principal Eigen Value of the pair-wise comparison 
AHP matrix of the forest fire risk index map is 5.315, with 
a consistency ratio value of 0.07.

Table 6 shows the factors that were selected for this study, 
including the sub-classes in each factor and how AHP was 
applied for comparative matrix generation. The principal ei-
genvalue and also the CR value of the individual factors are 
given (Appendix 1). In Land Use Land Cover (LULC), the 
priority was from highest to lowest as vegetation > Low Lying 
Vegetation > Shrubs > High Relief Area > Uncultivated Land 
> Barren Land > Water Bodies. Vegetation gets the highest 
priority in LULC as the presence of vegetation can initiate fire 
and provide the ground for the fire to grow and create devas-
tating consequences. Water body on the other hand, because 
of its inability to catch fire is given the lowest priority, as the 
presence of water can put off the fire and will never allow the 
fire to grow. In the Normalized Difference Vegetation Index 
(NDVI), the areas with very high vegetation cover are given 
the highest priority as vegetation provides ground and acces-
sories for the fire to initiate and spread. In the Normalized 
Difference Moisture Index (NDMI), the areas with very high 
moisture content indicate the presence of very high vegetation 
resulting in giving us the highest priority to areas indicating 
very high moisture content. Vegetations have a cooling ef-
fect on the ground leading to lowering the temperature of 
the surface, whereas areas with very low to zero vegetation 
show higher surface temperature, as the soil absorbs more 
heat energy coming from the sun, hence in the land Surface 
Temperature factor, the areas with very low to low surface 
temperatures are given high priority than the areas with high 
surface temperature. In the Road to Fire distance factor, the 
areas in close proximity to the road are given higher priority 
as vegetation near such roads is in constant danger of getting 
ignited knowingly or unknowingly due to anthropogenic fac-
tors or actions. Hence several fire events occurred between 
1 to 5 km from the road. In Geology, there are a total of 17 
subclasses, out of which Similipal Gp. (Similipal lava), The 
Palaeo-Proterozoic formation is given the highest priority as 
this formation has encountered fire events ranging between 
the year 2010 – 2022, and the lowest priority to Basic Intrusive, 
Archaean- Palaeo-Proterozoic formation. In geomorphology, 

the highest priority was given to Highly Dissected Hills and 
Valleys, as due to their slope dead leaves and branches could 
be found acting as fuel to the fire, the slope helps the fire to 
spread, and due to its dissected terrain, the wind pattern gets 
unpredictable, results in aiding the fire, wind patterns keep 
changing in such terrains which makes it very hard to contain 
the fire. Hence, the highest priority is given to highly dissected 
hills and valleys. And the lowest priority is given to water bod-
ies. In case of elevation, the highest priority was given to high 
to medium elevation, because this study has experienced a lot 
of fire events in areas from high to medium elevation in the 
past. Aspect plays an important role in forest fire, and since the 
area of study is in the northern hemisphere, the south-facing 
slopes were given the highest priority, and the priority scale 
was South > East > West > North > Flat. For the slope factor, 
the highest priority was given to areas with very low to low 
inclined slopes. Looking through the historic fire event data 
from 2010 – 2022 and overlaying it over the slope map, it can 
be concluded that in the AOI, areas with very low to low slope 
conditions have experienced a higher amount of forest fire 
events. Hence, the priority was given to areas with low to very 
low slope conditions.

Figure 8. Forest fire risk map of Similipal Bio-reserve using the 
AHP model, classifying the area into very low to very high sus-
ceptibility zones
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Table 6. Comparison matrix of Forest Fire Risk Map classes

Factors Very 
High High Medium Low Very 

Low Weightage Rank

Very High 1 2 5 9 9 0.0463 1
High 1/2 1 5 7 9 0.337 2
Medium 1/5 1/5 1 3 7 0.12 3
Low 1/9 1/7 1/3 1 3 0.052 4
Very Low 1/9 1/9 1/7 1/3 1 0.029 5

B. Fuzzy Analytical Hierarchy Process (FAHP)
It is possible to think of the fuzzy AHP methodology as 
an improved analytical technique that evolved from the 
conventional AHP (Bouyssou et al., 2000). Although AHP 
is useful for handling both quantitative and qualitative 
criteria of multi-criteria decision-making problems based 
on the judgments of decision makers, many decision-making 
problems have fuzziness and vagueness, which can lead to 
decision makers’ imprecise judgments in conventional 
AHP approaches (Özdağoğlu & Özdağoğlu, 2007). As 
a result, a large body of research has demonstrated that, in 
comparison to classic AHP approaches, fuzzy AHP provides 
a comparatively more adequate description of these types 
of decision-making processes. Fuzzy AHP is an extension 
of Saaty’s theory (Boender et al., 1989; Buckley, 1985a, b; 
Lootsma, 2013; Ribeiro, 1996; Van Laarhoven & Pedrycz, 
1983). In this study as well, the Fuzzy-AHP method was 
applied, and changes were observed in the weightage 
(Table 7) given to each factor in the simple AHP model.

After creating this table calculation for the Fuzzy geometric 
mean values were calculated (Table 8). Mathematically, it can 
be calculated using the following formula:

Fuzzy  Geometric mean value (Ai, Bi, Ci) =  
(a1 * a2 * a3…an)

1n ,(b1*b2*b3…bn)
1n ,(c1 * c2 * c3…cn)1n

Here,
n = no. of factors,
and a1, a2, a3,…., b1, b2 b3….., c1,c2, c3…. indicates the 
values given to each factor.

Table 8. Fuzzy geometric mean Values

Factors Fuzzy GM values (Ai, Bi, Ci)
LULC (1.1, 1.35, 1.67)
NDVI (4.46, 5.14, 5.74)
NDMI (2.66, 3.34, 4.02)
LST (2.03, 2.58, 3.10)
Road to Fire Distance (0.21, 0.23, 0.27)
GEOLOGY (0.20, 0.22, 0.26)
GEOMORPHOLOGY (0.27, 0.33, 0.40)
ELEVATION (0.4, 0.5, 0.6)
ASPECT (1.68, 2.08, 2.62)
SLOPE (0.7, 0.86, 1.05)

Now the fuzzy weights of each factor (table 9) are given by:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴) = ( 𝐴𝐴𝐴𝐴
∑ =1 𝐶𝐶𝐶𝐶𝑛𝑛

𝑖𝑖
) , ( 𝐵𝐵𝐵𝐵

∑ 𝐵𝐵𝐵𝐵𝑛𝑛
𝑖𝑖=1

) , ( 𝐶𝐶𝐶𝐶
∑ 𝐴𝐴𝐴𝐴𝑛𝑛

𝑖𝑖=1
)      
 	

eq. 12

where Ai, Bi, and Ci are individual Fuzzy GM values of the 
factors,
and n = no. of factors.

Table 9. Fuzzy Weights

Factors Fuzzy Weights (A, B, C)
LULC (0.055, 0.081, 0.1219)
NDVI (0.233, 0.3084, 0.419)
NDMI (0.133, 0.2004, 0.2934)
LST (0.1015, 0.1548, 0.2263)
Road to Fire Distance (0.0105, 0.0138, 0.0197)
GEOLOGY (0.01, 0.0132, 0.0189)
GEOMORPHOLOGY (0.0135, 0.0198, 0.0292)
ELEVATION (0.02, 0.03, 0.0438)
ASPECT (0.084, 0.1248, 0.1912)
SLOPE (0.035, 0.0516, 0.0766)

Now the weights of each factor were calculated (Table 10) 
using the given formula:
                       

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 (𝑊𝑊𝑊𝑊𝑊 𝑊 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
3

 	 eq. 13

Table 7. Fuzzy AHP table

FACTORS LULC NDVI NDMI LST ROAD 
TO FIRE

GEO
LOGY

GEOMOR-
PHOLOGY ELEVATION ASPECT SLOPE

LULC (1,1,1) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/4,1/3,1/2) (6,7,8) (7,8,9) (6,7,8) (4,5,6) (1/4,1/3,1/2) (2,3,4)
NDVI (5,6,7) (1,1,1) (2,3,4) (3,4,5) (9,9,9) (9,9,9) (9,9,9) (6,7,8) (4,5,6) (6,7,8)
NDMI (4,5,6) (1/4,1/3,1/2) (1,1,1) (1,2,3) (7,8,9) (9,9,9) (6,7,8) (6,7,8) (2,3,4) (4,5,6)

LST (2,3,4) (1/5,1/4,1/3) (1/3,1/2,1) (1,1,1) (7,8,9) (9,9,9) (6,7,8) (6,7,8) (1,2,3) (4,5,6)
ROAD TO 

FIRE (1/8,1/7,1/6) (1/9,1/9,1/9) (1/9,1/8,1/7) (1/9,1/8,1/7) (1,1,1) (1,1,1) (1/4,1/3,1/2) (1/4,1/3,1/2) (1/9,1/8,1/7) (1/7,1/6,1/5)

GEOLOGY (1/9,1/8,1/7) (1/9,1/9,1/9) (1/9,1/9,1/9) (1/9,1/9,1/9) (1,1,1) (1,1,1) (1/3,1/2,1) (1/5,1/4,1/3) (1/9,1/8,1/7) (1/8,1/7,1/6)
GEOMOR-
PHOLOGY (1/8,1/7,1/6) (1/9,1/9,1/9) (1/8,1/7,1/6) (1/8,1/7,1/6) (2,3,4) (1,2,3) (1,1,1) (1/4,1/3,1/2) (1/8,1/7,1/6) (1/6,1/5,1/4)

ELEVATION (1/6,1/5,1/4) (1/8,1/7,1/6) (1/8,1/7,1/6) (1/8,1/7,1/6) (2,3,4) (3,4,5) (2,3,4) (1,1,1) (1/8,1/7,1/6) (1/4,1/3,1/2)
ASPECT (2,3,4) (1/6,1/5,1/4) (1/4,1/3,1/2) (1/3,1/2,1) (7,8,9) (7,8,9) (6,7,8) (6,7,8) (1,1,1) (4,5,6)
SLOPE (1/4,1/3,1/2) (1/8,1/7,1/6) (1/6,1/5,1/4) (1/6,1/5,1/4) (5,6,7) (6,7,8) (4,5,6) (2,3,4) (1/6,1/5,1/4) (1,1,1)

eq. 11
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Table 10. Weightage table

Factors Weights (Wi)
LULC 0.086
NDVI 0.317
NDMI 0.209
LST 0.161
Road to Fire Distance 0.0146
GEOLOGY 0.014
GEOMORPHOLOGY 0.021
ELEVATION 0.031
ASPECT 0.133
SLOPE 0.054

Now all the weights were added and checked if it is = 1. 
Therefore, 𝑛𝑛

=1∑𝑖𝑖 𝑊𝑊𝑊𝑊𝑊 gave a value of 1.0406 which is greater 
than 1 so the Normalized weights were again calculated 
(Table 11), mathematically which can be obtained by:

                𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 (𝑊𝑊) = 𝑊𝑊𝑊𝑊
∑ 𝑊𝑊𝑊𝑊𝑛𝑛
𝑖𝑖=1  	 eq. 14

Table 11. Normalized Weight Table

Factors Normalized Weights (W)
LULC 0.082
NDVI 0.305
NDMI 0.201
LST 0.155
Road to Fire Distance 0.014
GEOLOGY 0.013
GEOMORPHOLOGY 0.02
ELEVATION 0.03
ASPECT 0.128
SLOPE 0.052

Now, the sum of the normalized weights i.e. ∑W gave 
the sum value 1. A  slight difference in the weightage of 
the factors from the weightage obtained by applying AHP 
was observed. Hence Fuzzy AHP was used to reduce the 
fuzziness in the decision-making process in the comparison 
matrix of AHP which helped to get a more accurate result. 
Now according to the normalized weights, ranks were given 
to the factors (Table 12).

C. Weighted Overlay (WO) for FAHP-Rated Factors
The weighted overlay method encrusts information based 
on factor layers to get a  composite result. To provide 
a  single, integrated analysis, it weighs each data layer 
according to its relative value and these weighted layers are 
then superimposed (Alharbi, 2024; Merchán et al., 2023). 
Applying the weighted overlay analysis involves overlapping 
all the GIS thematic layers and multiplying the weight value 

by each raster’s cell value in the model builder (Hassan et 
al., 2020). Finally, a forest fire risk map was generated using 
weighted overlay analysis and the weight values obtained 
during the FAHP rating-weighting (Fig. 9).

Table 12. Ranks and Weightage of Factors using FAHP

Factors Normalized Weights (W) Ranks
LULC 0.082 5
NDVI 0.305 1
NDMI 0.201 2
LST 0.155 3
Road to Fire Distance 0.014 9
GEOLOGY 0.013 10
GEOMORPHOLOGY 0.02 8
ELEVATION 0.03 7
ASPECT 0.128 4
SLOPE 0.052 6

Figure 9. Forest fire risk map of the Similipal Biosphere Reserve 
generated using the Fuzzy Analytic Hierarchy Process (FAHP), 
providing refined susceptibility zoning
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Mathematically,

Index Map = F1 * Weightage + F2 * Weightage +  
F3 * Weightage + F4 * Weightage +  

F5 * Weightage + F6 * Weightage+F7 * Weightage +  
F8 * Weightage + F9 Weightage + F10 * Weightage

    eq. 15

Here in this study, F1, F2, F3, F4, F5, F6, F7, F8, F9, and F10 
indicate the factor maps i.e. LULC map, NDVI map, NDMI 
map, LST map, road to fire distance map, geology map, 
geomorphology map, elevation map, aspect map, and slope 
map respectively.

Following the creation and categorization of the forest 
fire risk maps, a unique map known as the burn severity 
map (Fig. 10) was produced using the annual fire data of the 
year 2021, which indicated the level of damage experienced 
in the study area due to previous extreme forest fire events.

To generate the burn severity, the following formula was 
used:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

where NIR = Near Infrared Band,
SWIR = Short Wave Infrared Band.

A correlation between NDVI-burn severity and NDMI-
burn severity was analysed using two scatter correlation 
graphs (Fig. 11 and Fig. 12), and they indicated a positive 
correlation; hence increase in vegetative cover increased 
burn severity, and also an increase in moisture index in the 
study area indicated an increase in vegetation cover, and 
hence the burn severity also increased.

The forest fire risk maps generated by applying AHP 
(Fig. 8) and FAHP (Fig. 9) delineate the land surface under 
very high risk to very low risk towards forest fire. The forest 
fire risk map generated using AHP indicates that out of the 
total AOI, 866 km2 area extent is under a very high-risk zone 
that comprises around 25.21% of the total study area. The 
forest fire risk map generated by FAHP indicates that out of 
the total area, 1058 km2 is under a very high-risk zone that 
comprises 30.79% of the total area. The historical fire events 
data aligns with the areas that are labelled as very high-risk 
zones for forest fire when the MODIS data is plotted with 
the index maps for the accuracy check.

Analysing the final risk maps also indicates that the 
areas that are under high risk are often associated with high 
vegetation, which is also associated with an increased amount 
of moisture; hence, it can be seen that the areas with high 
vegetation indicated by the NDVI map have a resemblance 
to the areas with high moisture content indicated in the 
NDMI map. A  large amount of vegetation also creates 
a huge amount of debris, making such areas susceptible to 
debris flow and landslides due to the introduction of the 
rainy season soon after the forest fires. During forest fire, as 
the temperature increases the oils, resins, and fats stored in 
the plants get evaporated into the atmosphere and they also 
penetrate the ground and create a hydrophobic layer [https://
www.csus.edu/indiv/k/kusnickj/geology140/fire.html] that 
induces slope instability as soon as there is rain as the run off 
will increase and the water won’t be able to penetrate the soil 
due to the presence of the hydrophobic layer. With this high 
runoff speed, the soil along with the debris created during 
the forest fire will start to flow and the accumulation of such 
flow can lead to debris floods. Such instability in slope can 
also induce a landslide, as the rain after the forest fire makes 
a favourable condition that can induce slope instability on 
highly inclined slopes, loss of vegetation, high runoff speed 
etc. Tables 13 and 14 present the area occupied by zones that 
were categorized according to their risk level to forest fire in 
the Forest Fire Risk Map, applying the AHP model (Fig. 8) 
and FAHP model (Fig. 9), respectively.

Figure 10. Burn Severity Map

https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
https://www.csus.edu/indiv/k/kusnickj/geology140/fire.html
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Figure 12. Correlation between NDMI and Burn Severity

Figure 11. Correlation Between NDVI and Burn Severity

Table 13. Area under different zones according to FFRM applying 
AHP

Zones Area (km2)
Very Low Risk 213
Low Risk 395
Medium Risk 845
High Risk 1116
Very High Risk 866

Table 14. Area under different zones according to FFRM applying 
FAHP

Zones Area (km2)
Very Low Risk 202
Low Risk 296
Medium Risk 722
High Risk 1158
Very High Risk 1058
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4.3. Validation

To validate the performance of AHP and FAHP-based 
index maps an accuracy check was run using the area 
under the curve (Success Rate Curve) method (Fig. 13), 
giving a value of 84.82 and 84.87 for AHP and FAHP-based 
models, respectively. The results show almost similar success 
rates for AHP and FAHP models and indicate good user 
consistency in choosing the rating of the criteria and the 
sub-criteria. Appendix 2 shows the pixel coverage of burn 
severity in various parts of the study area with respect to 
the pixel distribution in forest fire risk classes of AHP and 
FAHP-based maps.

5. Conclusions

Statistics from this study revealed that more than 50% of the 
total study area falls under high and very high risk of forest 
fires. This emphasizes the vulnerability towards forest fires in 
the study area which pose a serious threat to its biodiversity 
and environment. The fact is that the 2021 forest fire brought 
into evidence the biggest natural threat prevailing in this 
region that can lead to the loss of ecological habitat to many 
species if proper steps to mitigate the risk are not taken.

This study presents the methodology and techniques for 
assessing and mapping the areas at risk to future forest fires. 
The application of the Analytic Hierarchy Process (AHP) 
and Fuzzy AHP indicated the important factors that raise 
the probability of forest fires in this area the study has also 
shown how to extract forest fire risk information from 
satellite images and when combined with historical forest fire 

Figure 13. Success Rate Curve for index maps based on AHP and FAHP models

event data (such as MODIS fire data used) it can demarcate 
the zones of forest fire risk with reliable results.

The study also indicated that the fire events in the 
forest reserve region take place between January and April, 
inferring that the area is susceptible to forest fire during the 
pre-monsoon season, which indicates that the dry season 
results in the accumulation of dead leaves, branches, and 
trees, which act as fuel to the fire. These factors should be 
kept in mind, and regular surveillance by the fire department 
and forest department must be carried out to minimize the 
dry season products, especially in area that has maximum 
natural vegetation cover.

While both methods inferred NDVI and NDMI as 
dominant drivers of forest fires, FAHP resulted in relatively 
higher normalized weights compared to AHP. This suggests 
that the uncertainty in judgment accounted for, vegetation 
density, and moisture index were greater as controlling 
factors of fire risk in the Similipal Bioreserve. Whereas, the 
factors such as slope and aspect resulted in minor weightage 
shifts between AHP and FAHP, indicating topographic 
controls as secondary factors to fuel the forest fire.

Furthermore, this study can be taken as a  stepping 
stone to research the post-fire debris flow hazards using the 
slope maps and fire-risk zones mapped from the present 
study. Looking at the recent global climate change and 
extreme temperatures in many parts of India, if the forest 
fire events increase in various regions, it will also increase 
the requirement for the assessment of debris-flow hazards 
through additional field-verified inventories of postfire 
rainfall-triggered events. Such studies are required for 
informed decision-making in disaster-prone areas.
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