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Abstract. Understanding global climate change patterns and high-risk areas is vital for effective monitoring and forecasting. This study 
focuses on the assessment of Sea Surface Temperature (SST), a critical factor in climate dynamics, particularly in the delicate Indian Ocean 
region, which significantly influences the global climate system. We analyze the spatial and temporal patterns of SST from August 2002 to 
April 2020, encompassing the Arabian Sea to the central Indian Ocean. Utilizing MODIS Aqua Monthly SST data from the Ocean Color 
platform, we examine seasonal, annual, and intra-annual SST variations. Our analysis includes evaluating anomalies, standard anomalies, 
coefficients of variation, and time series, employing seasonal autoregressive integrated moving average (SARIMA) modeling for short-term 
forecasting. Results indicate an overall upward trend in SST, characterized by a bi-modal pattern annually and notable variations in monthly 
averages. The SARIMA model has effectively predicted SST values up to April 2023. This research addresses five primary concerns: estimating 
spatio-temporal SST patterns in the Indian Ocean, analyzing normal and standardized anomalies, assessing monthly and yearly variations, 
applying SARIMA for SST prediction, and detecting climate change signatures through decadal rising patterns. These findings highlight the 
value of satellite data for monitoring marine climate and supporting decisions in environmental management and fisheries. Regional SST 
analysis is key to understanding local warming and mitigating ecological risks.

Keywords: Ocean remote sensing, SST, Indian Ocean climate, Ocean color SST, Inter-annual variability.

1. Introduction

Sea surface temperature provides vital information on 
the global climate system. Since oceans cover 71% of 
Earth’s surface, researchers monitor SST to understand its 

interaction with the climate (Embury et al., 2024). Sea surface 
temperature (SST) is an important character for analyzing 
marine ecology and global climate. Ocean conditions and 
hydro-climate variability could be assessed with long-term 
SST data, as noted by (Khan et al., 2015). This information is 
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notable for the prediction of climate and its variation. It has 
a direct impact on ocean biology and species distribution. SST 
also acts as an indicator for monitoring and observing marine 
disasters (Kilpatrick et al., 2015). Sea surface temperature 
(SST) is deemed as one of the important oceanographic 
parameters in climate and ocean studies, as observed by 
(Rayner et al., 2003). It is considered a vital climate variable, 
because it influences many physical, chemical, and biological 
properties of oceans and is an effective indicator of variances 
in marine ecosystems (McWilliams et al., 2005). The SST 
spatial circulation globally is valuable in the area of warm 
fronts, ebb and flow frameworks in the seas, and the trading 
of warm vitality between the sea and the atmosphere, as 
stated by (Saeedi et al., 2019). SST is a crucial parameter 
in weather prediction and atmospheric model simulations 
and is also important for the study of marine ecosystems 
(Karagali et al., 2012).

Global warming correlated with anthropogenic climate 
change results in both increased mean values of SST and 
changes in thermal atmospheric processes that affect ocean 
circulations (Ji et al., 2018). It also influences the physiology, 
behavior, and demographic aspects of organisms, altering 
size, structure, range of distribution, and abundance of 
populations, consequently producing changes in the trophic 
programs and the community functions of ecosystems 
(Beaugrand, 2004). Changes in SST lead to alterations in 
marine biological processes, from individuals to ecosystems, 
at local to global scales, affecting ecosystem services 
(Osborne et al., 2020). The ocean plays a fundamental role 
in moderating climate change by serving as a major heat 
and carbon sink (Pastor et al., 2019). The global ocean is 
already experiencing notable influences of climate change 
and its accompanying effects (Hill, 2020). These changes 
involve air and water temperature warming, seasonal shifts 
in species, coral bleaching, and other significant ecological 
impacts (Choi et al., 2019). Furthermore, we can expect more 
extreme weather events (droughts, floods, storms), which 
will impact both habitats and species (Harrison et al., 2017).

Remote sensing technologies provide exceptional 
services, including regional-level resource mapping with 
temporal coverage. With GIS tools, remotely sensed data 
has been integrated for precise scientific measurement 
and modeling (Minnett et al., 2019). The world is now 
witnessing phenomena through geo-informatics that were 
previously impossible to observe. The acquisition of SST 
data began in the late 1980s using infrared bands. Since 
then, satellite images have become invaluable for temporal 
and spatial assessments of SST. NASA’s Terra and Aqua 
satellites, launched with the MODerate-resolution Imaging 
Spectroradiometer (MODIS) in 1999 and 2002, respectively, 
have played a significant role in this effort (Savtchenko et al., 
2004). SST from MODIS has provided consistent time-series 

data with global coverage and various temporal resolutions 
(Minnett et al., 2004). MODIS calculations are of higher 
value than other remotely sensed data for ocean information 
extraction (Salomonson et al., 2002). For SST measurement, 
multispectral thermal IR measurements from space use 
emitted radiances at wavelengths such as mid-wave (3–6 μm) 
and thermal IR regions of the electromagnetic spectrum. 
To minimize atmospheric noise (from gases and particles 
like H2O and CO2), these radiance values are converted to 
Brightness Temperature (Tb). Atmospheric correction is 
then applied for accurate assessments. For MODIS data, SST 
is presented in product form (Quan-jun, 2009; Gladkova et 
al., 2016).

The goal of this study was to create SST spatial patterns 
and temporal variations in the Northern Indian Ocean by 
using MODIS data from 2002 to 2020. This information is 
particularly important for the conservation and supervision 
of marine resources of the region. Therefore, this study is 
to construct two decadal SST dynamics to advance our 
perception of climate and its variability and possible impacts 
on ocean ecosystems through Time series and trend analysis. 
The Adopted methodology is not new but significant in 
terms of regional coverage and duration.

2. Materials and Methods

2.1. Study area

The study area is a part of Indian Ocean bordered with India, 
Pakistan and Arabian Peninsula in the east, north and west 
respectively with the extent ranging from 5°S to 31°N in 
latitude and, 30 to 83° E in longitude (Figure 1). The region of 
interest also covers the Gulf of Persia, Oman and Aden along 
with Red Sea, and Gulf of Kutch. Some significant deep-sea 
ports are also located in this region (Malik, 2012).

2.2. MODIS Data

MODIS datasets can be accessed from several platforms one 
of that is Ocean Color (He et al., 2009). MODIS Aqua dataset 
was downloaded from the ocean color website from Ocean 
Biology Processing Group (OBPG) at NASA’s Goddard Space 
Flight Center (https://oceancolor.gsfc.nasa.gov) for 19 years 
(August, 2002 – April, 2020). The MODIS Aqua contains 
SST level 3 with a 4 km daytime product resolution. The 
geophysical variable information of SST has been extracted 
using this MODIS Aqua dataset which has been projected on 
a spatial grid over a defined period. Each file holds an equi-
rectangular projection and registration of structured square 
cells grids based on a grid of floating-point values for a single 
parameter has been plotted as a preprocessing step. NASA-
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standard processing and distribution of the SST products 
from the MODIS sensors are conducted, using software 
developed by the Ocean Biology Processing Group (OBPG) 
(Nandkeolyar et al, 2013; Raitsos et al, 2013). The details of 
the stepwise process has been illustrated in Figure 2.

2.3. Research Design

The MODIS based SST images were processed to develop 
a time series database of 213 months from August 2002 to 
April 2020. The level 3 data is geometrically corrected to 
clear the data from orbit overlap and swath distortions. The 
dataset was acquired in in NetCDF format. Detailed statistics 

for these data sets have been evaluated and analyzed after 
converting into GeoTiff in ArcGIS interface. The R program 
has been utilized for seasonal, annual and intra-annual 
analysis and also employed for time series ARIMA model, 
etc.

2.3.1. Temperature anomaly and Standardize  
anomaly

Climate change analysis mostly utilizes temperature anom-
alies (Nandkeolyar et al., 2013), which is calculated through 
long-term temperature average as a  reference value with 
current temperature values. The anomaly identifies the rate 
of change or difference between the expected and the cur-
rently values. A hotter or cooler temperature than the normal 
average would be expressed in terms of negative or positive 
anomalies respectively (Equation 1).

                                        ai = xi – µ	 (1)
where,
ai = Anomalies
xi = Monthly temperature
µ = Mean Monthly temperature.

Normalized anomalies, likewise alluded to as standard-
ized anomaly is calculated by dividing the anomalies with 
standard deviation values of the climatic variables (Equation 
2). Standardized anomaly generally provides more informa-
tion about the magnitude of the change as the influences of 
dispersion have been removed.

Figure 1. Study area

Figure 2. Flow chart of the study
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					                         (2)

where:
𝑎𝑎𝑖𝑖

𝑛𝑛 =  𝑥𝑥𝑖𝑖−µ
𝜎𝜎= Standardized Anomalies

Xi = Monthly temperature
µ = Mean Monthly temperature
σ = Standard Deviation of all data.

This removes any dispersion in the data which makes 
comparisons between different variables more appropriate.

2.3.2. Coefficient of Variation
The coefficient of variation, also recognized as relative 
standard deviation, is a  standardized measure of the 
dispersion of a  probability distribution or frequency 
distribution. It is frequently communicated as a percentage 
and is characterized as the ratio of the standard deviation 
to the mean (Nandkeolyar et al., 2013). The coefficient of 
variation (CV) provides the scale of the monthly, seasonal, 
and inter annual variability between temperature records for 
the specified time period.

CV = coefficient of variation                                          (3)
where:
µ= Mean Monthly temperature
σ = Standard Deviation of all data.

2.3.3. Time series and ARIMA Modelling  
for forecasting

Time series modeling has proved its usefulness in various 
fields including meteorology, and climate change studies. 
It employs useful information from historical datasets and 
extracts relevant data to develop a model to recreate different 
cycles (Ye et al., 2013).

Among the statistical models available, considerable 
interests lies with linear and multiple regression models, 
trend modeling, averages, probability distributions, analysis 
of canonical correlations, ARIMA, SARIMA, and Principal 
Component Analysis (PCA) (Goswami et al., 2017). ARIMA 
(Auto Regressive Integrated Moving Average) or Seasonal 
Autoregressive Integrated Moving Average – SARIMA 
models are the most successful linear model for forecasting 
a seasonal time series. An Auto Regressive Integrated Moving 
Average -ARIMA is a  descriptive examination model 
that utilizes time dependent information to either better 
comprehend the informational index or to anticipate future 
patterns. The ARIMA methodology has been widely used for 
modeling and predicting the behavior of temporal series of 
observations for various variables (Chen et al., 2018).

Over the last 30 years, ARIMA models have gained 
popularity for forecasting (Box & Jenkins, 1970), particularly 
in climatological and environmental studies (Putra et al., 

CV = σμ

2019). ARIMA works by objectively constructing a model based 
on past time series observations to predict future values of the 
series. It involves three control constants (pattern, occasion, and 
unpredictable impact) that regulate the effects of time division 
over a specific period (Shehhi & Kaya, 2020). ARIMA has been 
employed for assessing short-term forecasts in areas such as 
fisheries and forestry, as well as predicting droughts, forest fires, and 
the prognosis of tree diseases while observing ocean and coastal 
changes (Alonso et al., 2019).

The SARIMA model of Box and Jenkins is generally 
denoted as ARIMA (p, d, q) × (P, D, Q) where the commonly 
used three types of parameters (p, d, q) represents the 
autoregressive (p); differencing (d) and moving average 
parameters (q) (Mishra and Desai, 2005). In the standard 
notation “p–d–q”, a model described as (0, 1, 2) means that 
it contains 0 (zero) autoregressive (p) parameters and 2 
moving average (q) parameters which were computed for 
the series after it was differenced once (d = 1).

2.3.4. Seasonal Autoregressive Integrated Moving 
Average (SARIMA) Model

Box et al. (1994), present a general multiplicative (SARIMA) 
model, as an extension of ARIMA (Box et al., 1994 ), which 
deals with both seasonal and non-seasonal time series. 
The SARIMA model is consists of two parts such as (p, d, 
q) and (P, D, Q) represent non-seasonal and seasonal part 
respectively. Two separate equations of the non-seasonal and 
seasonal part are as follows (Chen et al., 2009).

( ) ( )d
p t q tz dψ β γ β∇ =                                                                                                  (4)

( ) ( )s D s
p s t Q tz dφ β β∇ = Φ

				  
				                                         (5)

From equation (4 & 5), the description of parameters are 
described in the below paragraph.

According to Mishra and Desai, and Shaukat et al. 
(Mishra & Desai, 2005; Shaukat et al., 2020), the general 
SARIMA model can be defined as:

( ) ( ) ( ) ( )s d D s
p p s t q Q tz dψ β φ β γ β β∇ ∇ = Φ                (6)

where p and q indicate parameters of the non-seasonal part, 
while P and Q indicate parameters of the seasonal part. 
Further, d is differencing parameter and associated with 
non-seasonal as well as D is associated with seasonal part. 
The notation s indicates the length of a season, zt is current 
value and di stands for a set of uncorrelated random shocks. 
Moreover, the ( )pψ β  and ( )qγ β  are non-seasonal AR and 
MA operators, whereas the ( )s

pφ β  and ( )s
Q βΦ  are seasonal 

operators respectively. Likewise, the notation d∇  and D
s∇  

are non-seasonal and seasonal differencing operator. The 
construction of a stochastic model includes three steps such 
as identification, parameter estimation and diagnostic check. 

𝑎𝑎𝑖𝑖
𝑛𝑛 =  𝑥𝑥𝑖𝑖−µ

𝜎𝜎
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The detail about model development is described in results 
section. The forecast package has been used on R version 
3.6.1 for the time series modeling. We used (1,0,0) (2,1,1)12 
model for SST forecasting.

3. Results

3.1. Statistical and climatology results

The minimum (Min), maximum (Max), mean, and standard 
deviation (SD) values of SST based on descriptive statistics 
were calculated for all 213 months images. We also practiced 
averages for descriptive statistics including minimum, 
maximum, MEAN, and STANDARD DEVIATION values 
of SST for each month (Table 1). Then, the “Mean SST” data 
sets for each month have been used for further analysis and 
also month/year wise SST monthly Mean graphical data in 
Figure 3 and time series in Figure S1 (S means Supplementary 
material). By using GIS, we summed all raster data sets 
month-wise that attests to the monthly spatial distribution 
of Sea surface temperature climatology from August 2002 – 
April 2020 (Figure 4).

Table S1 shows mean monthly values of SST in the study 
area. Table S2 highlights the warmer months during the 
study period from August 2002 to March 2022. May and 
September had the highest occurrences of warmer years, 
with four instances each, indicating these months typically 
experience elevated temperatures. June also showed notable 
warmth with three occurrences, while January, October, and 

November had fewer instances, suggesting they are generally 
cooler. The data reflects variability in warmth across different 
months, which could Table S2 identifies the hotter months 
with maximum temperatures nearing 40°C and provides 
details on their frequency and average temperatures. April 
and May emerge as the hottest months, each occurring 18 
times and consistently showing mean temperatures above 
29°C from 2003 to 2021. June also recorded high temperatures 
in four years (2003, 2010, 2019, and 2020). October had 
nine instances of extreme heat, while March, September, 
and November had fewer occurrences. Overall, the data 
indicates that 22.45% of the months analyzed experienced 
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Table 1. Descriptive statistics (Averages Monthly Indices) 
retrieved from the MODIS SST monthly images 2002 to 2020

Months Min Max Mean SD
January 0.122222 39.51028 27.18046 1.961827778
February 3.266667 39.66472 27.34973 2.1387
March 7.807778 39.67361 28.35566 2.075183333
April 6.545 39.75861 29.56817 1.660683333
May 4.877353 39.84147 29.69501 1.136258824
June 7.102059 39.86765 28.69206 1.501535294
July 10.38412 39.79706 27.71114 2.009970588
August 12.79528 39.80778 27.75962 2.114461111
September 11.1775 39.87778 28.28003 1.744538889
October 7.945278 39.74444 28.99306 1.076572222
November 3.864444 39.65778 28.78402 1.025894444
December 1.460556 39.45583 27.89507 1.573544444
Grand Total 6.445688 39.72142 28.35533 1.668264188

Figure 3. Monthly Mean Temperature 
°C Aug 2002 to March 2022
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warmer temperatures above 29°C, reflecting a significant 
trend towards increasing heat during this period.

Table S3 identifies the hotter months with maximum 
temperatures nearing 40°C and provides details on their 
frequency and average temperatures. April and May 
emerge as the hottest months, each occurring 18 times 
and consistently showing mean temperatures above 29°C 
from 2003 to 2021. June also recorded high temperatures 
in four years (2003, 2010, 2019, and 2020). October had 
nine instances of extreme heat, while March, September, 
and November had fewer occurrences. Overall, the data 
indicates that 22.45% of the months analyzed experienced 
warmer temperatures above 29°C, reflecting a significant 
trend towards increasing heat during this period.

3.2. Seasonal and Inter-Annual Results

Figure S2 displays inter-annual mean temperatures in a box 
plot format, highlighting evident seasonal variations with 
bimodal peaks. The monthly variation is characterized by 
a first peak in April-May and a second, slightly lower peak 
in October-November. Figure S3 illustrates yearly variations, 
showing minimum, maximum, mean, and standard deviation 
of SST from 2002 to 2022. Figure 5 shows the seasonal 
averages of spatially-averaged mean SST in the study area for 
four distinct periods: (a) December to February, (b) March 

to May, (c) June to August, and (d) September to November, 
covering the years 2002 to 2020. Figure 6 provides the annual 
average SST for each year during the study period, while 
Figure 7 displays the composite average SST over nearly 20 
years, from August 2002 to April 2020.

Figure 4. Inter-annual spatial distribution of sea surface temperature climatology during August 2002 – April 2020

Figure 5. The inter-annual variation of spatially averaged Mean SST 
((a) Dec to Feb (b)March to May (c) June to August (d) September 
to November from 2002 to 2020)
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Figure 6. Year-wise annual averaged of SST during August 2002–April 2020

Figure 7. Spatial distribution of almost 20 years composite averaged 
SST during August 2002–April 2020
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3.3. SST Anomaly and SST Normalized Anomaly

Figure 8 displays the SST anomaly during the study period. 
Overall, anomaly and recent trends show positive and 
increasing values. As we know that positive and rising SST 
anomaly indicates that the noted temperature is edging up 
and warmer than the earlier SST data. Figure 9 exhibits 
a standardized anomaly and mean temperature from 2002 
to 2022. A standardized anomaly is thought more reliable 
for variation or anomaly studies. This also on rising trends 
implies a slight remodeling in SST means or climate change. 
Figures S4, S5 and S6 display Monthly Comparison of SST 
Anomaly and SST Normalized Anomaly from January 
to April, May to August, and September to December, 
respectively.

Figure 8. SST 
Anomaly during 
2002 to 2020
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3.4. Coefficient of Variation of Annual  
and Seasonal SST

The coefficient of variation (CV) illustrates the magnitude of 
both monthly and inter-annual variability in Tables 2 and 3. 
The CV values for the month-wise and year-wise SST in the 
North Indian Ocean indicate significant variation among the 
mean SSTs of the study area. Notably, the most considerable 
variation in annual SST occurred in June, with a  CV of 
1.30%, followed by December (CV of 1.18%) and April (CV 
of 1.17%) as shown in Table 2.

In intra-annual or yearly variability the year 2020 
exhibited the highest mean SST variability, with a CV of 
3.72%. This was followed by 2015 (CV of 3.43%) and 2018 
(CV of 3.39%), as detailed in Table 3. Overall, these variation 
metrics underscore the fluctuations in SST and may signify 
broader trends related to climate change.

Table 2. Month Wise coefficient of variation (CV)

Months Mean Temp Standard Deviation (CV)
January 27.18 0.3 1.09
February 27.35 0.28 1.01
March 28.36 0.33 1.17
April 29.57 0.35 1.17
May 29.7 0.34 1.15
June 28.69 0.38 1.31
July 27.71 0.28 1.01
August 27.76 0.31 1.11
September 28.28 0.27 0.94
October 28.99 0.31 1.07
November 28.78 0.25 0.87
December 27.9 0.33 1.18

Table 3. Month Wise coefficient of variation (CV)

Year Mean Temp Standard Deviation (CV)
2002 28.33 0.68 2.38
2003 28.35 0.82 2.9
2004 28.15 0.77 2.74
2005 28.15 0.89 3.15
2006 28.24 0.87 3.1
2007 28.33 0.81 2.87
2008 28.05 0.75 2.68
2009 28.38 0.76 2.69
2010 28.49 0.87 3.05
2011 28.21 0.88 3.12
2012 28.25 0.82 2.91
2013 28.23 0.78 2.76
2014 28.3 0.92 3.24
2015 28.68 0.99 3.44
2016 28.48 0.88 3.08
2017 28.48 0.86 3.01
2018 28.39 0.96 3.4
2019 28.72 0.91 3.16
2020 28.5711 1.06488 3.727122

3.5. SARIMA Forecasting with R

The average temperature time series from August 2002 to 
April 2020 has been used for the forecasting until April 2023 
(Figure S7). In this regard, the time series plot of temperature 
is made for visualizing the time series components that are 
depicted in Figure S6 with R coding.

In the identification stage, the normality assumption 
of the temperature series is verified by the Shapiro Wilk 
(SW) test. Then, the Anderson Darling (AD) test is applied 
to check the stationary assumption of the time series. 

Figure 9. Standardize anomaly 
and mean temperature during 
2002 to 2020
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Initially, the parameters of stochastic model are estimated by 
visualization of Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) plot as described by Mishra 
and Desai (Mishra & Desai, 2005). Numerous parameter 
combinations were used to check the appropriateness of 
stochastic models. Their appropriateness is confirmed 
by the lowest value of Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE) and Mean Absolute percentage 
Error (MAPE). Among all of appropriate stochastic models, 
the selection criteria for the best model is based on the 
lowest value of Akaike Information Criterion (AIC). The 
parameters of best-fitted model are estimated by Maximum 
Likelihood Estimation (MLE). The description of model 
fitting is described in Table 4.

Table 4 summarizes the results of a Seasonal Autore-
gressive Integrated Moving Average (SARIMA) model ap-
plied to temperature data, specifically the model SARIMA 
(1,0,0)(2,1,1)12SARIMA(1,0,0)(2,1,1)_{12}SARIMA(1,0,0)
(2,1,1)12. The model achieved an Akaike Information Cri-
terion (AIC) of -3.39, indicating a good fit, with a Mean 
Absolute Error (MAE) of 0.168067, a Root Mean Squared 
Error (RMSE) of 0.219935, and a Mean Absolute Percentage 
Error (MAPE) of 0.592403. These metrics suggest that the 
model accurately predicts temperature values. The Ljung-
Box test statistic of 20, with a P-value of 0.2122, indicates no 
significant autocorrelation in the residuals, suggesting that 
the model effectively captures the underlying patterns in the 
data. Table 5 presents the estimated parameters of the SA-
RIMA model, highlighting their statistical significance. The 
first parameter estimate of 0.6930 is statistically significant 
(P-value = 0.00000), indicating a strong positive effect on 
temperature predictions. The second parameter (-0.1822) 
and the third parameter (-0.1561) are not statistically signif-
icant, with P-values of 0.120879 and 0.134266, respectively. 
Conversely, the fourth parameter (-0.6866) is also highly 
significant (P-value = 0.00000), indicating its strong influ-
ence on the model. Overall, these results suggest that while 
some parameters significantly affect temperature, others do 
not contribute meaningfully to the model’s predictive power.

Standard errors that are related to parameters are usually 
small as compared to parameter values are the clue of an 
estimated parameter are statistically significant and these 
parameters should be in the model (Shaukat et al., 2020 ; 
Misra & Desai, 2005). After this, the next step is to examine 

the residuals of best-fitted model. The residuals of best-fitted 
model should be uncorrelated and normally distributed. 
Therefore, the Ljung-Box test is applied to verify the absence 
of autocorrelation in the residuals. From Table 4, the p-value 
(0.2122) of Ljung-Box test is greater than commonly used 
level of significance (0.05). It is obvious indication of 
absence of autocorrelation and independently distributed. 
Further, the reliability of best-fitted model is confirmed by 
the visualization of ACF, histogram and time series plot of 
residuals that can be seen in Figure 10.

From Figure 10 the time plot of residuals shows that the 
mean around the zero and equal variance over time. It can 
be observed from ACF plot that all spikes are within the limit 
which is an indication of white noise residuals. Moreover, 
the histogram suggests that the residuals follow a normal 
distribution. All required conditions are verified by residuals 
of the best-fitted SARIMA model. Therefore, the forecast 
from the SARIMA model for 36 months (blue line) along 
with a 95% confidence level are shown in Figure 11.

Table 6 provides the temperature forecast generated by 
the SARIMA model for the period from May 2020 to April 
2023, including the predicted values alongside the 95% 
Upper Confidence Level (UCL) and Lower Confidence 
Level (LCL). The forecast indicates monthly temperature 
values, demonstrating fluctuations throughout the years. 
For instance, the forecast for March 2021 is 28.51°C, with 
a  confidence interval ranging from 27.89°C to 29.12°C, 
reflecting a  relatively stable prediction. The highest 
forecasted temperature occurs in May 2022, with a predicted 
temperature of 30.01°C, and the UCL is 30.63°C, suggesting 
a peak in temperature during that month.

Table 4. Model Summary

Variable Model Parameter AIC MAE RMSE MAPE Ljung-Box Test
Statistic df P-value

Temperature SARIMA (1,0,0) 
(2,1,1)12 - 3.39 0.168067 0.219935 0.592403 0.592403 20 0.2122

Table 5. Summary of SARIMA parameters

Parameter Estimate Standard 
Error

t statistic P-value

1ψ 0.6930 0.0516 13.42918 0.00000

1φ -0.1822 0.1174 -1.5511 0.120879

2φ -0.1561 0.1042 -1.49749 0.134266

1Φ -0.6866 0.1124 -6.11065 0.00000
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Figure 10. Diagnostic check of SARIMA model

Figure 11. Temperature Forecast plot

The forecasted temperatures indicate a  general trend 
of variability, with higher temperatures in late spring 
and early summer months, such as April and May, and 
cooler temperatures during winter months like January 
and February. For example, the forecast for April 2023 is 
29.82°C, with a confidence interval between 29.19°C and 

30.44°C, suggesting consistency in elevated temperatures 
as the season’s transition. The inclusion of UCL and LCL 
provides a  statistical confidence range, offering insights 
into the expected range of temperature values, which is 
crucial for understanding potential climate variability and 
its implications.
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Table 6. Represents the temperature forecast from May 2020 to 
April 2023 with 95% Upper Confidence Level (UCL) and Lower 
Confidence Level (LCL)

Year Month Forecast LCL UCL
2021 Mar 28.50751 27.89235 29.12267
2021 Apr 29.75882 29.14361 30.37403
2021 May 29.96369 29.3452 30.58219
2021 Jun 28.73232 28.11225 29.35239
2021 Jul 27.80666 27.18584 28.42748
2021 Aug 27.83943 27.21825 28.46061
2021 Sep 28.45541 27.83405 29.07676
2021 Oct 29.18298 28.56154 29.80442
2021 Nov 28.92857 28.30709 29.55005
2021 Dec 28.02775 27.40626 28.64925
2022 Jan 27.27678 26.65527 27.89828
2022 Feb 27.47647 26.85496 28.09798
2022 Mar 28.48022 27.85871 29.10174
2022 Apr 29.77232 29.1508 30.39383
2022 May 30.00955 29.38515 30.63395
2022 Jun 28.81861 28.19283 29.44438
2022 Jul 27.8742 27.24776 28.50064
2022 Aug 27.89695 27.2702 28.52371
2022 Sep 28.48138 27.85447 29.10829
2022 Oct 29.25011 28.62313 29.8771
2022 Nov 28.96583 28.33881 29.59285
2022 Dec 28.08854 27.4615 28.71558
2023 Jan 27.36421 26.73716 27.99125
2023 Feb 27.52128 26.89423 28.14833
2023 Mar 28.50288 27.87583 29.12993
2023 Apr 29.81667 29.18962 30.44372

4. Discussion

Ocean variables play vital roles in global weather and 
climate systems. Sea surface temperature (SST) is especially 
significant for oceanic processes and marine life. Changes in 
SST patterns and seasonal variations affect the sustainability 
of marine ecosystems, including coral reefs, which are key 
indicators for assessing climate change impacts. SST has 
infinite significant applications: it superintends vitality 
trade between the world’s environment and seas, controlling 
long haul atmosphere, typhoon track and power, and 
nearby climate. Sea surface temperature (SST) indicates the 
highest mixed layer of the sea, generally just barely a few 
several meters thick. Information on past SST fluctuation 
is meaningful as it lets us see how the sea acts amid 
environmental change; it allows us to approve mathematical 
climate models and evaluate the significance of current 

climate change (Belkin & O’Reilly, 2009). Temperature 
affects a range of thermodynamic, metabolic, and biological 
processes that leave their signature in the geological record 
(Zachos et al., 2003). Worldwide mean SST has ascended 
from decade-to-decade since the 1970s, with implications 
for worldwide climate examples and maritime biological 
systems (Meier et al., 2019). Most striking is the expanding 
recurrence of mass blanching occasions of coral reefs. 
Ongoing exploration introduces that sea heat has risen 
drastically over the previous decade, hinting the potential for 
warming water in the Indian Ocean to influence the Indian 
rainstorm, one of the most significant atmospheric designs 
on the planet. The global average SST rise of about 0.7°C over 
the same period. Most of this temperature rise is associated 
with anthropogenic emissions. SST is a central atmosphere 
variable for understanding the atmosphere framework and 
assessing the succeeding climatic change (Elepathage et al., 
2020; Roxy et al., 2020).

There are many interpretations for SST variation, one of 
the prominent reasons is monsoon annual cycle within that 
the wind systems uniquely reverse its direction, also coastal 
and local breeze at a  smaller scale. The Indian monsoon 
holds an annual cycle within which the winds completely 
reverse their direction, and thus, we may address the 
summer and winter monsoon (Graham & Barnett, 1987; 
Gnanaseelan et al., 2017). These monsoons are comparable 
to the coastal circulation or breeze but on a much larger 
scale. During summer, the Indian subcontinent warms up, 
makes incredible convection, and huge scope wind current 
inrushes to supplant the rising air masses. This is known 
as the Southwest Monsoon, characterized by winds rushing 
from the southwest, over the Arabian Sea. These breezes get 
enormous sums of dampness that is abandoned over the land 
as covering downpours. During winter, notwithstanding, 
the continent cools down faster than the Ocean, and 
thus the convection occurs over the warmer ocean. The 
replacement proceeds from the northeast and is known 
as the Northeast Monsoon (Zachos et al., 2003; Roxy et al, 
2020). The circulation in the North Indian Ocean is peculiar 
in many ways, especially it improves with the season. Both, 
the southwest and the northeast, monsoons have a deep-felt 
effect on the ocean circulation, driving the extraordinary 
Somali Current (Hu & Fedorov, 2019). El Niño Southern 
Oscillation (ENSO) is a known linked for ocean-atmosphere 
model of intra-annual variability with a  periodicity of 
about 4–7 years. El Niño is the positive phase of ENSO, 
characterized by irregular surface warming of eastern and 
central equatorial Pacific, lasting for several months. The 
negative phase with cooler (than normal) SST in the eastern 
equatorial Pacific is called La Niña. There are numerous 
indices to quantify the strength, nature, and duration of El 
Niño based on the anomalous SST over different regions 
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of eastern and central equatorial Pacific.Indian Ocean SSTs 
have a role in developing the surface air temperatures over 
the Indian subcontinent that may vary (Kug & Kang, 2006).

Rising ocean temperatures have also occurred in 
situations of marine heatwaves in the Indian Ocean. 
Oceangoing heatwaves are similar to heat waves over the 
land, with periods of remarkably high ocean temperatures 
that endure for days to months. Beyond the regional climate, 
Indian Ocean warming has global and remote consequences. 
The Indian Ocean has contributed to more than 21% of the 
global oceanic heat uptake over the last two decades and 
presented securely to the temporary slowdown in global 
warming from 1998–2013. Warming in the Indian Ocean and 
associated deep convection is observed to trigger droughts in 
South America and marine heatwaves in the adjacent South 
Atlantic (Cheng et al., 2016; Cheng et al., 2017; Pandey et al., 
2024; Wang et al., 2024a; Wang et al., 2024b).

This study advances the understanding of sea surface 
temperature (SST) variability by connecting observed 
changes in the Indian Ocean to major global climate drivers, 
including climate change, El Niño/La Niña events, and the 
Indian monsoon, supported by relevant data and prior 
research. These links provide critical context and highlight the 
study’s global relevance. The findings also point to significant 
ecological implications, particularly for coral reef health and 
ocean circulation, emphasizing the wider environmental 
impact of SST trends. The understandings expanded by 
this study can inform regional climate adaptation strategies, 
support sustainable marine resource management, and 
improve short-term forecasting to mitigate risks to coastal 
ecosystems and fisheries.

5. Conclusions

Remote sensing originated MODIS SST products have been 
successively adopted for assessment of SST dynamics and 
short term forecasting. Tis study explains the spatial patterns, 
trends, and temporal changes in sea surface temperature for 
approximately two decades. The annual SST trend is slightly 
on the rise. Inter-annually, May is the hottest month. Bimodal 
variation has been seen first in April, May months, and then 
in Sep-Oct. The marine climate and its influence on the 
ecosystem are an important matter for both environmental 
managers and members of the fishing industry, as well as 
for the society in general. The results achieved in this study 
strengthen the value of satellite data as a tool to study the 
spatial and temporal variability of SST in the Indian Ocean. 
SST patterns over 20 years highlight the significance of 
regional assessments for determining the rate and timing 
of warming at local and regional scales and the necessity for 
attention in extrapolating regional implications from global 

patterns. Moreover, the observed rising trend and forecasts 
can support decision-making aimed at reducing risks to 
marine and ecological systems.
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