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Abstract. This study examines the environmental impacts of urbanisation trends in Tehran Province, Iran, from 2018 to 2022, utilising Visible 
Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data as a proxy for human activities. Its effects on air pollution (nitrogen 
dioxide (NO₂), carbon monoxide (CO), and ozone (O₃) from Sentinel-5P and land surface temperature (LST) from Moderate Resolution 
Imaging Spectroradiometer (MODIS)) were analysed in Google Earth Engine (GEE). VIIRS DNB showed a sharp upward trend, indicating 
rapid urbanization. NO₂ pollution increased significantly across the region, while CO and O₃ exhibited weak decreasing and increasing trends, 
respectively. Daytime and nighttime LST rose by approximately 1°C overall, reflecting the urban heat island (UHI) effect despite fluctuations. 
Correlation analysis (r) revealed strong links between DNB and NO₂/CO (r=0.59–0.72) (a key contribution underscoring urbanisation’s direct 
emission drivers), moderate with nighttime LST (r up to 0.38), and weak with O₃, underscoring urbanisation’s role in driving pollution and 
heat. These findings emphasise the need for intensified emission controls, green infrastructure, and sustainable urban planning in rapidly 
growing cities like Tehran.
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1. Introduction

Urbanization is a growing trend in most countries around 
the world, characterized by the rapid migration of people 
from rural areas to urban areas. This trend has gradually led 
to the physical expansion of the city, which is accompanied 
by challenges such as air pollution and rising LST (Liang & 
Gong, 2020; Bonafoni & Keeratikasikorn, 2018).

Tehran, Iran’s capital and a major Middle Eastern me-
tropolis, faces rapid urbanization, driving increased vehicle 
traffic, greenhouse gas emissions, and land cover changes 
that degrade air quality and elevate LST through intensified 
UHI effects. Concurrently, other Iranian regions, such as 
Golestan, confront distinct ecological threats like wildfires, 
which exacerbate regional air pollution via smoke emissions 
(Asadi Oskouei et al., 2024). These varied challenges under-
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score the need for integrated, nationwide environmental 
monitoring to address urbanization’s multifaceted impacts.

Various studies have shown that in urban areas, due to 
increased human activities, high levels of atmospheric pollut-
ants such as nitrogen dioxide (NO2), carbon monoxide (CO), 
and ozone (O3) are always observed, which have a very severe 
impact on the health of citizens (Manisalidis et al, 2020). On 
the other hand, the growth of the city is mainly accompanied 
by the destruction of natural vegetation and its replacement 
with impervious surfaces, which causes heat retention and 
intensification of the UHI effect (Zhang et al., 2022).

Remote sensing technology can be considered a powerful 
approach to monitor a  wide range of environmental 
changes. Datasets collected by satellites such as Sentinel-
5P (Ialongo et al., 2020) and Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Colombi et al., 2007; Shobairi 
et.al., 2024) can be considered as a valuable tool to monitor 
air pollution and climate parameters with high speed and 
accuracy over a wide geographical area. On the other hand, 
nighttime data (obtained from remote sensing sensors such 
as Visible Infrared Imaging Radiometer Suite (VIIRS) (Li 
et al., 2014) and the old Defense Meteorological Satellite 
Program (DMSP) Operational Lines can System (OLS)) can 
be considered as a valuable proxy for urbanization (Zhang 
et al., 2011). These data show the intensity of artificial light 
emission, which is well correlated with urban population 
density and economic activity.

The main objectives of this study are to quantify the 
extent of urbanization in Tehran Province between 2018 and 
2022 using VIIRS DNB data as a proxy for human activity, 
and urban growth, to analyze the spatial and temporal 
variations of key air pollutants (NO₂, CO, and O₃) derived 
from Sentinel-5P satellite data, and to assess the changes in 
LST using MODIS observations. The study aims to evaluate 
the correlations between urbanization, air pollution, and 
LST to determine which environmental parameters are most 
affected by urban growth. Finally, it seeks to provide insights 
and recommendations for sustainable urban planning 
and environmental management in Tehran, emphasizing 
strategies to mitigate air pollution and the UHI effect in 
rapidly developing metropolitan areas.

2. Materials and Methods

2.1. Study Area

Tehran, the capital of Iran, was selected as the study area 
due to its rapid urbanization and increasing environmental 
challenges. Tehran Province is one of the largest provinces 
in Iran with an area of approximately 17,000  km2 and 
a population of over 14 million. It has a semi-arid climate 

with hot summers and cold winters, and its air pollution levels 
have been a persistent issue due to high traffic congestion, 
industrial activities, and geographical and topographic 
conditions. In this study, the boundary of Tehran Province 
was extracted from a shapefile and loaded into Google Earth 
Engine (GEE) to define the extent of the province (Fig. 1). 
A  binary mask was generated to preserve pixels within 
Tehran Province for analysis.

Figure 1. Location of the study area: A – in Iran ; B – Tehran 
Province ; C –boundary of the study area
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2.2. Datasets

In this section, first, the used products, including DNB, Air 
pollutants, and LST datasets, are introduced. Afterward, the 
methodology of the study is explained.

The study utilized multiple satellite datasets as follows:

•  VIIRS DNB products
The VIIRS-DNB aboard the Suomi National Polar-orbiting 
Partnership (Suomi NPP) satellite captures global nighttime 
light emissions, facilitating studies of urbanization and hu-
man activity patterns. The NOAA/VIIRS/DNB/MONTH-
LY_V1/VCMSLCFG dataset in GEE provides monthly 
average radiance composites, corrected for stray light arti-
facts, ensuring enhanced data quality. These composites are 
available as the monthly product in GEE. Cloud cover was 
determined using the VIIRS Cloud Mask product (VCM), 
and data near the edges of the swath were excluded to 
maintain consistency. The dataset spans from 2014 onwards, 
offering extensive temporal coverage for analyzing trends 
in nighttime lights. However, users should note that certain 
regions may lack good quality data for specific months due 
to factors like persistent cloud cover or solar illumination, 
especially in tropical areas or polar regions during their re-
spective summer months.

•  Sentinel 5p air pollutants products
Sentinel-5P, equipped with the TROPOspheric Monitoring 
Instrument (TROPOMI), offers high-resolution atmospheric 
data, crucial for monitoring air pollutants such as nitrogen 
dioxide (NO₂), carbon monoxide (CO), and ozone (O₃). 
In GEE, these datasets are accessible for detailed analysis. 
For instance, the NO₂ product provides near real-time 
measurements of atmospheric NO₂ concentrations, aiding 
in air quality assessments. Similarly, the CO product delivers 
near real-time imagery of CO concentrations, essential 
for understanding pollution sources and atmospheric 
chemistry.

•  MODIS LST products
The MODIS/Terra LST and Emissivity daily global 1km 
(MOD11A1) dataset provides daily per-pixel LST (both 
in day and night format) and emissivity measurements 
at a 1-kilometer spatial resolution. In GEE, this dataset is 
accessible under the identifier MODIS/006/MOD11A1, 
enabling users to analyze daily LST patterns and their 
temporal dynamics.

2.3. Methodology

This study utilizes the Google Earth Engine (GEE) platform to 
analyze urbanization and environmental changes in Tehran 

from 2018 to 2022, focusing on DNB data, atmospheric 
pollutants (NO₂, CO, O₃), and LST.

2.3.1. Data Processing
•  DNB Processing:

1.	 Data Selection: The VIIRS Nighttime Day/Night Band 
Composites Version 1 dataset (NOAA/VIIRS/DNB/
MONTHLY_V1/VCMSLCFG) was selected for its 
monthly average radiance values.

2.	 Filtering: The dataset was filtered to include only data 
over Tehran’s geographical boundaries and within the 
2018–2022 timeframe.

3.	 Band Selection: The ‘avg_rad’ band, representing 
average radiance, was extracted for analysis.

4.	 Computation of Annual Mean DNB: Annual 
mean radiance values were calculated to observe 
urbanization trends over time.

5.	 Application of Tehran Mask: A  spatial mask 
corresponding to Tehran’s administrative boundaries 
was applied to isolate the area of interest.

6.	 Extraction of Mean DNB: The mean DNB values 
within whole Tehran province were computed for 
subsequent correlation analyses.

•  Atmospheric Pollutants Processing:
1.	 Data Selection: The Sentinel-5P datasets for NO₂ 

(COPERNICUS/S5P/NRTI/L3_NO2), CO (COPER-
NICUS/S5P/OFFL/L3_CO), and O₃ (COPERNICUS/
S5P/NRTI/L3_O3) were utilized.

2.	 Filtering: Each dataset was filtered to encompass the 
province’s area in the study period (2018–2022).

3.	 Band Selection: The relevant pollutant bands (‘NO₂_
column_number_density’ for NO₂, ‘CO_column_
number_density’ for CO, and ‘O₃_column_number_
density’ for O₃) were selected.

4.	 Computation of Annual Mean Concentrations: 
Annual mean concentrations for each pollutant were 
calculated to assess long-term trends.

5.	 Application of province mask: The province spatial 
mask was applied to retain values solely within the 
study area.

6.	 Extraction of Mean Pollutant Concentrations: Mean 
concentrations for each pollutant within whole 
province were extracted for further analysis.

•  LST Processing:
1.	 Data Selection: The MODIS/Terra LST and Emissivity 

Daily Global 1km dataset (MODIS/061/MOD11A1) 
was chosen for its daily LST measurements.

2.	 Filtering: The dataset was filtered to include data over 
province and within the 2018–2022 period.

3.	 Band Selection: The ‘LST_Day_1km’ and ‘LST_
Night_1km’ bands were selected for daytime and 
nighttime temperatures, respectively.
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4.	 Conversion to Degrees Celsius: Raw LST values, 
originally in Kelvin, were converted to degrees Celsius 
by °C = (DN × 0.02) - 273.15.

5.	 Computation of Annual Mean LSTs: Annual mean 
LSTs for both day and night were computed to assess 
temperature trends.

6.	 Application of province mask: The province spatial 
mask was applied to focus analyses within the 
province’s boundaries.

7.	 Extraction of Mean LSTs: Mean LST values for Tehran 
were extracted for subsequent correlation analyses.

2.3.2. Analysis Method
To analyze the spatiotemporal variations of urbanization 
and environmental parameters, three primary analyses were 
conducted:

Spatial Distribution Analysis: The spatial distribution 
of each variable (DNB, NO₂, CO, O₃, LST) was examined 
using annual mean values over Tehran. This analysis helped 
visualize the intensity and spatial patterns of urbanization, 
air pollutants, and LST over time.

Temporal Trend Analysis: To assess the long-term trend 
of each variable, a linear regression model was applied to the 
annual mean values over the study period (2018–2022). The 
slope of the fitted trend line was used as an indicator of the 
rate of change for each variable. A positive slope indicated 
an increasing trend, while a  negative slope represented 
a  decreasing trend. In this study, R² (the coefficient of 
determination) is used to measure how well a fitted line 
explains the variability of the dependent variable. R² ranges 
from 0 to 1, where: R² = 1: The model perfectly explains 
all variability, and R² = 0: The model explains none of the 
variability. It is calculated as follows (Chicco et al., 2021):

       
                            2 1 res

tot
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= − 	 (1)

where:
SSres (Residual Sum of Squares):  2( )i iy y−∑ , the sum of 
squared differences between actual values (yi) and predicted 
values (  iy ).

SStot (Total Sum of Squares): 2( )i iy y−∑ , the sum of 
squared differences between actual values (yi) and the mean 
of the dependent variable ( iy ).

Correlation Analysis: The Pearson correlation coefficient 
(r) was computed to quantify the relationship between 
variables. The correlation coefficient is given by Cui et al. 
(2020):
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where xi and yi are the individual sample points, and x– and 
y– are the sample means. This coefficient provided insights 
into how variable influences each other.

3. Experimental Results

This section presents the experimental results, focusing on 
the spatial distributions (highlighting regional patterns of 
parameters within the study area) and temporal trends of 
DNB, air pollutants (NO₂, CO, and O₃), and LST from 2018 
to 2022. The findings include statistical correlation analysis 
between these variables to assess the impact of urbanization 
on air pollution and LST variations in Tehran Province.

3.1. Annual Trend Analysis

DNB
Analysis of VIIRS DNB data over Tehran Province (2018–
2022) reveals a  steady upward temporal trend in mean 
radiance values (strong positive R²), indicating intensified 
urban expansion and human activities aligned with rising 
population density and economic growth; spatially, high-
intensity light emissions concentrated in central Tehran 
(with the largest increases in commercial/residential cores) 
showed gradual outward spread to suburbs, reflecting sprawl 
and infrastructural development (Fig. 2). This positions 
DNB as a robust proxy for urbanization’s environmental 
impacts.

Air Pollutants (NO₂, CO, O₃)
The spatial analysis of Sentinel-5P data from 2018 to 2022 
consistently reveals that NO2 and CO concentrations are 
highest in the central urban areas of Tehran Province. 
For NO2, the distribution maps (Fig. 3) show a persistent 
pattern of elevated levels forming distinct hot spots in 
densely populated regions, strongly indicative of high traffic 
emissions and industrial activities. Similarly, CO maps (Fig. 
4) consistently depict the highest concentrations within the 
city’s core, reflecting stable emission sources from traffic and 
residential heating. In contrast, O3 spatial variations (Fig. 
5) across the province are more complex, with some areas 
consistently showing higher concentrations, but without 
the clear central urban hot spot pattern observed for NO2 
and CO. This difference highlights the varying nature of 
emission sources and atmospheric chemistry governing each 
pollutant’s distribution.

Regarding temporal trends from 2018 to 2022, the analysis 
reveals distinct patterns for each pollutant. NO2 levels 
exhibited a significant upward trend (R2 = 0.61), as shown by 
the scatter plot and fitted line in Figure 3, indicating a notable 
increase likely driven by urban expansion and growing 
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Figure 2. Source: VIIRS DNB, NASA, 2018–2022. Spatial distribution and annual trend of DNB value (nanoWatts/sr/cm2) in Tehran Province

Province Province

Province Province
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vehicular/industrial emissions. CO showed a  relatively 
stable trend with a weak downward shift (R2 = 0.13) (Fig. 
4), suggesting a minor decrease over time despite consistent 
emission sources, possibly influenced by slight changes in 
traffic volume or economic activity. Conversely, O3 displayed 
a  very weak and statistically non-significant increasing 
trend (R2 = 0.05) (Fig. 5), with year-to-year fluctuations 
more likely influenced by meteorological conditions and 
seasonal variations rather than a strong underlying change 
in emissions. These differing trends underscore the need for 
pollutant-specific mitigation strategies.

To summarize the findings, it should be noted that:
The annual averages from Sentinel-5P showed that 

NO₂ increased significantly (R²=0.61), which is related to 
greenhouse gas emissions from vehicles and industries 
and is concentrated in central urban areas (Fig. 3). CO 
showed a stable trend with minor fluctuations and a weak 
downward shift (R²=0.13), while O₃ had a weak increasing 
trend (R²=0.05), which was influenced by photochemical 
reactions (Figs 4 and 5).

LST
LST exhibited a  rising trend, particularly in urbanized 
regions (Figs 6 and 7). The increase in LST can be linked to 
UHI effects caused by increased built-up areas and reduced 
vegetation cover. The most significant temperature increases 
were recorded in densely populated districts, further 
supporting the role of urbanization in altering surface 
temperature patterns.

The analysis of MODIS daytime LST data over Tehran 
from 2018 to 2022 shows a gradual warming trend, with 
higher temperatures observed in southern and central urban 
areas compared to the northern regions, which are more 
vegetated and elevated. The spatial maps indicate a persistent 
UHI effect, where densely built-up areas exhibit higher LST 
values. The scatter plot with a fitted trend line reveals a weak 
R², suggesting a slight increase in LST over time, likely driven 
by urbanization, reduced vegetation cover, and increased 
anthropogenic heat emissions. However, the relatively weak 
trend indicates that other environmental and climatic factors 
also contribute to LST variations in the region.

The MODIS nighttime LST analysis over Tehran from 
2018 to 2022 shows a general warming trend, though a weak 
R². The spatial distribution of LST indicates that urban areas, 
especially in the southern and central regions, retain more 
heat at night compared to the northern, more vegetated 
areas. This pattern suggests the presence of a UHI effect, 
because built-up areas release stored heat more slowly than 
natural ones. However, the low R² suggests that other factors 
like weather conditions, wind patterns, and surface material 
properties influence nighttime LST variations.

To summarize the findings, it should be noted that:

MODIS LST analysis (2018–2022) revealed gradual 
warming in both daytime and nighttime values (~1°C 
increase overall; weak R²≈0.14 to moderate R²≈0.29), with 
higher temperatures in southern/central urban areas versus 
cooler northern vegetated zones, underscoring UHI effects 
from impervious surfaces and reduced evapotranspiration 
(Figs 6–7). Nighttime LST showed stronger heat retention 
(slower cooling) than daytime, amplifying UHI intensity 
after dusk, though both exhibited similar spatial gradients 
tied to urban density.

3.2. Correlation Analysis

Pearson correlation coefficients (r, 2018–2022) were 
computed across variables to quantify relationships (Fig. 
8), grouped thematically below. Ranges reflect year-to-year 
variations, with interpretations emphasizing key drivers like 
emissions, photochemistry, and UHI effects. Overall trends 
highlight urbanization’s (DNB) dominant role in primary 
pollutants and nighttime LST, with exceptions for secondary 
pollutants like O₃.

Pollutant-Pollutant Interactions: NO₂ and CO exhibited 
consistently strong positive correlations (r = 0.77–0.82), 
attributable to shared anthropogenic sources such as vehicle 
exhausts and industrial combustion prevalent in Tehran’s 
urban core; this stability underscores their co-emission 
from traffic and energy use. In contrast, NO₂-O₃ links were 
weak and variable (r = 0 in 2019 to 0.22 in 2021), reflecting 
NO₂’s role as an O₃ precursor in sunlight-driven reactions, 
modulated by local meteorology (e.g., wind dispersion) 
and diurnal cycles that disrupt linear associations. CO-
O₃ showed dynamic shifts: weak positive in 2018 (r=0.1, 
minimal overlap), moderate negative in 2019–2020 (r≈-
0.30 to -0.44, possibly from CO scavenging O₃ precursors 
amid emission peaks), and moderate positive in 2021–2022 
(r≈0.56–0.57, aligned with enhanced photochemistry from 
rising industrial/traffic activity and warmer conditions).

Pollutant-LST Interactions: NO₂ correlated lowly with 
LST_day (r=0.02–0.17) but moderately with LST_night 
(r=0.28–0.42), suggesting pollution hotspots exacerbate 
nighttime UHI by trapping heat in impervious urban 
surfaces, though daytime solar forcing dilutes the signal; 
additional factors like vegetation cover likely mediate 
daytime weakness. CO displayed stronger positive ties 
to both LST_day and LST_night (peaking at r=0.81 for 
nighttime in 2020), linking traffic-derived CO to warmer 
urban microclimates where emissions accumulate under low 
ventilation. O₃-LST evolved from negative (early years, r<0; 
higher heat promoting precursor dilution via convection) 
to positive (later, r>0.2; elevated temperatures accelerating 
photochemical O₃ production), illustrating temperature’s 
dual role in O₃ dynamics amid changing emission patterns.
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Figure 3. Source: NO2, ESA sentinel, 2018–2022. Spatial distribution and annual trend of NO2 values (mol/m2) in Tehran Province
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Figure 4. Source: CO, ESA sentinel, 2018–2022. Spatial distribution and annual trend of CO values (mol/m2) in Tehran Province
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Figure 5. Source: O3, ESA sentinel, 2018–2022. Spatial distribution and annual trend of O3 values (mol/m2) in Tehran Province
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Figure 6. Source: LST_day, NASA, 2018–2022. Spatial distribution and annual trend of LST_day values (°C) in Tehran Province
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Figure 7. Source: LST_night, NASA, 2018–2022. Spatial distribution and annual trend of LST_night values (°C) in Tehran Province
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Figure 8. Correlation matrices for different years
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Pollutant-DNB Relationships: As a urbanization proxy, 
DNB showed moderate-to-strong positive correlations 
with NO₂ (r=0.66–0.72) and CO (r=0.59–0.64), directly 
tying light intensity (reflecting population/economic 
density) to emission-intensive activities like commuting 
and manufacturing; spatial congruence in central Tehran 
reinforces this. However, DNB-O₃ was weak and inconsistent 
(r=-0.01 in 2019 to 0.27 in 2021), indicating O₃’s limited 
direct response to urban sprawl, dominated instead by volatile 
organic compounds, NO₂ photolysis, and weather variability.

LST-DNB Linkages: DNB weakly correlated with LST_
day (r≈0.1 in 2018, influenced by transient solar/atmospheric 
inputs), but moderately with LST_night (r up to 0.38 in 
2021), evidencing UHI intensification in high-DNB zones 
where anthropogenic heat and reduced evapotranspiration 
sustain nocturnal warming.

These thematic patterns (strong for direct-emission 
proxies (NO₂/CO-DNB) and moderate for UHI (nighttime 
LST-DNB)) affirm urbanization’s cascading environmental 
effects, while O₃’s exceptions highlight needs for integrated 
modeling. All analyses used province-wide annual means.

To summarize the findings, it should be noted that:
Pearson correlations (2018–2022) between DNB, 

pollutants, and LST showed: strong positive links between 
DNB and NO₂/CO, reflecting urbanization-driven emissions; 
moderate correlation between DNB and nighttime LST, 
indicating UHI heat retention; and weak/negative ties 
between DNB and O₃, due to complex photochemical 
drivers. NO₂ and CO correlated strongly, while NO₂-LST 
links were low-to-moderate (stronger at night). O₃-LST 
shifted from negative to positive over time. These patterns 
confirm urbanization’s direct influence on NO₂/CO and 
nighttime heat.

Based on the findings, in Tehran, urbanization (as 
measured by DNB) is closely linked to increased pollutant 
levels and elevated temperatures. Strong correlations 
between DNB and both NO₂ and CO indicate that denser 
urban activities, such as traffic and industrial operations, 
drive higher emissions. Additionally, urban areas show 
a  moderate relationship between DNB and LST night, 
reflecting the UHI effect where built-up areas retain more 
heat. These findings are important for policymakers because 
they highlight the direct environmental impacts of urban 
expansion, emphasizing the need for targeted strategies to 
manage urban growth, reduce emissions, and mitigate heat 
retention in cities.

4. Discussion

This study investigates the environmental impacts of rapid 
urbanization in Tehran, Iran’s capital, from 2018 to 2022, 

focusing on air pollution (NO₂, CO, and O₃) and LST 
using remote sensing data from VIIRS, Sentinel-5P, and 
MODIS. Tehran Province spans ~17,000 km² (~730 km² for 
Tehran city) with a population exceeding 14 million (as of 
2022 estimates), characterized by rapid urbanization, high 
vehicular density (>4 million vehicles), and industrial hubs 
contributing to persistent air quality challenges. Our findings 
reveal critical insights into the relationships between 
urbanization, air pollution, and LST, aligning with and 
extending prior research on urban environmental dynamics.

Correlation analyses indicate that urbanization, as 
proxied by VIIRS Day/Night Band (DNB) data, has a strong 
influence on air pollution and LST. A primary contribution 
of this study is the robust DNB-NO₂/CO correlations 
(r=0.59–0.72), quantifying urbanization’s causal role in 
primary pollutant surges via traffic/industry, offering novel 
remote-sensing evidence for Tehran’s policy targeting. The 
moderate to strong correlation between DNB and NO₂ 
(ranging from 0.66 in 2018 to 0.72 in 2020) underscores 
urbanization as a key driver of NO₂ pollution, consistent 
with findings by Fuladlu and Altan (2021), who reported 
similar positive correlations between urbanization and NO₂ 
in Tehran using Sentinel-3 SLSTR and Sentinel-5P data 
(Fuladlu & Altan, 2021). These results highlight the urgent 
need for sustainable urban planning and pollution control 
measures to mitigate the adverse environmental effects of 
rapid urban growth in Tehran. Similarly, the correlation 
between DNB and CO (0.59–0.64 across 2018–2022) 
indicates that vehicular and industrial emissions, tied to 
urban activity, are primary pollution sources, corroborating 
studies in other metropolitan areas like China, India, where 
studies such as Siddiqui et al. (2022) and Zheng et al. (2019) 
linked NO₂ and CO increases to urban expansion and traffic 
congestion. The correlation between CO and DNB follows 
a  similar trend, suggesting that vehicular and industrial 
emissions remain primary sources of air pollution in Tehran. 
These findings reinforce the argument that cities with high 
levels of economic activity and industrialization tend to 
experience significant increases in NO₂ and CO emissions.

In contrast, O₃ exhibited weak or negative correlations 
with other pollutants, notably NO2 (-0.0002 in 2019) and CO 
(-0.44 in 2019), reflecting complex photochemical reactions 
rather than direct emission-driven trends. This behavior 
aligns with Hu et al. (2021), who noted that O₃ formation in 
Chinese cities is influenced by photochemical interactions 
and meteorological factors, complicating its relationship with 
urbanization. These findings highlight the need for further 
research into O₃’s drivers in Tehran, including seasonal and 
meteorological influences.

The correlation between DNB and nighttime LST (up to 
0.38 in 2021) confirms the urban UHI effect, with urbanized 
areas retaining more heat at night due to impervious surfaces. 
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This is consistent with Moazzam et al. (2022), who found 
elevated LST in urbanized regions of Jeju Island, Republic 
of Korea, driven by reduced vegetation and increased 
built-up areas (Moazzam et al., 2022). Previous studies in 
other cities, such as Nairobi (Kenya), have shown similar 
patterns (Mwangi, 2024). Generally, higher nighttime LSTs 
are associated with urbanized areas due to the retention of 
heat in built-up environments. Our findings further indicate 
that the relationship between LST and NO₂ is stronger at 
night (0.42 in 2020) than during the day, which is consistent 
with previous research suggesting that pollution can increase 
heat retention in urban areas (Parida et al, 2021). However, 
the relatively low correlation between daytime LST and NO₂ 
suggests that factors beyond air pollution, such as land cover 
changes and atmospheric conditions, also play a significant 
role in influencing temperature variations.

Our findings also resonate with broader research on 
urbanization’s environmental impacts. Liang et al. (2020) 
analyzed 626 Chinese cities, finding that urban form 
significantly affects air quality, similar to our observed 
links between DNB and NO₂/CO (Liang & Gong, 2020). 
Additionally, Stratoulias et al. (2024) emphasized the role 
of satellite remote sensing, like Sentinel-5P, in monitoring 
air pollution for sustainable development, aligning with our 
use of these data to support urban planning (Stratoulias et 
al., 2024). These global parallels underscore the universal 
challenge of managing urbanization’s environmental costs.

The findings of this study have important implications 
for urban planning and air quality management in Tehran. 
The strong association between DNB and air pollution 
underscores the need for policies that promote cleaner 
transportation options, such as expanded public transit 
and stricter vehicle emissions regulations. Furthermore, 
the observed correlation between nighttime LST and DNB 
suggests that increasing green spaces and implementing 
heat mitigation strategies could help reduce the UHI effect. 
Given the complex behavior of O₃, further research is needed 
to explore the role of meteorological factors and potential 
mitigation strategies. The correlation results confirm known 
urbanization impacts on air quality and LST. NO₂ and CO 
are strongly linked, while O₃ exhibits complex behavior. The 
findings provide insights for urban planning and pollution 
mitigation in Tehran.

The strong DNB-NO₂/CO correlations directly support 
emission control measures, such as stricter vehicle standards 
and low-emission zones in high-DNB urban cores to curb 
traffic/industrial sources. Moderate DNB-LST_night links 
inform sustainable urban design by advocating cool roofs, 
permeable pavements, and zoning reforms to minimize 
impervious surfaces. For UHI mitigation, findings endorse 
green infrastructure development (like urban forests and 
rooftop gardens) to enhance evapotranspiration and reduce 

~1°C LST rises, fostering resilient planning in Tehran. 
O₃ weak bonds require integrated policies that address 
photochemistry through Volatile Organic Compounds 
(VOC) control and meteorological monitoring, aligning 
with the global Sustainable Development Goals (SDGs) for 
healthier cities.

In summary, this study’s findings align with global research 
on urbanization’s environmental impacts, confirming that 
NO₂ and CO are strongly linked to urban activity, while O₃ 
exhibits complex dynamics. By integrating remote sensing 
with correlation analyses, we provide actionable insights 
for mitigating air pollution and UHI effects in Tehran, 
contributing to sustainable urban development strategies 
worldwide.

5. Conclusion

Urbanization in Tehran Province, proxied by rising VIIRS 
DNB from 2018–2022, drove significant NO₂ increases and 
~1°C rises in daytime/nighttime LST via UHI effects (most 
pronounced at night due to heat retention in urban surfaces) 
with CO showing minor fluctuations and O₃ exhibiting 
minimal correlation due to photochemical complexities. 
Strong DNB-NO₂/CO correlations and moderate DNB-
nighttime LST links highlight traffic/industrial emissions 
as key drivers, while weak DNB-O₃ ties underscore 
indirect influences. These insights, derived from integrated 
Sentinel-5P and MODIS data in GEE, align with global 
urban studies on rapid-growth cities and emphasize policy 
actions: Implement low-emission zones in central Tehran, 
expand the Bus Rapid Transit (BRT) network to reduce 
reliance on >4 million private vehicles, and establish urban 
forests in southern districts to mitigate ~1°C LST increases, 
aligning with Iran’s Clean Air Act. Offer subsidies for electric 
vehicles to address socio-economic barriers, targeting a 10% 
NO₂ reduction by 2030. Satellite-based monitoring offers 
a  scalable model for assessing environmental costs, with 
future research needed on seasonal/meteorological/socio-
economic factors to refine equitable strategies and foster 
resilient urban environments.
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