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Abstract. Understanding global climate change patterns and high-risk areas is vital for effective monitoring and forecasting. This study
focuses on the assessment of Sea Surface Temperature (SST), a critical factor in climate dynamics, particularly in the delicate Indian Ocean
region, which significantly influences the global climate system. We analyze the spatial and temporal patterns of SST from August 2002 to
April 2020, encompassing the Arabian Sea to the central Indian Ocean. Utilizing MODIS Aqua Monthly SST data from the Ocean Color
platform, we examine seasonal, annual, and intra-annual SST variations. Our analysis includes evaluating anomalies, standard anomalies,
coefficients of variation, and time series, employing seasonal autoregressive integrated moving average (SARIMA) modeling for short-term
forecasting. Results indicate an overall upward trend in SST, characterized by a bi-modal pattern annually and notable variations in monthly
averages. The SARIMA model has effectively predicted SST values up to April 2023. This research addresses five primary concerns: estimating
spatio-temporal SST patterns in the Indian Ocean, analyzing normal and standardized anomalies, assessing monthly and yearly variations,
applying SARIMA for SST prediction, and detecting climate change signatures through decadal rising patterns. These findings highlight the
value of satellite data for monitoring marine climate and supporting decisions in environmental management and fisheries. Regional SST
analysis is key to understanding local warming and mitigating ecological risks.

Keywords: Ocean remote sensing, SST, Indian Ocean climate, Ocean color SST, Inter-annual variability.

1. Introduction interaction with the climate (Embury et al., 2024). Sea surface

temperature (SST) is an important character for analyzing

Sea surface temperature provides vital information on marine ecology and global climate. Ocean conditions and
the global climate system. Since oceans cover 71% of hydro-climate variability could be assessed with long-term
Earth’s surface, researchers monitor SST to understand its ~ SST data, as noted by (Khan et al.,2015). This information is
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notable for the prediction of climate and its variation. It has
adirectimpact on ocean biology and species distribution. SST
also acts as an indicator for monitoring and observing marine
disasters (Kilpatrick et al., 2015). Sea surface temperature
(SST) is deemed as one of the important oceanographic
parameters in climate and ocean studies, as observed by
(Rayner et al., 2003). It is considered a vital climate variable,
because it influences many physical, chemical, and biological
properties of oceans and is an effective indicator of variances
in marine ecosystems (McWilliams et al., 2005). The SST
spatial circulation globally is valuable in the area of warm
fronts, ebb and flow frameworks in the seas, and the trading
of warm vitality between the sea and the atmosphere, as
stated by (Saeedi et al., 2019). SST is a crucial parameter
in weather prediction and atmospheric model simulations
and is also important for the study of marine ecosystems
(Karagali et al., 2012).

Global warming correlated with anthropogenic climate
change results in both increased mean values of SST and
changes in thermal atmospheric processes that affect ocean
circulations (Ji et al., 2018). It also influences the physiology,
behavior, and demographic aspects of organisms, altering
size, structure, range of distribution, and abundance of
populations, consequently producing changes in the trophic
programs and the community functions of ecosystems
(Beaugrand, 2004). Changes in SST lead to alterations in
marine biological processes, from individuals to ecosystems,
at local to global scales, affecting ecosystem services
(Osborne et al., 2020). The ocean plays a fundamental role
in moderating climate change by serving as a major heat
and carbon sink (Pastor et al., 2019). The global ocean is
already experiencing notable influences of climate change
and its accompanying effects (Hill, 2020). These changes
involve air and water temperature warming, seasonal shifts
in species, coral bleaching, and other significant ecological
impacts (Choi et al., 2019). Furthermore, we can expect more
extreme weather events (droughts, floods, storms), which
will impact both habitats and species (Harrison et al., 2017).

Remote sensing technologies provide exceptional
services, including regional-level resource mapping with
temporal coverage. With GIS tools, remotely sensed data
has been integrated for precise scientific measurement
and modeling (Minnett et al.,, 2019). The world is now
witnessing phenomena through geo-informatics that were
previously impossible to observe. The acquisition of SST
data began in the late 1980s using infrared bands. Since
then, satellite images have become invaluable for temporal
and spatial assessments of SST. NASAs Terra and Aqua
satellites, launched with the MODerate-resolution Imaging
Spectroradiometer (MODIS) in 1999 and 2002, respectively,
have played a significant role in this effort (Savtchenko et al.,
2004).SST from MODIS has provided consistent time-series

data with global coverage and various temporal resolutions
(Minnett et al., 2004). MODIS calculations are of higher
value than other remotely sensed data for ocean information
extraction (Salomonson et al., 2002). For SST measurement,
multispectral thermal IR measurements from space use
emitted radiances at wavelengths such as mid-wave (3-6 um)
and thermal IR regions of the electromagnetic spectrum.
To minimize atmospheric noise (from gases and particles
like H,O and CO,), these radiance values are converted to
Brightness Temperature (Tb). Atmospheric correction is
then applied for accurate assessments. For MODIS data, SST
is presented in product form (Quan-jun, 2009; Gladkova et
al.,, 2016).

The goal of this study was to create SST spatial patterns
and temporal variations in the Northern Indian Ocean by
using MODIS data from 2002 to 2020. This information is
particularly important for the conservation and supervision
of marine resources of the region. Therefore, this study is
to construct two decadal SST dynamics to advance our
perception of climate and its variability and possible impacts
on ocean ecosystems through Time series and trend analysis.
The Adopted methodology is not new but significant in
terms of regional coverage and duration.

2. Materials and Methods
2.1. Study area

The study area is a part of Indian Ocean bordered with India,
Pakistan and Arabian Peninsula in the east, north and west
respectively with the extent ranging from 5°S to 31°N in
latitude and, 30 to 83° E in longitude (Figure 1). The region of
interest also covers the Gulf of Persia, Oman and Aden along
with Red Sea, and Gulf of Kutch. Some significant deep-sea
ports are also located in this region (Malik, 2012).

2.2. MODIS Data

MODIS datasets can be accessed from several platforms one
of that is Ocean Color (He et al.,2009). MODIS Aqua dataset
was downloaded from the ocean color website from Ocean
Biology Processing Group (OBPG) at NASAs Goddard Space
Flight Center (https://oceancolor.gsfc.nasa.gov) for 19 years
(August, 2002 - April, 2020). The MODIS Aqua contains
SST level 3 with a 4 km daytime product resolution. The
geophysical variable information of SST has been extracted
using this MODIS Aqua dataset which has been projected on
a spatial grid over a defined period. Each file holds an equi-
rectangular projection and registration of structured square
cells grids based on a grid of floating-point values for a single
parameter has been plotted as a preprocessing step. NASA-
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Figure 1. Study area

standard processing and distribution of the SST products
from the MODIS sensors are conducted, using software
developed by the Ocean Biology Processing Group (OBPG)
(Nandkeolyar et al, 2013; Raitsos et al, 2013). The details of
the stepwise process has been illustrated in Figure 2.

2.3. Research Design

The MODIS based SST images were processed to develop
a time series database of 213 months from August 2002 to
April 2020. The level 3 data is geometrically corrected to
clear the data from orbit overlap and swath distortions. The
dataset was acquired in in NetCDF format. Detailed statistics

for these data sets have been evaluated and analyzed after
converting into GeoTiff in ArcGIS interface. The R program
has been utilized for seasonal, annual and intra-annual
analysis and also employed for time series ARIMA model,
etc.

2.3.1. Temperature anomaly and Standardize
anomaly

Climate change analysis mostly utilizes temperature anom-
alies (Nandkeolyar et al., 2013), which is calculated through
long-term temperature average as a reference value with
current temperature values. The anomaly identifies the rate
of change or difference between the expected and the cur-
rently values. A hotter or cooler temperature than the normal
average would be expressed in terms of negative or positive
anomalies respectively (Equation 1).

a;=x;- | (1)
where,
a; = Anomalies
x;= Monthly temperature
1 = Mean Monthly temperature.

Normalized anomalies, likewise alluded to as standard-
ized anomaly is calculated by dividing the anomalies with
standard deviation values of the climatic variables (Equation
2). Standardized anomaly generally provides more informa-
tion about the magnitude of the change as the influences of
dispersion have been removed.
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Figure 2. Flow chart of the study
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where:

a? = Standardized Anomalies
X;= Monthly temperature

p = Mean Monthly temperature

o = Standard Deviation of all data.

This removes any dispersion in the data which makes
comparisons between different variables more appropriate.

2.3.2. Coeflicient of Variation

The coefficient of variation, also recognized as relative
standard deviation, is a standardized measure of the
dispersion of a probability distribution or frequency
distribution. It is frequently communicated as a percentage
and is characterized as the ratio of the standard deviation
to the mean (Nandkeolyar et al., 2013). The coefficient of
variation (CV) provides the scale of the monthly, seasonal,
and inter annual variability between temperature records for
the specified time period.

CV = coefficient of variation CV =2 (3)
where: !
u= Mean Monthly temperature
o = Standard Deviation of all data.

2.3.3. Time series and ARIMA Modelling
for forecasting
Time series modeling has proved its usefulness in various
fields including meteorology, and climate change studies.
It employs useful information from historical datasets and
extracts relevant data to develop a model to recreate different
cycles (Ye et al., 2013).

Among the statistical models available, considerable
interests lies with linear and multiple regression models,
trend modeling, averages, probability distributions, analysis
of canonical correlations, ARIMA, SARIMA, and Principal
Component Analysis (PCA) (Goswami et al.,2017). ARIMA
(Auto Regressive Integrated Moving Average) or Seasonal
Autoregressive Integrated Moving Average — SARIMA
models are the most successful linear model for forecasting
a seasonal time series. An Auto Regressive Integrated Moving
Average -ARIMA is a descriptive examination model
that utilizes time dependent information to either better
comprehend the informational index or to anticipate future
patterns. The ARIMA methodology has been widely used for
modeling and predicting the behavior of temporal series of
observations for various variables (Chen et al., 2018).

Over the last 30 years, ARIMA models have gained
popularity for forecasting (Box & Jenkins, 1970), particularly
in climatological and environmental studies (Putra et al.,

2019). ARIMA works by objectively constructing a model based
on past time series observations to predict future values of the
series. It involves three control constants (pattern, occasion, and
unpredictable impact) that regulate the effects of time division
over a specific period (Shehhi & Kaya, 2020). ARIMA has been
employed for assessing short-term forecasts in areas such as
fisheries and forestry, as well as predicting droughts, forest fires, and
the prognosis of tree diseases while observing ocean and coastal
changes (Alonso et al., 2019).

The SARIMA model of Box and Jenkins is generally
denoted as ARIMA (p,d, q) x (P, D, Q) where the commonly
used three types of parameters (p, d, q) represents the
autoregressive (p); differencing (d) and moving average
parameters (q) (Mishra and Desai, 2005). In the standard
notation “p—d-q”, a model described as (0, 1, 2) means that
it contains 0 (zero) autoregressive (p) parameters and 2
moving average (q) parameters which were computed for
the series after it was differenced once (d = 1).

2.3.4. Seasonal Autoregressive Integrated Moving
Average (SARIMA) Model

Box etal. (1994), present a general multiplicative (SARIMA)
model, as an extension of ARIMA (Box et al., 1994 ), which
deals with both seasonal and non-seasonal time series.
The SARIMA model is consists of two parts such as (p, d,
q) and (P, D, Q) represent non-seasonal and seasonal part
respectively. Two separate equations of the non-seasonal and
seasonal part are as follows (Chen et al., 2009).

v, (BIV'z =y,(B), )
$,(BIWVz, =Dy (), (5)

From equation (4 & 5), the description of parameters are
described in the below paragraph.

According to Mishra and Desai, and Shaukat et al.
(Mishra & Desai, 2005; Shaukat et al., 2020), the general
SARIMA model can be defined as:

v, (B, (BIVV ]z, =7,(B)P,(B)d, (6)

where p and g indicate parameters of the non-seasonal part,
while P and Q indicate parameters of the seasonal part.
Further, d is differencing parameter and associated with
non-seasonal as well as D is associated with seasonal part.
The notation s indicates the length of a season, z; is current
value and d; stands for a set of uncorrelated random shocks.
Moreover, the y () and y, (f) are non-seasonal AR and
MA operators, whereas the ¢ (3*) and @, (") are seasonal
operators respectively. Likewise, the notation V¢ and y?
are non-seasonal and seasonal differencing operator. The
construction of a stochastic model includes three steps such
as identification, parameter estimation and diagnostic check.
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The detail about model development is described in results
section. The forecast package has been used on R version
3.6.1 for the time series modeling. We used (1,0,0) (2,1,1)12
model for SST forecasting.

3. Results
3.1. Statistical and climatology results

The minimum (Min), maximum (Max), mean, and standard
deviation (SD) values of SST based on descriptive statistics
were calculated for all 213 months images. We also practiced
averages for descriptive statistics including minimum,
maximum, MEAN, and STANDARD DEVIATION values
of SST for each month (Table 1). Then, the “Mean SST” data
sets for each month have been used for further analysis and
also month/year wise SST monthly Mean graphical data in
Figure 3 and time series in Figure S1 (S means Supplementary
material). By using GIS, we summed all raster data sets
month-wise that attests to the monthly spatial distribution
of Sea surface temperature climatology from August 2002 -
April 2020 (Figure 4).

Table S1 shows mean monthly values of SST in the study
area. Table S2 highlights the warmer months during the
study period from August 2002 to March 2022. May and
September had the highest occurrences of warmer years,
with four instances each, indicating these months typically
experience elevated temperatures. June also showed notable
warmth with three occurrences, while January, October, and

Mean SST for each month Year wise
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Table 1. Descriptive statistics (Averages Monthly Indices)
retrieved from the MODIS SST monthly images 2002 to 2020

Months Min Max Mean SD
January 0.122222 39.51028 27.18046 |1.961827778
February 3.266667 39.66472 27.34973 2.1387
March 7.807778 39.67361 28.35566 |2.075183333
April 6.545 39.75861 29.56817 |1.660683333
May 4.877353 39.84147 29.69501 |1.136258824
June 7.102059 39.86765 28.69206 |1.501535294
July 10.38412 39.79706 27.71114 |2.009970588
August 12.79528 39.80778 27.75962 |2.114461111
September 11.1775 39.87778 28.28003 | 1.744538889
October 7.945278 39.74444 28.99306 |1.076572222
November 3.864444 39.65778 28.78402 |1.025894444
December 1.460556 39.45583 27.89507 | 1.573544444
Grand Total | 6.445688 39.72142 28.35533 | 1.668264188

November had fewer instances, suggesting they are generally
cooler. The data reflects variability in warmth across different
months, which could Table S2 identifies the hotter months
with maximum temperatures nearing 40°C and provides
details on their frequency and average temperatures. April
and May emerge as the hottest months, each occurring 18
times and consistently showing mean temperatures above
29°C from 2003 to 2021.June also recorded high temperatures
in four years (2003, 2010, 2019, and 2020). October had
nine instances of extreme heat, while March, September,
and November had fewer occurrences. Overall, the data
indicates that 22.45% of the months analyzed experienced

Figure 3. Monthly Mean Temperature
°C Aug 2002 to March 2022

— UNE

December
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Figure 4. Inter-annual spatial distribution of sea surface temperature climatology during August 2002 — April 2020

warmer temperatures above 29°C, reflecting a significant
trend towards increasing heat during this period.

Table S3 identifies the hotter months with maximum
temperatures nearing 40°C and provides details on their
frequency and average temperatures. April and May
emerge as the hottest months, each occurring 18 times
and consistently showing mean temperatures above 29°C
from 2003 to 2021. June also recorded high temperatures
in four years (2003, 2010, 2019, and 2020). October had
nine instances of extreme heat, while March, September,
and November had fewer occurrences. Overall, the data
indicates that 22.45% of the months analyzed experienced
warmer temperatures above 29°C, reflecting a significant
trend towards increasing heat during this period.

3.2. Seasonal and Inter-Annual Results

Figure S2 displays inter-annual mean temperatures in a box
plot format, highlighting evident seasonal variations with
bimodal peaks. The monthly variation is characterized by
a first peak in April-May and a second, slightly lower peak
in October-November. Figure S3 illustrates yearly variations,
showing minimum, maximum, mean, and standard deviation
of SST from 2002 to 2022. Figure 5 shows the seasonal
averages of spatially-averaged mean SST in the study area for
four distinct periods: (a) December to February, (b) March

to May, (c) June to August, and (d) September to November,
covering the years 2002 to 2020. Figure 6 provides the annual
average SST for each year during the study period, while
Figure 7 displays the composite average SST over nearly 20
years, from August 2002 to April 2020.

(2) (b)

Temperature °C

39.98 15.36

Figure 5. The inter-annual variation of spatially averaged Mean SST
((a) Dec to Feb (b)March to May (c) June to August (d) September
to November from 2002 to 2020)
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Figure 6. Year-wise annual averaged of SST during August 2002-April 2020
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Figure 7. Spatial distribution of almost 20 years composite averaged
SST during August 2002-April 2020
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3.3.SST Anomaly and SST Normalized Anomaly

Figure 8 displays the SST anomaly during the study period.
Overall, anomaly and recent trends show positive and
increasing values. As we know that positive and rising SST
anomaly indicates that the noted temperature is edging up
and warmer than the earlier SST data. Figure 9 exhibits
a standardized anomaly and mean temperature from 2002
to 2022. A standardized anomaly is thought more reliable
for variation or anomaly studies. This also on rising trends
implies a slight remodeling in SST means or climate change.
Figures S4, S5 and S6 display Monthly Comparison of SST
Anomaly and SST Normalized Anomaly from January
to April, May to August, and September to December,
respectively.

Figure 8. SST
Anomaly during
2002 to 2020

20062007 2908 2009 201f] pO11 2(12 2413 2014 201520162017 2018 2019
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Figure 9. Standardize anomaly
and mean temperature during
2002 to 2020
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3.4. Coefficient of Variation of Annual
and Seasonal SST

The coeflicient of variation (CV) illustrates the magnitude of
both monthly and inter-annual variability in Tables 2 and 3.
The CV values for the month-wise and year-wise SST in the
North Indian Ocean indicate significant variation among the
mean SSTs of the study area. Notably, the most considerable
variation in annual SST occurred in June, with a CV of
1.30%, followed by December (CV of 1.18%) and April (CV
of 1.17%) as shown in Table 2.

In intra-annual or yearly variability the year 2020
exhibited the highest mean SST variability, with a CV of
3.72%. This was followed by 2015 (CV of 3.43%) and 2018
(CV of 3.39%), as detailed in Table 3. Overall, these variation
metrics underscore the fluctuations in SST and may signify
broader trends related to climate change.

Table 2. Month Wise coeflicient of variation (CV)

Months | Mean Temp |Standard Deviation (CV)
January 27.18 0.3 1.09
February 27.35 0.28 1.01
March 28.36 0.33 1.17
April 29.57 0.35 1.17
May 29.7 0.34 1.15
June 28.69 0.38 1.31
July 27.71 0.28 1.01
August 27.76 0.31 1.11
September 28.28 0.27 0.94
October 28.99 0.31 1.07
November 28.78 0.25 0.87
December 27.9 0.33 1.18

24

e [\lean Temperature

Table 3. Month Wise coeflicient of variation (CV)

Year | Mean Temp | Standard Deviation (CV)
2002 28.33 0.68 2.38
2003 28.35 0.82 2.9
2004 28.15 0.77 2.74
2005 28.15 0.89 3.15
2006 28.24 0.87 3.1
2007 28.33 0.81 2.87
2008 28.05 0.75 2.68
2009 28.38 0.76 2.69
2010 28.49 0.87 3.05
2011 28.21 0.88 3.12
2012 28.25 0.82 291
2013 28.23 0.78 2.76
2014 28.3 0.92 3.24
2015 28.68 0.99 3.44
2016 28.48 0.88 3.08
2017 28.48 0.86 3.01
2018 28.39 0.96 3.4
2019 28.72 0.91 3.16
2020 28.5711 1.06488 3.727122

3.5. SARIMA Forecasting with R

The average temperature time series from August 2002 to
April 2020 has been used for the forecasting until April 2023
(Figure S7).In this regard, the time series plot of temperature
is made for visualizing the time series components that are
depicted in Figure S6 with R coding.

In the identification stage, the normality assumption
of the temperature series is verified by the Shapiro Wilk
(SW) test. Then, the Anderson Darling (AD) test is applied
to check the stationary assumption of the time series.
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Initially, the parameters of stochastic model are estimated by
visualization of Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plot as described by Mishra
and Desai (Mishra & Desai, 2005). Numerous parameter
combinations were used to check the appropriateness of
stochastic models. Their appropriateness is confirmed
by the lowest value of Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Mean Absolute percentage
Error (MAPE). Among all of appropriate stochastic models,
the selection criteria for the best model is based on the
lowest value of Akaike Information Criterion (AIC). The
parameters of best-fitted model are estimated by Maximum
Likelihood Estimation (MLE). The description of model
fitting is described in Table 4.

Table 4 summarizes the results of a Seasonal Autore-
gressive Integrated Moving Average (SARIMA) model ap-
plied to temperature data, specifically the model SARIMA
(1,0,0)(2,1,1)12SARIMA(1,0,0)(2,1,1)_{12}SARIMA(1,0,0)
(2,1,1)12. The model achieved an Akaike Information Cri-
terion (AIC) of -3.39, indicating a good fit, with a Mean
Absolute Error (MAE) of 0.168067, a Root Mean Squared
Error (RMSE) of 0.219935,and a Mean Absolute Percentage
Error (MAPE) of 0.592403. These metrics suggest that the
model accurately predicts temperature values. The Ljung-
Box test statistic of 20, with a P-value of 0.2122, indicates no
significant autocorrelation in the residuals, suggesting that
the model effectively captures the underlying patterns in the
data. Table 5 presents the estimated parameters of the SA-
RIMA model, highlighting their statistical significance. The
first parameter estimate of 0.6930 is statistically significant
(P-value = 0.00000), indicating a strong positive effect on
temperature predictions. The second parameter (-0.1822)
and the third parameter (-0.1561) are not statistically signif-
icant, with P-values of 0.120879 and 0.134266, respectively.
Conversely, the fourth parameter (-0.6866) is also highly
significant (P-value = 0.00000), indicating its strong influ-
ence on the model. Overall, these results suggest that while
some parameters significantly affect temperature, others do
not contribute meaningfully to the model’s predictive power.

Standard errors that are related to parameters are usually
small as compared to parameter values are the clue of an
estimated parameter are statistically significant and these
parameters should be in the model (Shaukat et al., 2020 ;
Misra & Desai, 2005). After this, the next step is to examine

Table 4. Model Summary

Table 5. Summary of SARIMA parameters

Parameter | Estimate Standard t statistic P-value
Error

l//l 0.6930 0.0516 13.42918 0.00000

¢1 -0.1822 0.1174 -1.5511 0.120879

¢2 -0.1561 0.1042 -1.49749 0.134266

(Dl -0.6866 0.1124 -6.11065 0.00000

the residuals of best-fitted model. The residuals of best-fitted
model should be uncorrelated and normally distributed.
Therefore, the Ljung-Box test is applied to verify the absence
of autocorrelation in the residuals. From Table 4, the p-value
(0.2122) of Ljung-Box test is greater than commonly used
level of significance (0.05). It is obvious indication of
absence of autocorrelation and independently distributed.
Further, the reliability of best-fitted model is confirmed by
the visualization of ACE histogram and time series plot of
residuals that can be seen in Figure 10.

From Figure 10 the time plot of residuals shows that the
mean around the zero and equal variance over time. It can
be observed from ACF plot that all spikes are within the limit
which is an indication of white noise residuals. Moreover,
the histogram suggests that the residuals follow a normal
distribution. All required conditions are verified by residuals
of the best-fitted SARIMA model. Therefore, the forecast
from the SARIMA model for 36 months (blue line) along
with a 95% confidence level are shown in Figure 11.

Table 6 provides the temperature forecast generated by
the SARIMA model for the period from May 2020 to April
2023, including the predicted values alongside the 95%
Upper Confidence Level (UCL) and Lower Confidence
Level (LCL). The forecast indicates monthly temperature
values, demonstrating fluctuations throughout the years.
For instance, the forecast for March 2021 is 28.51°C, with
a confidence interval ranging from 27.89°C to 29.12°C,
reflecting a relatively stable prediction. The highest
forecasted temperature occurs in May 2022, with a predicted
temperature of 30.01°C, and the UCL is 30.63°C, suggesting
a peak in temperature during that month.

Variable Model | Parameter | AIC MAE RMSE MAPE Ljung-Box Test
Statistic df P-value
Temperature | SARIMA (2(11’01’?1)2 -3.39 0.168067 0.219935 0.592403 0.592403 20 0.2122
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Figure 11. Temperature Forecast plot

The forecasted temperatures indicate a general trend
of variability, with higher temperatures in late spring
and early summer months, such as April and May, and
cooler temperatures during winter months like January
and February. For example, the forecast for April 2023 is
29.82°C, with a confidence interval between 29.19°C and

2020
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30.44°C, suggesting consistency in elevated temperatures
as the season’s transition. The inclusion of UCL and LCL
provides a statistical confidence range, offering insights
into the expected range of temperature values, which is
crucial for understanding potential climate variability and
its implications.
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Table 6. Represents the temperature forecast from May 2020 to
April 2023 with 95% Upper Confidence Level (UCL) and Lower
Confidence Level (LCL)

Year | Month Forecast LCL UCL
2021 |Mar 28.50751 27.89235 29.12267
2021 |Apr 29.75882 29.14361 30.37403
2021 |May 29.96369 29.3452 30.58219
2021 |Jun 28.73232 28.11225 29.35239
2021 |Jul 27.80666 27.18584 28.42748
2021 |Aug 27.83943 27.21825 28.46061
2021 |Sep 28.45541 27.83405 29.07676
2021 | Oct 29.18298 28.56154 29.80442
2021 |Nov 28.92857 28.30709 29.55005
2021 | Dec 28.02775 27.40626 28.64925
2022 |Jan 27.27678 26.65527 27.89828
2022 |Feb 27.47647 26.85496 28.09798
2022 |Mar 28.48022 27.85871 29.10174
2022 | Apr 29.77232 29.1508 30.39383
2022 | May 30.00955 29.38515 30.63395
2022 |Jun 28.81861 28.19283 29.44438
2022 |Jul 27.8742 27.24776 28.50064
2022 |Aug 27.89695 27.2702 28.52371
2022 |Sep 28.48138 27.85447 29.10829
2022 |Oct 29.25011 28.62313 29.8771
2022 |Nov 28.96583 28.33881 29.59285
2022 | Dec 28.08854 27.4615 28.71558
2023 |Jan 27.36421 26.73716 27.99125
2023 |Feb 27.52128 26.89423 28.14833
2023 |Mar 28.50288 27.87583 29.12993
2023 | Apr 29.81667 29.18962 30.44372

4, Discussion

Ocean variables play vital roles in global weather and
climate systems. Sea surface temperature (SST) is especially
significant for oceanic processes and marine life. Changes in
SST patterns and seasonal variations affect the sustainability
of marine ecosystems, including coral reefs, which are key
indicators for assessing climate change impacts. SST has
infinite significant applications: it superintends vitality
trade between the world’s environment and seas, controlling
long haul atmosphere, typhoon track and power, and
nearby climate. Sea surface temperature (SST) indicates the
highest mixed layer of the sea, generally just barely a few
several meters thick. Information on past SST fluctuation
is meaningful as it lets us see how the sea acts amid
environmental change; it allows us to approve mathematical
climate models and evaluate the significance of current

climate change (Belkin & O’Reilly, 2009). Temperature
affects a range of thermodynamic, metabolic, and biological
processes that leave their signature in the geological record
(Zachos et al., 2003). Worldwide mean SST has ascended
from decade-to-decade since the 1970s, with implications
for worldwide climate examples and maritime biological
systems (Meier et al., 2019). Most striking is the expanding
recurrence of mass blanching occasions of coral reefs.
Ongoing exploration introduces that sea heat has risen
drastically over the previous decade, hinting the potential for
warming water in the Indian Ocean to influence the Indian
rainstorm, one of the most significant atmospheric designs
on the planet. The global average SST rise of about 0.7°C over
the same period. Most of this temperature rise is associated
with anthropogenic emissions. SST is a central atmosphere
variable for understanding the atmosphere framework and
assessing the succeeding climatic change (Elepathage et al.,
2020; Roxy et al., 2020).

There are many interpretations for SST variation, one of
the prominent reasons is monsoon annual cycle within that
the wind systems uniquely reverse its direction, also coastal
and local breeze at a smaller scale. The Indian monsoon
holds an annual cycle within which the winds completely
reverse their direction, and thus, we may address the
summer and winter monsoon (Graham & Barnett, 1987;
Gnanaseelan et al., 2017). These monsoons are comparable
to the coastal circulation or breeze but on a much larger
scale. During summer, the Indian subcontinent warms up,
makes incredible convection, and huge scope wind current
inrushes to supplant the rising air masses. This is known
as the Southwest Monsoon, characterized by winds rushing
from the southwest, over the Arabian Sea. These breezes get
enormous sums of dampness that is abandoned over the land
as covering downpours. During winter, notwithstanding,
the continent cools down faster than the Ocean, and
thus the convection occurs over the warmer ocean. The
replacement proceeds from the northeast and is known
as the Northeast Monsoon (Zachos et al., 2003; Roxy et al,
2020). The circulation in the North Indian Ocean is peculiar
in many ways, especially it improves with the season. Both,
the southwest and the northeast, monsoons have a deep-felt
effect on the ocean circulation, driving the extraordinary
Somali Current (Hu & Fedorov, 2019). El Nifio Southern
Oscillation (ENSO) is a known linked for ocean-atmosphere
model of intra-annual variability with a periodicity of
about 4-7 years. El Nifo is the positive phase of ENSO,
characterized by irregular surface warming of eastern and
central equatorial Pacific, lasting for several months. The
negative phase with cooler (than normal) SST in the eastern
equatorial Pacific is called La Nifia. There are numerous
indices to quantify the strength, nature, and duration of El
Nifio based on the anomalous SST over different regions
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of eastern and central equatorial Pacific.Indian Ocean SSTs
have a role in developing the surface air temperatures over
the Indian subcontinent that may vary (Kug & Kang, 2006).

Rising ocean temperatures have also occurred in
situations of marine heatwaves in the Indian Ocean.
Oceangoing heatwaves are similar to heat waves over the
land, with periods of remarkably high ocean temperatures
that endure for days to months. Beyond the regional climate,
Indian Ocean warming has global and remote consequences.
The Indian Ocean has contributed to more than 21% of the
global oceanic heat uptake over the last two decades and
presented securely to the temporary slowdown in global
warming from 1998-2013. Warming in the Indian Ocean and
associated deep convection is observed to trigger droughts in
South America and marine heatwaves in the adjacent South
Atlantic (Cheng et al.,2016; Cheng et al.,2017; Pandey et al.,
2024; Wang et al., 2024a; Wang et al., 2024b).

This study advances the understanding of sea surface
temperature (SST) variability by connecting observed
changes in the Indian Ocean to major global climate drivers,
including climate change, El Nifio/La Nifia events, and the
Indian monsoon, supported by relevant data and prior
research. These links provide critical context and highlight the
study’s global relevance. The findings also point to significant
ecological implications, particularly for coral reef health and
ocean circulation, emphasizing the wider environmental
impact of SST trends. The understandings expanded by
this study can inform regional climate adaptation strategies,
support sustainable marine resource management, and
improve short-term forecasting to mitigate risks to coastal
ecosystems and fisheries.

5. Conclusions

Remote sensing originated MODIS SST products have been
successively adopted for assessment of SST dynamics and
short term forecasting. Tis study explains the spatial patterns,
trends, and temporal changes in sea surface temperature for
approximately two decades. The annual SST trend is slightly
on the rise. Inter-annually, May is the hottest month. Bimodal
variation has been seen first in April, May months, and then
in Sep-Oct. The marine climate and its influence on the
ecosystem are an important matter for both environmental
managers and members of the fishing industry, as well as
for the society in general. The results achieved in this study
strengthen the value of satellite data as a tool to study the
spatial and temporal variability of SST in the Indian Ocean.
SST patterns over 20 years highlight the significance of
regional assessments for determining the rate and timing
of warming at local and regional scales and the necessity for
attention in extrapolating regional implications from global

patterns. Moreover, the observed rising trend and forecasts
can support decision-making aimed at reducing risks to
marine and ecological systems.
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