

1 **A laboratory-based study on interspecific interactions between two stored-
2 grain insect pests**

3
4 **Rajib Majumder**

5
6 Department of Zoology, Vivekananda Mahavidyalaya, Haripal-712405, Hooghly, W. B., India

7 Corresponding author e-mail: rajib.majumder2011@gmail.com

9 Received: 26 April 2025 / Accepted: 8 December 2025

10
11 **Abstract.** An attempt has been made to study the interspecific interaction between two stored-grain insect
12 pests. In the laboratory, *Sitophilus oryzae* (Linnaeus, 1763) and *Tribolium castaneum* (Herbst, 1797) were
13 allowed to rear in the same culture box containing healthy wheat grains. *S. oryzae* with a rostrum feeds on
14 whole grains, whereas *T. castaneum* without a rostrum feeds on grain powder and often enters grooves
15 inside the grains that *S. oryzae* had previously attacked. Multiple culture boxes were maintained for
16 observation in the biological oxygen demand incubator at an optimal temperature range of $28 \pm 1^\circ\text{C}$ for 2
17 months, until the wheat grains were ground into powder. *T. castaneum* was predominantly detected in the
18 grain powder, while *S. oryzae* was mostly found to leave the culture. Subsequently, T-tube experiments
19 with this powder or with whole wheat grains and both insect pest species were carried out, wherein *S. oryzae*
20 was observed to avoid the powder, whereas *T. castaneum* was attracted to it. Additionally, grain powder
21 underwent microbiological examination using the carbol fuchsin method. This study suggests that
22 controlling *S. oryzae* automatically reduces *T. castaneum*, a secondary pest that feeds on food damaged or
23 broken by the former.

24
25 **Keywords:** stored grain; *Sitophilus*; *Tribolium*; interspecific competition, microbial study

26 **1. Introduction**

27 Attaining food security to meet the demands of the ever-increasing population of today's Earth is
28 a matter of utmost priority for every nation (Majumder, 2023). Approximately 17% of global food
29 production is lost during storage, with insects accounting for 10% and mites, rodents, and diseases
30 for 7%, as per the Food and Agriculture Organization of the United Nations (FAO) (Bouchelos et
31 al., 2018). This constitute a significant issue pertaining to quality assurance (Kumar, 2017). A total
32 of 1,663 insect species have been identified as pests of stored food items, with several species
33 recognized for their increased damage potential and widespread distribution globally (Binseena et

34 al., 2018). An estimated 14 million tons of storage losses occur in India each year, valued at INR
35 7,000 crore, of which over INR 1,300 crores are attributable to insects (Soujanya et al., 2012).
36 Proper understanding of insect pests' movement and behavior in stored grain bulks aids in the
37 control of infestations (Anukiruthika et al., 2021). The study is focused on the two worldwide
38 distributed pests *Sitophilus oryzae* (Linnaeus, 1763) (Coleoptera: Curculionidae) and *Tribolium*
39 *castaneum* (Herbst, 1797) (Coleoptera: Tenebrionidae). *S. oryzae*, popularly known as rice weevil,
40 is considered a major insect pest all over the world considering the damages that it causes both
41 quantitatively and qualitatively in fields, stored grains like rice, wheat, maize, barley, and sorghum,
42 and grain products (Parisot et al., 2021). As they complete their whole development inside the
43 grains, they are known as internal or primary feeders or primary pests (Trematerra et al., 2015;
44 Đukić et al., 2018). On the other hand, *T. castaneum*, commonly known as red flour beetle, is
45 found all over the world as a pest affecting stored grain and grain products like wheat, flour, rice
46 bran, etc. (Kumar et al., 2018). It is a common experimental model organism in several studies as
47 it is easy to handle, has a simple way of maintaining culture, and has a relatively short generation
48 time (Hunt et al., 2007; Deb & Kumar, 2021). *S. oryzae* possesses anteriorly directed long, slender,
49 and stout down curved rostrum adapted for boring into stored grains in addition to mandibular
50 jaws, whereas *T. castaneum* lacks a characteristic rostrum. They prefer to develop outside the
51 grains in damaged grain powder or grain materials. So, *T. castaneum* is known as external or
52 secondary feeders or secondary pests (Trematerra et al., 2015; Đukić et al., 2018). Interspecific
53 interactions in stored insect pests have been documented in a few studies. *Oryzaephilus*
54 *surinamensis*, *T. castaneum* and *T. confusum* prefer insect-damaged kernels more than
55 mechanically split or whole kernels (Trematerra et al., 2000). Kernel age and who colonizes first
56 influence interactions between *S. zeamais* and *T. castaneum* (Trematerra et al., 2015). Excavated

57 grains by *S. granarius* support the development of *Cryptolestes ferrugineus* and *T. castaneum*
58 (*Vendl et al., 2022*). *Prostephanus truncatus* could outcompete *S. oryzae* (*Baliota et al., 2022*) and
59 *S. zeamais* on stored maize (*Mlambo et al., 2026*). Competition for progeny production between
60 *S. oryzae* and *S. granarius* depends on the temperature and the nature of stored products (*Sakka et*
61 *al., 2023*). Facultative or antagonistic interactions can occur when insect pests coexist (*Mlambo et*
62 *al., 2026*). The simultaneous presence of two insect species that consume the same product is likely
63 to cause them to alter some of their key behavioral responses. However, there hasn't been as much
64 research done on the factors that play a critical role in these interspecific interactions and their
65 practical implications. Therefore, an attempt has been made to study the interspecific interactions
66 between two stored-grain insect pests, *S. oryzae* and *T. castaneum*, that share a common food
67 source and to identify major contributors to these interactions as well as to highlight the practical
68 significance of the current study.

69 2. Materials and methods

70 2.1. Test organisms and their culture

71 Fifty adult insects, each of *S. oryzae* and *T. castaneum*, were reared together in multiple culture
72 boxes containing 500 g of healthy wheat grains without any prior exposure to pesticides or
73 pathogens inside a biological oxygen demand (BOD) incubator (LI-BOD-9) at a temperature of
74 $28 \pm 0.5^{\circ}\text{C}$ for two months until the wheat grains were changed into powder due to insect activity.
75 *T. castaneum* was predominantly detected in the grain powders throughout this period, while *S.*
76 *oryzae* was first contained within whole grains but became scattered later and was finally found to
77 have left most of the culture. In a continuous culture, *S. oryzae* emerged as the pioneer species,
78 with *T. castaneum* as the climax species.

79 2.2. Study design

80 The entire design of the present study has been displayed in **Figure 1**.

81 **2.2.1. Behavioral study**

82 The behavioral response of both insect species to the whole wheat grains and insect-infested wheat
83 grain powder collected from culture boxes was studied by using a T-tube apparatus. Each T-tube
84 apparatus has a 45 cm vertical arm and two 28 cm horizontal arms. Each arm has an internal
85 diameter of 3 cm. The openings of the two horizontal arms were plugged with dry cotton. The T-
86 tube was laid horizontally on a table and was left undisturbed during the study for five hours. The
87 photographs of the test organisms, T-tube apparatus, and old, moist, grayish, and insect-infested
88 grain powder are shown in **Figure 2**. For each test organism, two separate tests were performed.
89 For each test, including the control (without any wheat grain powder or whole wheat grains), three
90 replicates were run in parallel. The choice of both insect species was recorded, and the data was
91 analyzed statistically through t-test.

92 **2.2.2. Microbiological study**

93 Initially, the wheat grain powder of the culture boxes, when examined under the microscope
94 revealed no significant finding. Later, two microbiological studies were performed. In one study,
95 wheat grain powder was applied to sterilized cotton and placed on a petri dish, with a small amount
96 of distilled water added to it. The petri dish was then covered with a lid and placed in an incubator
97 for one week of observation. Cotton showed no signs of fungal rust. In another study, when the
98 gram powder was added with deionized water and kept for a day in an incubator, followed by
99 carbol fuchsin staining of the heat dried smears of the suspension, *Bacillus* species were observed
100 in large numbers under a powerful microscope. Further study will be needed to identify the *Bacilli*
101 species growing on moist gram powder in near future.

102 **3. Results and Discussion**

103 In the present study, *S. oryzae* strongly avoided wheat grain powder of the culture boxes, On the
104 other hand, *T. castaneum* was attracted in large numbers to the wheat grain powder kept in one of
105 the horizontal arm of the T-tube (**Figure 3**). In control, insects passed at random in variable
106 numbers towards the horizontal arm. The powder of wheat grains was infested by *T. castaneum*,
107 which caused a persistent and unpleasant odor and turning the powder grayish, which impaired the
108 grain powder's elastic and viscous qualities. This was attributable to the accumulation of quinones
109 released by *T. castaneum* adults and absorbed by the grain powder (Kumari et al., 2011). That's
110 why *S. oryzae* avoided infested moist grain powder. Phillips et al. (1993) reported that *S. oryzae*
111 colonizes sound grain and is attracted to volatiles characteristic of fresh grain, while *T. castaneum*
112 utilizes damaged or deteriorated grains and responds best to oils characteristic of damaged or
113 fungus-infested grain. Volatile organic compounds (VOC) in stored grain exert a significant
114 impact on both intra- and interspecific interactions among coleopteran species associated with
115 stored products. *T. confusum* exhibited a positive chemotactic response towards rice that had been
116 infested by the larvae of a primary pest, *S. zeamais*, while demonstrating no such attraction towards
117 grains solely compromised by adult pests (Giunti et al., 2018). Interspecific interaction between or
118 among species sharing the same food resource is often regulated by population density, based on
119 their relative life history strategies. Temperature and relative humidity can influence the population
120 dynamics of insects associated with stored products and the extent of damage to stored-products
121 (Papanikolaou et al., 2018). Moisture in the microenvironment is a major physical factor that
122 influences the population density. That's another reason behind the escape of *S. oryzae* from the
123 grain powder; it is not at all suitable for them, as intact whole grains are needed to pass their egg,
124 larva, and pupal stage. Adults *S. oryzae* bore intact whole grains with their rostrum and mandibles
125 and laid eggs inside them. On the other hand, *T. castaneum* depends on the grains broken by

126 primary pests as they lack rostrum. Such a succession feeding habit allows for the temporal
127 coexistence of both primary and secondary pest species, subsequently influencing community
128 composition, resource accessibility, and frequently resulting in synergistic damage to stored grain
129 (Mlambo et al., 2026). However, it was found that moist grain powder infested by insects favored
130 the growth of certain Bacilli. *T. castaneum* may be attracted to moist grain powder for devouring
131 on such powder that may be decomposed by Bacilli bacteria into simpler and easily digestable
132 compounds. A similar observation was recorded in another study (Trematerra et al., 2000), which
133 reported that whole wheat kernals damaged or broken by primary colonisers like the lesser grain
134 borer, *Rhyzopertha dominica* (Fabricius, 1792) and rice weevil, *S. oryzae*, are preferred by
135 secondary colonisers like the sawtoothed grain beetle, *O. surinamensis* (Linnaeus, 1758), red flour
136 beetle (*T. castaneum*), and confused flour beetle, *T. confusum* (Jacquelain du Val, 1868).
137 Secondary colonisers are able to identify changes in the physico-chemical properties of wheat
138 kernel caused by primary colonisers by the release of certain semiochemicals (Trematerra et al.,
139 2000). If phagostimulatory responses are a concern, *Tribolium* spp. is more self-dependent than
140 *Sitophilus* spp. as they have wider food preferences, even processed commodities as well, whereas,
141 *Sitophilus* spp. strict on intact grains (Aitken, 1975). Odor of infested or uninfested whole wheat
142 grains and coarse wheat meal, etc. may influence the behavior of insect pests like *Sitophilus* spp.
143 and *Tribolium* spp (Trematerra et al., 2015). Grain volatiles can act as important cues (Phillips et
144 al., 1993; Parisot et al., 2021). The activity of *Tribolium* spp may favor fungal growth in maize
145 flour (Duarte et al., 2021). Another study by Kumari et al. (2011) identified gram positive bacteria,
146 mostly Bacilli and Coccidae, and a few fungi capable of producing mycotoxin in *T. castaneum*. The
147 prolonged activity of the *T. castaneum* population and their interactions resulted in increased
148 moisture in the environment, which boosted microbial activity. Bacterial isolates from the gut of

149 *S. oryzae* (*Bacillus subtilis*, *Bacillus oceanisediminis*, *Bacillus firmus*, and *Pseudomonas*
150 *aeruginosa*) can generate volatile organic compounds with antifungal properties that inhibit the
151 growth of *Aspergillus flavus* and break down aflatoxin B1 (Al-Saadi et al., 2024). Further study
152 will be needed to explain how food exploitation pattern of one species repels or attracts other
153 species and it has opened an area of future research.

154 **4. Conclusions**

155 The study concludes that controlling *S. oryzae* automatically minimizes *T. castaneum*, a secondary
156 pest that depends on food damaged or broken by the former to some extent. Mouthparts, food
157 exploitation patterns of interacting insect pest species and the microbes operating there have an
158 impact on the interspecific interactions between two stored-grain insect pests using the same food
159 source: *S. oryzae* and *T. castaneum*. Studying the interspecific interactions between stored grain
160 pests provides valuable insights that will influence pest management strategies and promote
161 sustainable grain storage and production practices. Therefore, in order to ensure the safety and
162 quality of stored grains, effective monitoring and an understanding of the ecology and behaviors
163 of pests affecting stored grains have become essential components of integrated pest management.

164

165 **Acknowledgements**

166 The author would like to thank the Principal, Vivekananda Mahavidyalaya, Hooghly, for providing
167 the necessary laboratory facility.

168 **Declarations**

169 **Ethics approval and consent to participate**

170 Not Applicable

171 **Consent for publication**

172 The author declares his consent for publication

173 **Availability of data and material**

174 Data may be shared on valid request.

175 **Competing interests**

176 There is no conflict of interest.

177 **Funding**

178 No fund was received from any funding agency for this study.

179 **Authors' Contribution**

180 The author is solely responsible for conceptualization, experiment designing, performing, formal
181 analysis, writing-reviewing-editing and finalization of the manuscript.

182

183 **References**

184 Aitken, A.D., 1975, Insect travellers 1 Coleoptera. Tech. Bull. 31, MAFF publ. London, xvi+1-
185 191 pp.

186 Al-Saadi, H.A., Al-Sadi, A.M., Al-Wahaibi, A., Al-Raeesi, A., Al-Kindi, M., Pandian, S.S.B., Al-
187 Harrasi, M.M.A., Al-Mahmooli, I.H. & Velazhahan, R., 2024, Rice weevil (*Sitophilus*
188 *oryzae* L.) gut bacteria inhibit growth of *Aspergillus flavus* and degrade Aflatoxin B1. J. Fungi
189 10(6):377. <https://doi.org/10.3390/jof10060377>

190 Anukiruthika, T., Jian, F., & Jayas, D. S., 2021, Movement and behavioral response of stored
191 product insects under stored grain environments-A review. J. Stored Prod. Res., 90:101752.
192 <https://doi.org/10.1016/j.jspr.2020.101752>

193 Baliota, G.V., Scheff, D.S., Morrison III, W.R., Athanassiou, C.G. 2022), Competition between
194 *Prostephanus truncatus* and *Sitophilus oryzae* on maize: the species that gets there first
195 matters. Bull. Entomol. Res. 112:520–527. <https://doi.org/10.1017/S000748532100105X>

196 Binseena, S. R., Anitha, N., Paul, A., Amritha, V. S., & Anith, K. N., 2018, Management of rice
197 weevil, *Sitophilus oryzae* using essential volatile oils. Entomon 43(4):277–280.
198 <https://doi.org/10.33307/entomon.v43i4.408>

199 Bouchelos, K.T., 2018, Insects of warehouses and food. Embryo Publications, Athens, Greece, p.
200 133. (In Greek).

201 Deb, M., & Kumar, D., 2021, Studies on the biology of *Tribolium castaneum* (Herbst, 1797)
202 (Coleoptera: Tenebrionidae) with stereomicroscopic images of its life stages. Entomon, 46(1):
203 81–86. <https://doi.org/10.33307/entomon.v46i1.590>

204 Duarte, S., Magro, A., Tomás, J., Hilário, C., Alvito, P., Ferreira, R.B. & Carvalho, M.O., 2021,
205 The interaction between *Tribolium castaneum* and mycotoxicogenic *Aspergillus flavus* in maize
206 flour. Insects 12:730. <https://doi.org/10.3390/insects12080730>

207 Đukić, N.J., Radonjić, A.B., Andrić, G.G., Kljajić, P.J. & Golić, M.P., 2018, Attractiveness of
208 infested and uninfested whole wheat grain and coarse wheat meal odors to coleopteran storage
209 insect pests. Food Feed Res. 7:113-118. <http://dx.doi.org/10.5937/FFR1802113D>

210 Giunti, G., Palmeri, V., Algeri, G.M., Campolo, O., 2018, VOC emissions influence intra- and
211 interspecific interactions among stored-product Coleoptera in paddy rice. Sci Rep 8: 2052.
212 <https://doi.org/10.1038/s41598-018-20420-2>

213 Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., St. John, O., Wild, R., Hammond, P.M.,
214 Ahrens, D., Balke, M., & Caterino, M.S., 2007, A comprehensive phylogeny of beetles reveals

215 the evolutionary origins of a superradiation. *Science* 318:1913–1916.

216 <https://doi.org/10.1126/science.1146954>

217 Kumar, R., 2017, Insect pests of stored grain: Biology, behavior, and management strategies.

218 Apple Academic Press, New York. <https://doi.org/10.1201/9781315365695>

219 Kumar, H., Panigrahi, M., Chhotaray, S., Bhanuprakash, V., Shandilya, R., Sonwane, A. &

220 Bhushan, B., 2018, Red flour beetle (*Tribolium castaneum*): From population genetics to

221 functional genomics. *Vet. World* 11(8):1043-1046.

222 <https://doi.org/10.14202/vetworld.2018.1043-1046>

223 Kumari, P.C., Sivadasan, R. & Jose, A., 2011, Microflora associated with the red flour beetle,

224 *Tribolium castaneum* (Coleoptera: Tenebrionidae). *Int. J. Agric. Technol.* 7(6):1625-1631

225 Majumder, R. 2023, Balancing food security and environmental safety: rethinking modern

226 agricultural practices. *Environ. Exp. Biol.* 21:101-110. <https://doi.org/10.22364/eeb.21.12>

227 Mlambo, S., Mvumi, B. M., Macheckano, H., & Nyamukondiwa, C., 2026, *Prostephanus truncatus*

228 outcompetes *Sitophilus zeamais* under varying temperatures and introduction sequence on

229 stored maize grain. *J. Stored Prod. Res.* 115: 102880.

230 <https://doi.org/10.1016/j.jspr.2025.102880>

231 Papanikolaou, N. E., Kavallieratos, N. G., Boukouvala, M. C., & Malesios, C., 2018, Do

232 temperature, relative humidity and interspecific competition alter the population size and the

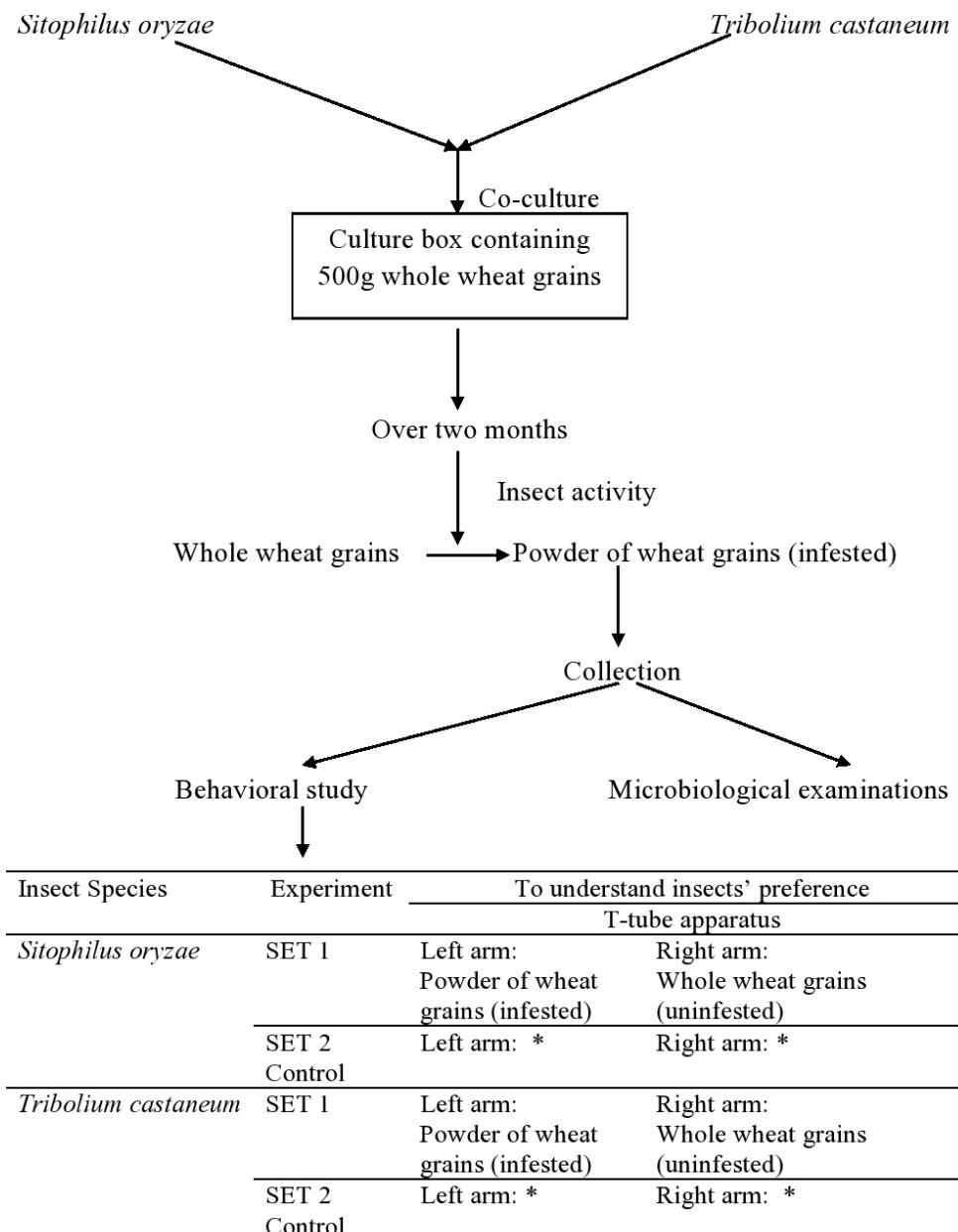
233 damage potential of stored-product insect pests? A hierarchical multilevel modeling

234 approach. *J. Therm. Biol.*, 78: 415-422. <https://doi.org/10.1016/j.jtherbio.2018.10.022>

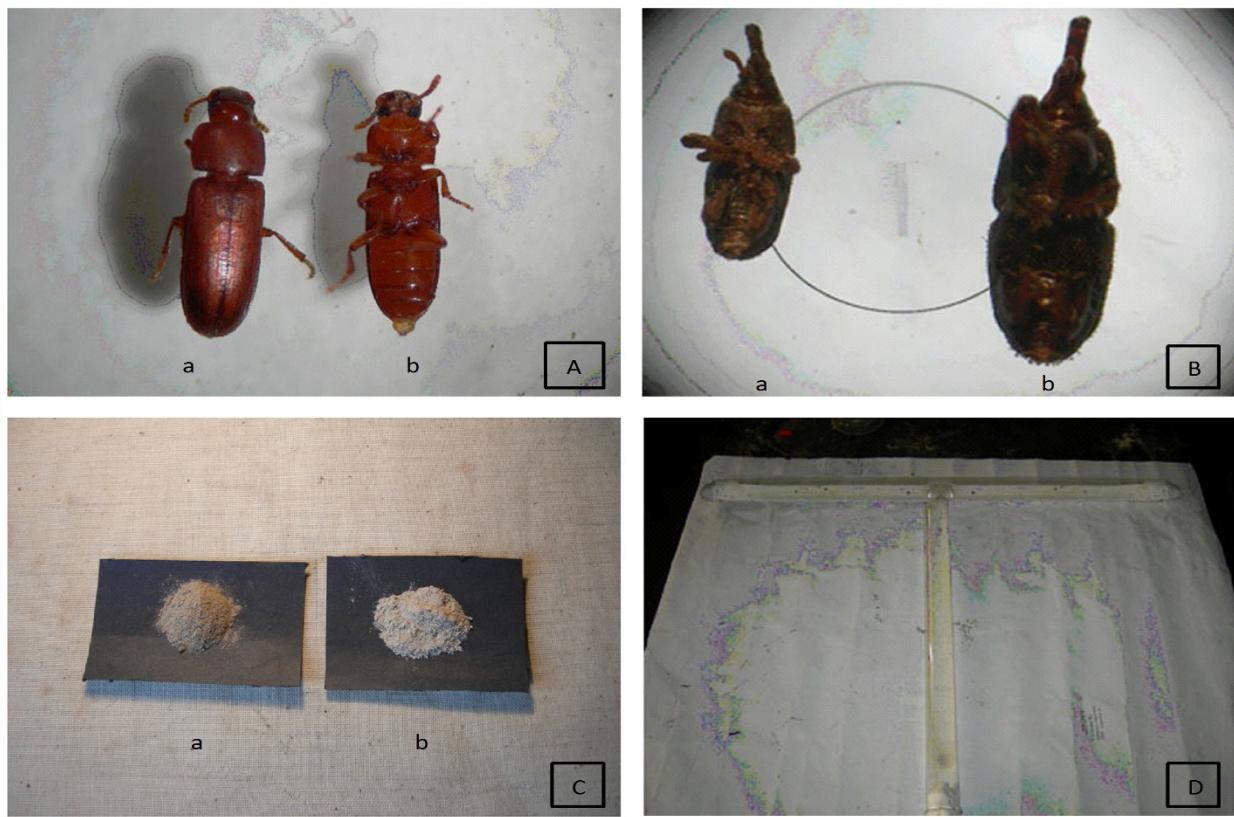
235 Parisot, N., Vargas-Chávez, C., Goubert, C. et al., 2021, The transposable element-rich genome of

236 the cereal pest *Sitophilus oryzae*. *BMC Biol.* 19:241. <https://doi.org/10.1186/s12915-021-01158-2>

238 Phillips, T.W., Jiang, X.L., Burkholder, W.E., Phillips, J.K. & Tran, H.Q., 1993, Behavioral
239 responses to food volatiles by two species of stored-product coleoptera, *Sitophilus*
240 *oryzae* (curculionidae) and *Tribolium castaneum* (tenebrionidae). *J. Chem. Ecol.* 19: 723–734.
241 <https://doi.org/10.1007/BF00985004>


242 Soujanya, P.L., Sekhar, J.C., Kumar, P. & Suby, S.B., 2012, Use of plant leaf powder for the
243 management of *Sitophilus oryzae* (Coleoptera: Curculionidae) in maize. *Indian J. Plant Prot.*
244 40(3):187-190

245 Trematerra, P., Ianiro, R., Athanassiou, C.G. & Kavallieratos, N.G., 2015, Behavioral interactions
246 between *Sitophilus zeamais* and *Tribolium castaneum*: the first colonizer matters. *J. Pest*
247 *Sci.* 88:573–581. <https://doi.org/10.1007/s10340-014-0633-z>


248 Trematerra, P., Sciarreta, A. & Tamasi, E., 2000, Behavioural responses of *Oryzaephilus*
249 *surinamensis*, *Tribolium castaneum* and *Tribolium confusum* to naturally and artificially
250 damaged *durum* wheat kernels. *Entomol. Exp. Appl.* 94:195-200.
251 <https://doi.org/10.1023/A:1003929810978>

252 Vendl, T., Shah, J. A., Aulicky, R., & Stejskal, V., 2022, Effect of grain excavation damages by
253 *Sitophilus granarius* on the efficacy of grain protectant insecticides against *Cryptolestes*
254 *ferrugineus* and *Tribolium castaneum*. *J. Stored Prod. Res.* 99: 102022.
255 <https://doi.org/10.1016/j.jspr.2022.102022>

256 Sakka, M. K., Terzis, G., & Athanassiou, C. G., 2023, Competition between two species of the
257 genus *Sitophilus* (Coleoptera: Curculionidae) on wheat and barley. *Appl. Sci.*, 13(21), 11872.
258 <https://doi.org/10.3390/app132111872>

*without any wheat grain powder or whole wheat grains

261

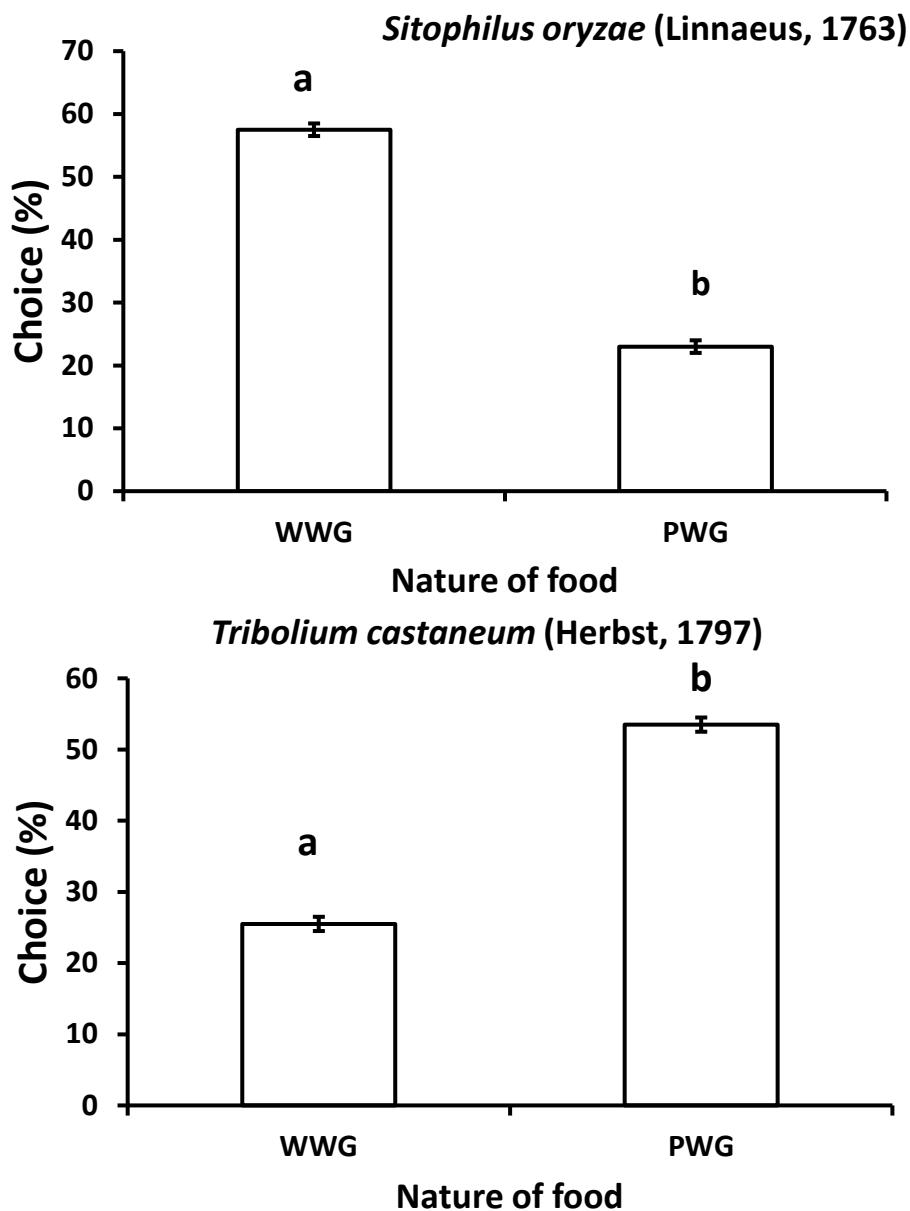
262 **Figure 2.** Photographs: A. *Tribolium castaneum*: a. dorsal and b. ventral view; B. *Sitophilus*
 263 *oryzae*: a. ventral and b. dorsal view; C. old, moist and grayish insect-infested grain powder with
 264 foul smell (a), dry uninfested grain powder without foul smell; D. T-tube apparatus.

265

266

267

268


269

270

271

272

273

274 **Figure 3.** Average percentage of two test insects' choice (% \pm SE) towards WWG and PWG
 275 recorded through T-tube apparatus after 5 hours of experiment. *Each mean is based on three
 276 replicates. Means with dissimilar letter are significantly different at $P = 0.05$. WWG: Whole Wheat
 277 Grains (Uninfested); PWG: Powder of Wheat Grains (Infested).

278

279