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Abstract. Forests are among the most vital and indispensable components of our ecosystems. However, increasing population pressure 
and associated infrastructural development have led to significant degradation of forest resources, particularly in developing regions. This 
study examines the temporal dynamics of forest canopy density over a 30-year period and identifies areas of disturbance within the forested 
landscapes of Keonjhar and Sundargarh districts, situated in northern and north-western Odisha, India. Forest canopy density changes were 
assessed using Landsat imagery from 1988 and 2021. Remote sensing-based biophysical indices such as AVI, BSI, and SSI were employed to 
develop a forest canopy density (FCD) model. Results indicate that approximately 17% of the forested area has been converted to bare land, 
and nearly 10% of the dense and moderately dense forested area has been converted to open forest in this period. Additionally, secondary 
datasets, including road networks, railway lines, mining areas, settlements, and industrial zones were integrated to analyze human-induced 
disturbances and delineate disturbance zones within the forests. A trend analysis of NDVI from 1988 to 2021 was conducted to validate these 
zones. Increasing mining activities, infrastructure development, settlement growth, and industrial waste dumping are identified as primary 
contributors to the increasing disturbance within the forest ecosystems of Keonjhar and Sundargarh districts. These findings highlight the 
urgent need for sustainable forest management and conservation strategies in this region.
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1. Introduction

Forests play a  critical role in regulating both biotic and 
abiotic components of the Earth’s environment (Hernández-
Clemente et al., 2019; Radhakrishnan et al., 2020). They 
influence ecosystem dynamics and serve as vital resources, 
supporting land stability, water cycles, and providing 
habitats for a vast array of species (Mengist et al., 2021; 
Sahana et al., 2015). Therefore, protecting and assessing 
forest health has become a major concern for sustainable 
resource management (Estoque et al., 2021; O’Laughlin et 
al., 1994; Pei et al., 2021). Forest degradation is a widespread 

issue with significant impacts on the environment and 
biodiversity (Bragagnolo et al., 2021; Grecchi et al., 2017; 
Sharma et al., 2020; Vancutsem et al., 2021). According 
to the Food and Agriculture Organization of the United 
Nations (FAO, 2010), the average annual global forest 
cover loss over the past decade has been approximately 
5.2 million hectares. This trend of significant forest loss 
is particularly evident in the Keonjhar and Sundargarh 
districts of Odisha, India, which have faced major ecological 
changes in recent decades. The rapid expansion of mining 
and industrial zones has led to extensive forest areas being 
converted into collieries, settlements, and fallow lands. This 
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prolonged, large-scale mining practice fundamentally alters 
the landscape’s structure, diminishes its ecological capacity, 
depletes land resources, and gives rise to numerous critical 
environmental challenges. As a  consequence of mining-
related dust and other problems, chlorophyll absorption 
and cellular vigor are being reduced, which adversely affects 
the health of surrounding vegetation (Gupta et al., 2024). 
Therefore, mapping the spatial distribution of forest density 
is essential for detecting changes driven by increasing 
anthropogenic pressures such as deforestation, road 
construction, settlement expansion, and rapid population 
growth over the past few decades (Cohen et al., 2017; Hadi 
et al., 2016; Ma et al., 2022; Popradit et al., 2015; Rodrigues et 
al., 2021). However, forest cover may be increasing in certain 
regions due to natural regeneration in previously disturbed 
areas (Crouzeilles et al., 2021; Palmero-Iniesta et al., 2021), 
for example, on coal mine lands in Jharkhand, India (Singh, 
2021). To capture these changes systematically, forest canopy 
cover serves as a key metric, and advances in remote sensing 
have made its mapping more robust and reliable across large 
landscapes.

Forest canopy cover, also known as crown cover, is 
a fundamental parameter defined as the proportion of the 
forest floor covered by the vertical projection of the tree 
crowns (Korhonen et al., 2017). It is a significant indicator 
of forest conditions, influencing ecological processes such as 
light availability to the understory, microclimate regulation, 
and biodiversity (Pal et al., 2018; De Pauw et al., 2022; Lenk 
et al., 2024). Canopy density mapping is a vital tool used to 
assess and monitor this parameter over broad scales, offering 
a clear advantage in efficiency and coverage over traditional, 
labor-intensive field plots (Chandrashekhar & Roy, 2000). 
While field methods are essential for ground-truthing, 
remote sensing methods provide wall-to-wall data needed 
for large-scale analysis (Korhonen, 2011; Korhonen et al., 
2006). Furthermore, while Light Detection and Ranging 
(LiDAR) provides valuable three-dimensional structural 
data on canopy height and volume, its application is often 
constrained by high costs, limited spatial coverage, and data 
availability (Erdody & Moskal, 2010; Korhonen et al., 2015). In 
contrast, canopy density mapping commonly utilizes passive 
optical sensors, which are widely available, cost-effective, 
and provide a reliable measure of forest canopy extent and 
density (Boutsoukis et al., 2019; Stojanova et al., 2010). This 
distinct perspective is invaluable for the implementation 
and development of afforestation and reforestation 
programs, and for identifying and monitoring forest health 
(Chandrashekhar et al., 2005; Kucsicsa et al., 2020; Santos et 
al., 2020). Recent methodological advancements, including 
the use of machine learning techniques such as artificial 
neural networks and random forest, have significantly 
improved the accuracy and efficiency of canopy density 

mapping, although their application can be constrained 
by the need for large training datasets, high computational 
requirements, and challenges in model transferability across 
different landscapes (Gyawali et al., 2024; Joshi et al., 2006). 
The International Tropical Timber Organization (ITTO) 
developed the Forest Canopy Density (FCD) model, a widely 
adopted methodology for quantifying canopy cover density 
(Palmero-Iniesta et al., 2021; Rikimaru & Koganei-shi, 2017). 
This model effectively identifies degrees of forest degradation 
and has gained acceptance among researchers as a reliable 
surrogate for estimating overall forest cover (López García 
et al., 2016).

The mineral-rich districts of Keonjhar and Sundargarh in 
Odisha have been experiencing significant forest degradation 
due to the rapid growth of mining and industrialization, 
posing a serious and ongoing threat to the region’s moist-
deciduous forests. While existing research has documented 
historical forest cover loss in the state (Mishra et al., 2022), 
a comprehensive, long-term assessment of canopy changes 
over this entire period has been absent. On this background, 
this study addresses this critical gap by first conducting 
a detailed, Landsat-based analysis of Forest Canopy Density 
(FCD) for the years 1988 and 2021. A trend analysis of the 
Normalized Difference Vegetation Index (NDVI) from 
1988 to 2021 was then performed, using pixel-wise trends 
to identify and validate affected zones. This is essential for 
understanding the long-term forest dynamics influenced by 
such extensive anthropogenic pressure.

2. Methodology

2.1. Study area

The study area encompasses Keonjhar and Sundargarh 
districts in Odisha, situated along the eastern coast of India, 
covering approximately 17,952  km². Keonjhar is located 
between 21.01°N and 22.15°N latitudes, and 85.18°E and 
86.37°E longitudes, while Sundargarh spans from 21.58°N 
to 22.53°N latitude and 83.53°E to 85.37°E longitude (Fig. 
1). The region experiences a semi-arid climate, characterized 
by significant water scarcity during the summer months. The 
area includes several important forest tracts, such as the 
Kendujhar–Saranda range, the largest Sal forest belt; parts 
of the Harichandanpur–Telkoi forest, a  lateritic plateau 
with thin, drought-prone soils; the Hemgir forest range, 
a  steep upland iron-ore ridge; and the Bamra–Gangpur 
forest, a  moist-deciduous zone bordering the Mahanadi 
basin. These forests are part of the Eastern Highlands Moist 
Deciduous Forests, which serve as vital wildlife habitats 
and corridors. The ecological significance of the region is 
underscored by the presence of rare fauna, such as the black 
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Figure 1. Location map of the study area and five mining areas from the study area photographed during the field visit: A. 
Guali iron mine, B. Joda Tata Steel mine, C. Katla iron mine, D. Narayanposhi mine, and D. Deojhar iron mine
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panther in Hemgir, as well as recurring human-elephant 
conflict zones in Bamra–Gangpur.

Geologically, the region is part of the Mesoarchaean 
Iron Ore Group, which contains extensive mineral re-
sources, including iron ore, manganese, limestone, dolo-
mite, chromium ores, and recently discovered gold. This 
richness has established the area as a hub for mining and 
industrial development, with major steel plants, fertilizer 
units, cement factories, and glass manufacturing facilities 
situated here. However, unregulated mining and rapid in-
dustrialization have resulted in widespread deforestation, 
habitat fragmentation, and biodiversity loss. Additionally, 
these activities have exacerbated soil erosion, altered hy-
drological regimes, and increased air and water pollution 
due to emissions and mine waste. The cumulative impacts 
pose significant ecological challenges, rendering the re-
gion highly vulnerable and in urgent need of sustainable 
management strategies. Figure 1 illustrates the location 
of the study area and five selected mining sites—chosen 
from among numerous sites in the region—that were pho-
tographed during the field visit.

2.2. Datasets

LANDSAT data is among the most suitable and widely 
accepted datasets for understanding Earth’s natural resources 
and land cover. The LANDSAT Thematic Mapper (TM) and 
Operational Land Imager (OLI) sensors provide seasonal 
coverage of global land cover at a  spatial resolution of 
30  meters, capturing visible, near-infrared (NIR), and 
shortwave infrared (SWIR) bands. These data are freely 
available from the United States Geological Survey (USGS). 
To analyze long-term variations in canopy density while 
minimizing the influence of phenological changes, the 
images should be acquired from the same season or month. 
LANDSAT surface reflectance images from February 1988 
and February 2021 were used to assess spatio-temporal 
variations in forest canopy. For each year, median composite 
images were generated from February scenes with less than 
10% cloud cover. All reflectance data were obtained from 
Google Earth Engine’s surface reflectance collection, which 
has been pre-processed for atmospheric correction. Maps 
of roads, railways, settlements, mining areas, and industrial 
sites were utilized to delineate disturbance zones. For trend 
analysis, LANDSAT TM, ETM+, and OLI images spanning 
1988 to 2021 were employed. Additionally, the MODIS 
Vegetation Continuous Fields (VCF) product was used to 
validate the forest canopy density map. The VCF provides 
surface vegetation cover data, i.e., percent tree cover, percent 
non-tree cover, and percent non-vegetated cover at a spatial 
resolution of 250 meters. These products are freely provided 
by USGS LP DAAC and are instrumental in characterizing 

vegetation land cover, thereby supporting vegetation 
modeling and monitoring applications.

2.3. Methods

2.3.1. Forest Canopy Density Model

Since the 1960s, researchers have utilized remote sensing data 
and various vegetation indices (VIs) to extract information 
about vegetation properties. These indices are valuable for 
assessing a  wide range of parameters, broadly classified 
into structural (e.g., leaf area index, fractional green cover, 
canopy architecture) and biochemical (e.g., chlorophyll and 
water content) attributes (Kganyago et al., 2021; Verrelst 
et al., 2019; Xue & Su, 2017). Although VIs are sensitive to 
these parameters, many, such as the widely used Normalized 
Difference Vegetation Index (NDVI), exhibit non-linear 
responses, often reaching a saturation point in high-density 
canopies, which limits their sensitivity (Tian et al., 2025; 
Wang et al., 2016). This saturation phenomenon is a well-
documented challenge that affects numerous vegetation 
indices (Yang et al., 2007). In this study, the Forest Canopy 
Density (FCD) model was employed, utilizing the Advanced 
Vegetation Index (AVI), Bare Soil Index (BI), and Shadow 
Index (SI), specifically formulated for this model to quantify 
changes in forest canopy density. The multi-index approach 
enhances robustness by combining the complementary 
strengths of AVI, BI, and SI to characterize different aspects 
of the forest canopy. Notably, the SI maintains sensitivity in 
dense stands where other indices tend to saturate, providing 
a  more accurate assessment of canopy density. Figure 2 
presents the methodological workflow.

The methodology for assessing Forest Canopy Density 
(FCD) was developed as part of the ITTO project titled 
“Rehabilitation of Logged-over Forests in the Asia-
Pacific Region, Sub-project III”. This approach enables 
the measurement of deforestation over time as well as the 
evaluation of reforestation progress (Bhandari & Nandy, 
2024; Rikimaru et al., 2002). The model is based on changes 
in vegetation density, utilizing a combination of biophysical 
indices to characterize forest conditions. A healthy forest 
is represented by dense canopies and corresponds to high 
FCD values, whereas areas with sparse or absent canopies 
indicate degradation or deforestation (Rikimaru & Miyatake, 
2009). The Advanced Vegetation Index (AVI) is particularly 
effective in detecting subtle differences in canopy density, 
leveraging the degree of infrared response (Loi et al., 2017). 
The Bare Soil Index (BI) was used to identify areas of bare 
soil or fallow land, as it relies on medium infrared data; the 
index value increases with the degree of land uncovered 
or soil exposure (Kumar et al., 2015). Given that the study 
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area is characterized by hilly terrain, it is also essential to 
account for shadow effects. The Shadow Index (SI), which 
captures spectral information related to canopy shadows, 
is vital for analyzing the thermal properties and structural 
characteristics of the forest, especially in complex topography.

Advanced Vegetation Index (AVI): AVI is one of the 
important parameters to detect healthy vegetation. It 
highlights the subtle difference in canopy density, whether 
the density is high or low, using red and near-infrared 
spectral bands (Himayah et al., 2016; Syakur et al., 2025). 
AVI is calculated using the following formula (eq.1):

         𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 [(𝑁𝑁𝑁𝑁𝑁𝑁 𝑁 𝑁)(256 − 𝑅𝑅)(𝑁𝑁𝑁𝑁𝑁𝑁 𝑁 𝑁𝑁)]
1
3 	 (1)

For OLI, 256 will be 65536. AVI = 0 if, IR < R, after 
normalization.

Bare Soil Index (BI): Bare soil refers to soil or sand 
that is not covered by any vegetation. In areas with sparse 
vegetation cover, standard vegetation indices often struggle 
to accurately represent ground conditions. To obtain 
more precise information about forest status and soil 
characteristics, the Bare Soil Index (BI) is widely employed. 
It is also useful for distinguishing between agricultural and 
non-agricultural lands (Abdollahnejad et al., 2017). BI is 
calculated using the following formula (eq.2):

              𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) × 100 + 100	 (2)

Scaled Vegetation Density (SVD): Vegetation density 
(VD) is derived from Principal Component Analysis (PCA) 
applied to the AVI and BI indices, which are significantly 
negatively correlated. PCA transforms a set of correlated 
variables into uncorrelated principal components, with the 
first component (PC1) capturing the maximum variance in 
the data (Kherif & Latypova, 2020). The VD is defined as the 
score of PC1, which can be expressed as a linear combination 
of the original indices (eq. 3):

                           VD – a. AVI + b. BI	 (3)

where, the coefficients a and b are the loadings from the 
eigenvector corresponding to the largest eigenvalue of the 
data’s covariance matrix, represent the weights determining 
each index’s contribution to the new composite axis.

Since the raw VD values obtained from PCA are not 
standardized and can be difficult to interpret or compare 
directly, the PCA results are scaled to a range of 0 to 100, 
resulting in the Scaled Vegetation Density (SVD) (eq. 4).

                       𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

× 100	 (4)

This normalization makes the SVD values easily interpretable, 
with 0 indicates minimal vegetation density corresponding 
to bare soil, while 100 denotes the maximum vegetation 
density.

Figure 2. Flowchart of the methodology
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Shadow Index (SI): Forests are inherently three-
dimensional structures characterized by the horizontal and 
vertical arrangement of trees, shrubs, and other vegetation 
components, along with non-living elements such as soil and 
terrain features (Seidler & Bawa, 2001). The SI is designed to 
evaluate variations in canopy shadow patterns that influence 
spectral response, which are affected by factors such as forest 
structure, age, and species composition. This index is derived 
by analyzing low radiance signals captured in the visible 
bands (Deka & Tripathi, 2013; Mon et al., 2012). Areas with 
sparse vegetation or agricultural lands tend to exhibit low 
canopy shadow indices, whereas dense or medium-dense 
forests display higher SI values. SI is calculated using the 
following formula (eq.5):

            𝑆𝑆𝑆𝑆 = [(256 − 𝐵𝐵)(256 − 𝐺𝐺)(256 − 𝑅𝑅)]
1
3 ￼	  (5)

For OLI surface reflectance images, 256 will be 65536.
Scaled Shadow Index (SSI): The SSI quantifies the 

spectral differences associated with mature or fully developed 
forests, which exhibit higher canopy shadow indices. It is 
calculated through a linear transformation of the Shadow 
Index (SI), with a  scale ranging from 0 to 100; where 0 
indicates the lowest shadow area (0%) and 100 signifies the 
highest shadow area (100%).

Forest Canopy Density (FCD): FCD is derived by 
integrating the SSI and Scaled Vegetation Density (SVD), 
and it is expressed on a scale from 1 to 100. FCD is calculated 
using the following formula (eq.6):

         
                    𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 [(𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑆) + 1]

1
2 − 1	 (6)

To validate the accuracy of FCD estimates, the derived values 
were compared with the MODIS Vegetation Continuous 
Field (VCF) product available for the region. Approximately 
100 random points were selected across the study area, and 
FCD values were extracted from both datasets for subsequent 
comparison and analysis.

2.3.2. Deforestation and change detection
Forested areas were delineated from the FCD map and 
reclassified following FSI guidelines into four categories: 
dense forest (>70%), moderately dense forest (40–70%), 
open forest (10–40%), and non-forest. Change detection was 
performed by comparing bi-temporal images, generating 
a  map with nine classes reflecting different transition 
states. The map was represented by nine categories based 
on forest density: dense forest to moderately dense forest, 
dense forest to open forest, moderately dense forest to dense 
forest, moderately dense forest to open forest, open forest to 
moderately dense forest, unchanged category in three classes, 
and deforestation (forest to non-forest).

2.3.3. Disturbance zone mapping
A disturbance zone map was created using Google Earth 
imagery from 2020. Features such as highways, roads, railways, 
industrial sites, settlements, and mining areas were manually 
digitized. These features were geometrically corrected using 
polynomial transformations and projected into the UTM 
coordinate system to ensure spatial accuracy. To capture their 
relative ecological impacts, several buffers were established 
around each feature to quantify their ecological impact: 500 m 
for mines (to account for excavation, dumps, and settlement 
expansion), 100 m for settlements (to represent population 
growth due to mining), 500 m for industrial sites (reflecting 
large footprints and waste areas), 50 m for highways and 
railways (acknowledging localized but comparatively smaller 
effects) and 20 m for other roads. Overlapping buffers were 
merged to delineate the composite disturbance area. The final 
map was validated through field surveys, which confirmed 
the reliability of the mapped disturbance patterns.

2.3.4. Long-term trend analysis
Forest degeneration and regeneration over a  long period 
can be detected by the temporal trend analysis (Eckert et 
al., 2015; Vancutsem et al., 2021). Long-term trends of forest 
degradation and regeneration were analyzed via temporal 
trend analysis of NDVI, by using its extensive historical 
record from Landsat sensors. NDVI’s consistent calculation 
and widespread validation make it a  robust metric for 
monitoring vegetation dynamics over decades (Forkel et al., 
2013; Gillespie et al., 2018; Jamali et al., 2015; Ju & Masek, 
2016; Martínez & Gilabert, 2009; Plessis, 1999; Sharma et 
al., 2021; Xiong & Wang, 2022; Zoungrana et al., 2018). The 
analytical approach involved pixel-wise linear regression of 
NDVI over time, treating time as the independent variable 
and NDVI as the dependent variable (Tian et al., 2015). The 
slope (β) of the regression line reflects the average annual 
rate of NDVI change per pixel, serving as an indicator of 
long-term vegetation gain or loss. A  low slope indicates 
minimal or no change, whereas a high positive or negative 
slope indicates significant vegetation increase or decline, 
respectively. This trend analysis was conducted using the R 
programming language. The period analyzed spanned from 
1988 to 2021, utilizing 33 annual NDVI layers. These layers 
were created by generating median composites from Landsat 
surface reflectance data prior to NDVI calculation, ensuring 
consistency and minimizing the influence of transient 
seasonal effects. The slope was spatially mapped to visualize 
long-term vegetation dynamics across the study area (eq. 7).

	 (7)

where n indicates the studied years; i  indicates the serial 
number of the year, and image i is the image (NDVI) value 
of the year i.
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3. Results

3.1.  Forest cover density

The comparison of the Advanced Vegetation Index (AVI) 
between 1988 and 2021 reveals a  significant decline in 
dense vegetation cover across Keonjhar district, particularly 
in its northern regions. This trend is primarily driven by 
extensive mineral extraction activities, which have led to the 
conversion of forested land into bare surfaces.

The Bare Land Index (BI) corroborates this observation, 
showing a corresponding rise in bare land areas during the 
same period, especially in zones where canopy cover has 

been markedly reduced. Concurrently, the Spectral Index (SI) 
values exhibit a downward trend from 1988 to 2021, reflecting 
a decline in vegetation density. The most notable decreases in 
SI were observed in grasslands, agricultural fields, and vacant 
lands, compared to relatively stable or less impacted forested 
zones. While the overarching trend indicates widespread 
forest degradation, localized signs of regeneration are evident 
in older mining sites and patches previously classified as 
bare land. These areas show modest recovery, suggesting 
ongoing successional processes post-disturbance. Spatial 
distribution maps of AVI, BI, and SSI (Figs 3 and 4) illustrate 
these temporal changes, emphasizing the spatial variability of 
vegetation dynamics over the three decades.

Figure 3. (A) AVI maps of 1988 and 2021, (B) BI maps of 1988 and 2021, (C) SSI maps of 1988 and 2021
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Quantitative analysis indicates that forest cover in 
Keonjhar declined from 3,640.53 km² (44.06% of the district) 
in 1988 to 3,135.73 km² (37.95%) in 2018, representing a net 
loss of approximately 504.80 km² or 6.11%. The most affected 
categories were moderately dense and open forests, which 
decreased by 272.12 km² (−3.29%) and 316.83 km² (−3.83%), 
respectively. Interestingly, dense forest patches showed 
a slight but notable increase (+56.20 km², +0.68%), likely 
reflecting the persistence of core forest areas less impacted 
by anthropogenic activities. Extending the analysis to 2021 
reveals that dense forest cover further declined by nearly 9% 
in the Joda, Koida, and Lahunipara blocks, predominantly 
due to the transformation of medium-density forests into 
open forests and bare land. Additionally, approximately 15% 
of the open forest along forest edges was converted into 
bare land, although some areas exhibited minor recovery, 
with about 6% of forest cover increasing in the Anandapur, 
Harichandanpur, and Telkoi regions.

Similarly, Sundargarh district experienced deforestation, 
with forest cover decreasing from 4,655.74 km² (48.05%) 
in 1988 to 4,257.39  km² (43.94%) in 2018, a  net loss of 
398.35  km² or 4.11%. The most significant reduction 
occurred in dense forests (−267.61 km² or −2.76%), while 
moderately dense forests expanded slightly (+66.84  km² 
or +0.69%), possibly reflecting re-growth or regeneration 
in certain zones. Open forests saw a considerable decrease 

(−195.51 km² or −2.02%) over this period. Between 1988 
and 2021, medium forest cover increased by nearly 3% in 
the Gurundia, Rajganjpur, and Lephripara blocks, although 
other areas such as Bisra, Rajganjpur, and Lahunipara showed 
pronounced forest loss. Figure 5 illustrates the changes in 
forest cover at the block level.

At the broader landscape scale, the combined forest cover 
across both districts diminished from 8,263.15 km² in 1988 
to 7,333.90  km² in 2018, corresponding to a  net loss of 
929.25 km² or 5.18%. The most substantial reductions were 
observed in open forests (−512.65 km²), followed by dense 
(−211.56 km²) and moderately dense forests (−205.04 km²). 
These changes are most pronounced in the Joda, Bansapal, 
Ghatagaon, Koida, Bisra, Rajganjpur, and Lahunipara 
blocks. Spatial maps of FCD (Fig. 4) and summary statistics 
(Table 1) provide further insights into the extent and spatial 
distribution of forest loss over this period.

Figure 6 depicts the spatial distribution of forest cover 
change phenomena within the study area, while Figure 7 
illustrates the corresponding percentage changes over 
the period from 1988 to 2021. The analysis reveals that 
approximately 42% of forested pixels experienced class 
transitions during this period, highlighting significant 
landscape dynamics influenced by various anthropogenic 
activities, notably mining and industrial expansion. Among 
these transitions, 9% of dense forest pixels shifted to 

Figure 4. (A) FCD maps of 1988 and 2021, (B) Classified FCD maps of 1988 and 2021
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Table 1. Forest and Non-forest area in Keonjhar and Sundargarh districts in the years 1988 and 2021

Dense forest Moderately dense forest Open forest Total forested area Non-forest

Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) %

1988 Keonjhar 930.88 11.27 1594.19 19.29 1115.46 13.50 3640.53 44.06 4621.96 55.94

2018 987.08 11.95 1322.07 16.00 798.63 9.67 3135.73 37.95 5126.76 62.05

Change 56.20 0.68 -272.12 3.29 -316.83 3.83 -504.80 6.11 504.80 6.11

1988 Sundargarh 1258.07 12.98 2033.81 20.99 1329.89 13.73 4655.74 48.05 5033.77 51.95

2018 990.46 10.22 2100.65 21.68 1134.38 11.71 4257.39 43.94 5432.12 56.06

Change -267.61 2.76 -66.84 0.69 -195.51 2.02 -398.35 4.11 398.35 4.11

1988 Total 2189.10 12.19 3628.39 20.21 2445.66 13.62 8263.15 46.03 9688.65 53.97

2018 1977.54 11.02 3423.35 19.07 1933.01 10.77 7333.90 40.85 10618.10 59.15

Change -211.56 1.18 -205.04 1.14 -512.65 2.86 -929.25 5.18 929.45 5.18
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moderately dense forest, predominantly in the Joda, Banspal, 
Lahunipara, Koida, Bisra, Lathikata, Gurundia, Hemgir, 
and Rajganjpur blocks. These regions are characterized by 
intensive mining operations and industrial development, 
which have substantially altered the forest structure. 
Previous studies (Krishna et al., 2020) have linked such 
land use changes to the proliferation of steel and sponge 
iron industries concentrated in Joda and Koida, emphasizing 
the profound impact of industrialization on forest dynamics. 
Additionally, about 8% of moderately dense forest pixels 
degraded into open forest, indicating ongoing forest thinning 
and land degradation across the study area. Interestingly, 
localized regeneration activities were observed in specific 
regions: portions of moderately dense and open forests in 
the Telkoi, Anandpur, Harichandanpur, and Ghatagaon 
forest ranges exhibited signs of recovery, primarily driven by 
reforestation initiatives and plantation efforts. These positive 
trends suggest the potential for ecological restoration in areas 
where conservation measures are actively implemented. 

Overall, deforestation accounted for approximately 6% 
of the total forest area, with the most significant losses 
occurring within Keonjhar district—particularly in Joda 
and Banspal blocks—and Sundargarh district, especially 
in Koida, Lahunipara, Balisankar, and Hemgiri blocks. In 
Sundargarh, industrial expansion has played a crucial role 
in driving forest loss, especially in the Rajganjpur, Lathikata, 
and Bisra blocks, which have experienced notable increases 
in mining activity (Kumar et al., 2012; Lohchab & Saini, 
2018). Figure 8 illustrates the distribution of disturbance 
zones within the study area, highlighting regions of intense 
anthropogenic pressure. Areas with negative slope values in 
the terrain correspond to zones of forest disturbance, where 
rapid land cover transformation is evident.

3.2. Trend analysis

In Keonjhar, the Joda and Bansapal blocks exhibit the highest 
negative slope trends, reflecting ongoing deforestation driven 

Figure 7. Percentage of 
changes in different forest 
classes
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Figure 8. Human interferences in the forested areas of Sundargarh and Keonjhar districts
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by extensive mining activities. Joda, a highly urbanized and 
industrialized city, is a prominent hub for iron and manganese 
mining, with suburban and urban expansion contributing 
to forest clearing. Despite ongoing deforestation, traces of 
reforestation and afforestation efforts are observable due 
to planned urban development strategies. Bansapal and 
Kendujhargarh also show negative trends, attributable to 
mining and urbanization. Conversely, regions such as Telkoi, 
Anandpur, and Harichandanpur reveal positive slope trends 
consistent with successful reforestation and plantation 
initiatives aimed at ecological restoration. In Sundargarh 
district, multiple blocks including Koida, Lahunipara, Kutra, 
Hemgiri, Gurundia, Kuanrmunda, Nuagaon, Rajagangapur, 
and Bisra exhibit negative slope trends, mainly due to 
extensive mining and industrial activities. Koida stands out 
with over 100 active mining sites for iron and manganese 
ores and hosts major industrial groups such as the Rungta, 
S.R., and Adhunik groups, which have substantially altered 

the landscape. Lahunipara and Gurundia also contain 
significant mineral deposits, including iron and manganese, 
contributing to ongoing land degradation. Additionally, 
limestone deposits in Nuagaon, Rajagangapur, Kutra, and 
Kuanrmunda, along with coal mines in Hemgiri, further 
intensify land use changes. Urbanization has accelerated in 
Bisra in recent years, further exacerbating forest loss. Figures 
9 and 10 provide a detailed visualization of the NDVI trend 
analysis from 1988 to 2021 and the block-wise distribution 
of slope values, respectively. The NDVI analysis depicts areas 
of persistent vegetation decline, especially in mineral-rich 
zones, whereas the slope map highlights terrain-related 
vulnerabilities to land degradation. The combined insights 
emphasize the complex interplay between industrial 
activities and natural land cover changes, reflecting both 
the challenges and opportunities for sustainable forest 
management and ecological restoration in the region.

Figure 9. Trend analysis map of NDVI from 1988 to 2021

Figure 10. Block-wise ranges of slope value
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3.3. Comparison of the MODIS VCF product and Forest 
Canopy Density map of 2021

To validate the Forest Canopy Density (FCD) model results, 
we employed the MODIS Vegetation Continuous Field 
(VCF) product as a reliable reference dataset. A total of 100 
randomly selected points across the forested regions within 
the study area were established for this purpose. The values 
of canopy cover density extracted from the FCD model 
were correlated with the corresponding values obtained 
from the MODIS VCF product. The correlation analysis 
yielded a coefficient of determination (R²) of 0.73, which 
was statistically significant at p < 0.01, indicating a robust 

agreement between the two datasets. This high correlation 
underscores the reliability of the FCD model in accurately 
representing forest canopy conditions (Figs 11 and 12).

The utility of canopy cover mapping extends beyond 
mere forest health assessment; it is instrumental in guiding 
policy formulation and implementing forest management 
programs aimed at sustainable development (Godinho et 
al., 2016; Fasil et al., 2022). Conversely, extensive canopy 
cover loss poses a  severe threat to ecosystem stability, 
primarily driven by anthropogenic activities such as urban 
expansion, industrialization, and mineral extraction (Hoang 
& Kanemoto, 2021).
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4. Discussion and Conclusions

4.1. Discussion

In this study, long-term changes in canopy cover density 
were analyzed over the period from 1988 to 2021, employing 
the FCD model integrated with multiple spectral indices, 
namely the Average Vegetation Index (AVI), Brightness 
Index (BI), and Shadow Index (SI). A notable limitation of 
traditional vegetation indices (VIs) is saturation in dense 
forest conditions, where these indices plateau, failing to 
detect additional canopy growth or decline (Gao et al., 
2023; Wang et al., 2023; Zhang et al., 2023). To overcome 
this, the FCD model incorporates the Shadow Index, which 
intensifies with increasing canopy density as shadows 
deepen, providing a more sensitive measure of dense forest 
structure (Ismail et al., 2017; Prodromou et al., 2022). This 
multi-index approach enhances the robustness and reliability 
of the model, particularly in densely forested regions, thus 
increasing confidence in the reported temporal changes in 
forest cover within Odisha.

The analysis reveals substantial forest disturbances in 
two of Odisha’s key mineral-rich districts, Keonjhar and 
Sundargarh. Our findings indicate that approximately 
211  km² of dense forest cover was lost over the study 
period, predominantly in core forest zones and their 
peripheries. This loss is primarily linked to escalating mining 
activities, which drive extensive clearing of forestland to 
accommodate mineral extraction operations. Mining-
related processes generate considerable dust emissions, 
escalate transportation infrastructure development, and 
necessitate road construction, all of which contribute to 
accelerated deforestation, especially at forest margins and 
in surrounding landscapes.

These results are consistent with broader historical trends 
of deforestation across Odisha. According to historical 
records, from 1935 to 2010, the state experienced a  net 
decrease of approximately 40.5% in forest cover, translating 
to an average annual deforestation rate of 0.69% (Sudhakar 
Reddy et al., 2018). More recent satellite-based assessments 
and global forest monitoring platforms indicate that 
Odisha lost around 1,470 km² of tree cover between 2001 
and 2024 (https://www.globalforestwatch.org/dashboards/
country/IND/26/?category=forest-change). Specifically, in 
Keonjhar district alone, the loss amounted to approximately 
59.7 km² of forest cover during this period, with a recent 
government report revealing that 64  mining projects 
have diverted 104.51 km² of forest land over the past 38 
years—the highest in any district within Odisha since 
1980 (https://india.mongabay.com/2019/09/tribal-way-
of-life-hits-rock-bottom-even-as-mining-hits-new-highs-
in-odisha/). Multiple studies have further reinforced these 

observations; for example, Mishra et al. (2022) reported 
that between 2000 and 2018, Keonjhar experienced a loss of 
111.91 km² of forest cover, while Sundargarh lost 34.87 km² 
in the same timeframe. Hota and Behera (2015, 2016, 2019) 
provided a comprehensive assessment of mining-induced 
pressures across Odisha, highlighting that approximately 
99% of the state’s mineral value is concentrated in districts 
such as Angul, Jajpur, Jharsuguda, Keonjhar, Koraput, and 
Sundargarh. Keonjhar alone harbors nearly one-third of 
Odisha’s mineral reserves, and together with Sundargarh, 
these districts contribute over 50% of the state’s total mineral 
wealth. The analysis further indicates a marked increase in 
the production of chromite, coal, iron ore, and bauxite over 
the study period, while manganese mining showed a notable 
decline (Hota & Behera, 2019). These mineral extraction 
activities, in conjunction with expanding infrastructure 
and urbanization, continue to exert immense pressure 
on Odisha’s forests, leading to persistent degradation and 
fragmentation of forest ecosystems.

Beyond the quantifiable loss of forest area, the ecological 
consequences of forest fragmentation command particular 
concern due to their profound impacts on biodiversity, 
ecosystem stability, and resilience. Long-term landscape 
analyses reveal that forest fragmentation in Odisha has 
intensified markedly over the past century. Specifically, 
the number of forest patches per 1,000 square kilometers 
increased dramatically from 2.463 in 1935 to 15.102 in 
2010, demonstrating a near sixfold rise in fragmentation. 
Concurrently, the average patch size diminished substantially 
from approximately 33.2 km² to a mere 3.2 km² (Sudhakar 
Reddy et al., 2018). These shifts highlight a transition towards 
a landscape characterized by numerous small, isolated forest 
fragments, which significantly compromises ecosystem 
integrity and functions. Ecologically, fragmentation 
impacts are far-reaching. A reduction in contiguous forest 
habitat leads to habitat loss for wildlife species, resulting in 
population declines and increased extinction risks, especially 
for specialized and endemic species that depend on interior 
forest conditions. Fragmentation also severs gene flow 
among populations, heightening the likelihood of inbreeding 
depression and reducing genetic diversity, which diminishes 
overall adaptability to environmental changes (Hermes et al., 
2016; Ramsay et al., 2023). Moreover, as forests become more 
fragmented, they develop increased edge habitats. These edge 
zones experience altered microclimatic conditions such as 
higher temperature fluctuations, increased light penetration, 
and wind exposure, which favor generalist and invasive 
species over native forest interior specialists (Ewers & 
Banks-Leite, 2013; Magnago et al., 2015; Pfeifer et al., 2017). 
This shift can lead to a decline in biodiversity and disrupt 
ecosystem functions such as pollination, seed dispersal, and 
nutrient cycling.

https://india.mongabay.com/2019/09/tribal-way-of-life-hits-rock-bottom-even-as-mining-hits-new-highs-in-odisha/
https://india.mongabay.com/2019/09/tribal-way-of-life-hits-rock-bottom-even-as-mining-hits-new-highs-in-odisha/
https://india.mongabay.com/2019/09/tribal-way-of-life-hits-rock-bottom-even-as-mining-hits-new-highs-in-odisha/
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In our current study, the loss of approximately 929.25 km² 
of forest cover further illustrates the severity of ecological 
decline. This numeric reduction is not merely a measure of 
spatial contraction; it signifies a deterioration in ecological 
health and system resilience attributed to fragmentation pro-
cesses. To reinforce these findings, Normalized Difference 
Vegetation Index (NDVI)-based trend analyses were em-
ployed to assess spatial variations in forest canopy dynamics 
across different administrative blocks. The resulting spatial 
maps of slope values reveal that regions exhibiting negative 
trends; indicative of canopy decline correlate strongly with 
known hotspots of mining and industrial activity. This spatial 
concordance confirms that anthropogenic pressures are pri-
marily responsible for the observed degradation rather than 
natural variability. Conversely, some regions display posi-
tive NDVI trends, associated with reforestation initiatives, 
afforestation, or plantation programs, thereby illustrating 
potential areas of recovery. These complementary analyses 
enhance the robustness of the FCD model’s ability to detect 
both degradation and regeneration processes, providing vital 
insights for targeted conservation efforts and adaptive forest 
management.

The deterioration of forest canopy density in Keonjhar 
and Sundargarh districts is attributable to an intricate 
web of human activities, with mining and associated 
industrialization acting as primary drivers. Mining exerts 
both direct and indirect ecological pressures. Directly, it 
involves the physical clearing of vast tracts of forested land 
to establish pits, waste dumps, and processing facilities, 
leading to permanent loss of vegetation cover. Indirectly, 
mining catalyzes extensive infrastructure development, 
especially road networks, which fragment forests, enabling 
further encroachment for agriculture, settlement, and illegal 
extraction activities. These roads facilitate human access, 
exacerbate habitat disturbance, and elevate risks of human-
wildlife conflicts and vehicle collisions.

Urbanization, though often considered a  secondary 
driver globally, plays a significant localized role in districts 
like Keonjhar and Sundargarh. Urban expansion alters 
land cover, increases impervious surfaces, and modifies 
hydrological regimes. Such changes intensify surface runoff, 
soil erosion, and local temperature increases (urban heat 
islands). Additionally, urban development often promotes 
deforestation for infrastructure and housing, while diverting 
agricultural lands for urban use can trigger compensatory 
deforestation elsewhere, contributing further to landscape 
fragmentation (Basu & Nayak, 2011; Kumar, 2014; Mishra, 
2010; Mishra & Pujari, 2008). The cumulative effect of mining, 
industrial growth, and urban expansion creates a reinforcing 
cycle that accelerates forest loss and fragmentation, thereby 
undermining the ecological stability of Odisha’s resource-
rich districts.

Collectively, these findings reveal that forest degradation 
in Keonjhar and Sundargarh transcends simple area 
loss; it involves profound structural and functional 
transformations of the forest landscape. The combined 
impacts of mining-induced industrialization and localized 
urban expansion result in extensive deforestation, 
fragmentation, and habitat degradation. These changes 
threaten biodiversity through habitat loss and altered 
community compositions, compromise ecosystem services, 
including carbon sequestration, soil fertility, and water 
regulation and jeopardize the long-term sustainability of 
forest ecosystems. Addressing these challenges warrants 
integrated land-use planning, sustainable mining practices, 
and active forest restoration efforts to safeguard ecological 
integrity. Importantly, the synergy of long-term remote 
sensing analyses combining multi-index FCD modeling, 
NDVI trend mapping, and spatial pattern analysis provides 
a comprehensive framework to monitor, understand, and 
mitigate ongoing forest fragmentation in Odisha, ensuring 
informed conservation strategies in the face of rapid 
developmental pressures.

4.2. Conclusion

Analysis of forest canopy density in Keonjhar and Sundargarh 
districts from 1988 to 2021 reveals a significant decline in 
forest health, primarily driven by anthropogenic pressures. 
Using the Forest Cover Density (FCD) model, our results 
show a loss of 416.6 km² of dense and moderately dense forest 
cover over this period. Conversely, only a minimal proportion 
of open and degraded forests showed signs of regeneration, 
indicating that natural recovery processes are insufficient 
to counterbalance ongoing loss. Notably, 211 km² of dense 
forest was lost, with the most severe impacts concentrated 
around mining clusters such as Joda, Koida, Lahunipara, and 
Rajagangpur. This spatial pattern aligns with the proximity 
of forests to active mining leases, industrial complexes, and 
related infrastructure, which our disturbance parameter 
analysis confirms. A high proportion of forest pixels within 
500 meters of such development shifted from denser classes 
to open or bare land, underscoring mining expansion, 
industrialization, road construction, and settlement growth 
as primary drivers of deforestation.

These observed patterns are consistent with global trends 
of increasing fragmentation and shrinking core forest 
areas, as reported by Hansen et al. (2020). In Keonjhar and 
Sundargarh, fragmentation has accelerated, resulting in 
smaller, isolated patches that diminish habitat continuity 
and resilience. Such fragmentation exacerbates edge effects, 
facilitates the invasion of non-native species, and accelerates 
biodiversity decline, undermining ecosystem stability. 
While mining remains critical for regional development, 
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its ecological impacts can be mitigated through stricter 
regulatory enforcement, adoption of environmentally 
sustainable technologies, and active ecological reclamation 
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services remains increasingly at risk.
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