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Abstract. Forests are among the most vital and indispensable components of our ecosystems. However, increasing population pressure
and associated infrastructural development have led to significant degradation of forest resources, particularly in developing regions. This
study examines the temporal dynamics of forest canopy density over a 30-year period and identifies areas of disturbance within the forested
landscapes of Keonjhar and Sundargarh districts, situated in northern and north-western Odisha, India. Forest canopy density changes were
assessed using Landsat imagery from 1988 and 2021. Remote sensing-based biophysical indices such as AVI, BSI, and SSI were employed to
develop a forest canopy density (FCD) model. Results indicate that approximately 17% of the forested area has been converted to bare land,
and nearly 10% of the dense and moderately dense forested area has been converted to open forest in this period. Additionally, secondary
datasets, including road networks, railway lines, mining areas, settlements, and industrial zones were integrated to analyze human-induced
disturbances and delineate disturbance zones within the forests. A trend analysis of NDVI from 1988 to 2021 was conducted to validate these
zones. Increasing mining activities, infrastructure development, settlement growth, and industrial waste dumping are identified as primary
contributors to the increasing disturbance within the forest ecosystems of Keonjhar and Sundargarh districts. These findings highlight the
urgent need for sustainable forest management and conservation strategies in this region.
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1. Introduction

Forests play a critical role in regulating both biotic and
abiotic components of the Earth’s environment (Herndndez-
Clemente et al., 2019; Radhakrishnan et al.,, 2020). They
influence ecosystem dynamics and serve as vital resources,
supporting land stability, water cycles, and providing
habitats for a vast array of species (Mengist et al., 2021;
Sahana et al,, 2015). Therefore, protecting and assessing
forest health has become a major concern for sustainable
resource management (Estoque et al., 2021; O’Laughlin et
al., 1994; Pei et al., 2021). Forest degradation is a widespread

issue with significant impacts on the environment and
biodiversity (Bragagnolo et al., 2021; Grecchi et al., 2017;
Sharma et al., 2020; Vancutsem et al., 2021). According
to the Food and Agriculture Organization of the United
Nations (FAO, 2010), the average annual global forest
cover loss over the past decade has been approximately
5.2 million hectares. This trend of significant forest loss
is particularly evident in the Keonjhar and Sundargarh
districts of Odisha, India, which have faced major ecological
changes in recent decades. The rapid expansion of mining
and industrial zones has led to extensive forest areas being
converted into collieries, settlements, and fallow lands. This
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prolonged, large-scale mining practice fundamentally alters
the landscape’s structure, diminishes its ecological capacity,
depletes land resources, and gives rise to numerous critical
environmental challenges. As a consequence of mining-
related dust and other problems, chlorophyll absorption
and cellular vigor are being reduced, which adversely affects
the health of surrounding vegetation (Gupta et al., 2024).
Therefore, mapping the spatial distribution of forest density
is essential for detecting changes driven by increasing
anthropogenic pressures such as deforestation, road
construction, settlement expansion, and rapid population
growth over the past few decades (Cohen et al., 2017; Hadi
etal,,2016; Ma et al., 2022; Popradit et al., 2015; Rodrigues et
al.,2021). However, forest cover may be increasing in certain
regions due to natural regeneration in previously disturbed
areas (Crouzeilles et al., 2021; Palmero-Iniesta et al., 2021),
for example, on coal mine lands in Jharkhand, India (Singh,
2021). To capture these changes systematically, forest canopy
cover serves as a key metric, and advances in remote sensing
have made its mapping more robust and reliable across large
landscapes.

Forest canopy cover, also known as crown cover, is
a fundamental parameter defined as the proportion of the
forest floor covered by the vertical projection of the tree
crowns (Korhonen et al.,, 2017). It is a significant indicator
of forest conditions, influencing ecological processes such as
light availability to the understory, microclimate regulation,
and biodiversity (Pal et al., 2018; De Pauw et al., 2022; Lenk
et al,, 2024). Canopy density mapping is a vital tool used to
assess and monitor this parameter over broad scales, offering
a clear advantage in efficiency and coverage over traditional,
labor-intensive field plots (Chandrashekhar & Roy, 2000).
While field methods are essential for ground-truthing,
remote sensing methods provide wall-to-wall data needed
for large-scale analysis (Korhonen, 2011; Korhonen et al.,
2006). Furthermore, while Light Detection and Ranging
(LiDAR) provides valuable three-dimensional structural
data on canopy height and volume, its application is often
constrained by high costs, limited spatial coverage, and data
availability (Erdody & Moskal,2010; Korhonen etal.,2015).In
contrast, canopy density mapping commonly utilizes passive
optical sensors, which are widely available, cost-effective,
and provide a reliable measure of forest canopy extent and
density (Boutsoukis et al., 2019; Stojanova et al., 2010). This
distinct perspective is invaluable for the implementation
and development of afforestation and reforestation
programs, and for identifying and monitoring forest health
(Chandrashekhar et al., 2005; Kucsicsa et al., 2020; Santos et
al,, 2020). Recent methodological advancements, including
the use of machine learning techniques such as artificial
neural networks and random forest, have significantly
improved the accuracy and efficiency of canopy density

mapping, although their application can be constrained
by the need for large training datasets, high computational
requirements, and challenges in model transferability across
different landscapes (Gyawali et al., 2024; Joshi et al., 2006).
The International Tropical Timber Organization (ITTO)
developed the Forest Canopy Density (FCD) model, a widely
adopted methodology for quantifying canopy cover density
(Palmero-Iniesta et al., 2021; Rikimaru & Koganei-shi, 2017).
This model effectively identifies degrees of forest degradation
and has gained acceptance among researchers as a reliable
surrogate for estimating overall forest cover (Lopez Garcia
etal.,2016).

The mineral-rich districts of Keonjhar and Sundargarh in
Odisha have been experiencing significant forest degradation
due to the rapid growth of mining and industrialization,
posing a serious and ongoing threat to the region’s moist-
deciduous forests. While existing research has documented
historical forest cover loss in the state (Mishra et al., 2022),
a comprehensive, long-term assessment of canopy changes
over this entire period has been absent. On this background,
this study addresses this critical gap by first conducting
a detailed, Landsat-based analysis of Forest Canopy Density
(FCD) for the years 1988 and 2021. A trend analysis of the
Normalized Difference Vegetation Index (NDVI) from
1988 to 2021 was then performed, using pixel-wise trends
to identify and validate affected zones. This is essential for
understanding the long-term forest dynamics influenced by
such extensive anthropogenic pressure.

2. Methodology
2.1. Study area

The study area encompasses Keonjhar and Sundargarh
districts in Odisha, situated along the eastern coast of India,
covering approximately 17,952 km?. Keonjhar is located
between 21.01°N and 22.15°N latitudes, and 85.18°E and
86.37°E longitudes, while Sundargarh spans from 21.58°N
to 22.53°N latitude and 83.53°E to 85.37°E longitude (Fig.
1). The region experiences a semi-arid climate, characterized
by significant water scarcity during the summer months. The
area includes several important forest tracts, such as the
Kendujhar-Saranda range, the largest Sal forest belt; parts
of the Harichandanpur-Telkoi forest, a lateritic plateau
with thin, drought-prone soils; the Hemgir forest range,
a steep upland iron-ore ridge; and the Bamra—Gangpur
forest, a moist-deciduous zone bordering the Mahanadi
basin. These forests are part of the Eastern Highlands Moist
Deciduous Forests, which serve as vital wildlife habitats
and corridors. The ecological significance of the region is
underscored by the presence of rare fauna, such as the black
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Figure 1. Location map of the study area and five mining areas from the study area photographed during the field visit: A.
Guali iron mine, B. Joda Tata Steel mine, C. Katla iron mine, D. Narayanposhi mine, and D. Deojhar iron mine
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panther in Hemgir, as well as recurring human-elephant
conflict zones in Bamra-Gangpur.

Geologically, the region is part of the Mesoarchaean
Iron Ore Group, which contains extensive mineral re-
sources, including iron ore, manganese, limestone, dolo-
mite, chromium ores, and recently discovered gold. This
richness has established the area as a hub for mining and
industrial development, with major steel plants, fertilizer
units, cement factories, and glass manufacturing facilities
situated here. However, unregulated mining and rapid in-
dustrialization have resulted in widespread deforestation,
habitat fragmentation, and biodiversity loss. Additionally,
these activities have exacerbated soil erosion, altered hy-
drological regimes, and increased air and water pollution
due to emissions and mine waste. The cumulative impacts
pose significant ecological challenges, rendering the re-
gion highly vulnerable and in urgent need of sustainable
management strategies. Figure 1 illustrates the location
of the study area and five selected mining sites—chosen
from among numerous sites in the region—that were pho-
tographed during the field visit.

2.2. Datasets

LANDSAT data is among the most suitable and widely
accepted datasets for understanding Earth’s natural resources
and land cover. The LANDSAT Thematic Mapper (TM) and
Operational Land Imager (OLI) sensors provide seasonal
coverage of global land cover at a spatial resolution of
30 meters, capturing visible, near-infrared (NIR), and
shortwave infrared (SWIR) bands. These data are freely
available from the United States Geological Survey (USGS).
To analyze long-term variations in canopy density while
minimizing the influence of phenological changes, the
images should be acquired from the same season or month.
LANDSAT surface reflectance images from February 1988
and February 2021 were used to assess spatio-temporal
variations in forest canopy. For each year, median composite
images were generated from February scenes with less than
10% cloud cover. All reflectance data were obtained from
Google Earth Engine’s surface reflectance collection, which
has been pre-processed for atmospheric correction. Maps
of roads, railways, settlements, mining areas, and industrial
sites were utilized to delineate disturbance zones. For trend
analysis, LANDSAT TM, ETM+, and OLI images spanning
1988 to 2021 were employed. Additionally, the MODIS
Vegetation Continuous Fields (VCF) product was used to
validate the forest canopy density map. The VCF provides
surface Vegetation cover data, i.e., percent tree cover, percent
non-tree cover, and percent non-vegetated cover at a spatial
resolution of 250 meters. These products are freely provided
by USGS LP DAAC and are instrumental in characterizing

vegetation land cover, thereby supporting vegetation
modeling and monitoring applications.

2.3. Methods
2.3.1. Forest Canopy Density Model

Since the 1960s, researchers have utilized remote sensing data
and various vegetation indices (VIs) to extract information
about vegetation properties. These indices are valuable for
assessing a wide range of parameters, broadly classified
into structural (e.g., leaf area index, fractional green cover,
canopy architecture) and biochemical (e.g., chlorophyll and
water content) attributes (Kganyago et al., 2021; Verrelst
et al., 2019; Xue & Su, 2017). Although Vs are sensitive to
these parameters, many, such as the widely used Normalized
Difference Vegetation Index (NDVI), exhibit non-linear
responses, often reaching a saturation point in high-density
canopies, which limits their sensitivity (Tian et al., 2025;
Wang et al., 2016). This saturation phenomenon is a well-
documented challenge that affects numerous vegetation
indices (Yang et al., 2007). In this study, the Forest Canopy
Density (FCD) model was employed, utilizing the Advanced
Vegetation Index (AVI), Bare Soil Index (BI), and Shadow
Index (SI), specifically formulated for this model to quantify
changes in forest canopy density. The multi-index approach
enhances robustness by combining the complementary
strengths of AVI, B, and SI to characterize different aspects
of the forest canopy. Notably, the SI maintains sensitivity in
dense stands where other indices tend to saturate, providing
a more accurate assessment of canopy density. Figure 2
presents the methodological workflow.

The methodology for assessing Forest Canopy Density
(FCD) was developed as part of the ITTO project titled
“Rehabilitation of Logged-over Forests in the Asia-
Pacific Region, Sub-project III”. This approach enables
the measurement of deforestation over time as well as the
evaluation of reforestation progress (Bhandari & Nandy;,
2024; Rikimaru et al., 2002). The model is based on changes
in vegetation density, utilizing a combination of biophysical
indices to characterize forest conditions. A healthy forest
is represented by dense canopies and corresponds to high
FCD values, whereas areas with sparse or absent canopies
indicate degradation or deforestation (Rikimaru & Miyatake,
2009). The Advanced Vegetation Index (AVI) is particularly
effective in detecting subtle differences in canopy density,
leveraging the degree of infrared response (Loi et al., 2017).
The Bare Soil Index (BI) was used to identify areas of bare
soil or fallow land, as it relies on medium infrared data; the
index value increases with the degree of land uncovered
or soil exposure (Kumar et al., 2015). Given that the study
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Figure 2. Flowchart of the methodology

area is characterized by hilly terrain, it is also essential to
account for shadow effects. The Shadow Index (SI), which
captures spectral information related to canopy shadows,
is vital for analyzing the thermal properties and structural
characteristics of the forest, especially in complex topography.

Advanced Vegetation Index (AVI): AVI is one of the
important parameters to detect healthy vegetation. It
highlights the subtle difference in canopy density, whether
the density is high or low, using red and near-infrared
spectral bands (Himayah et al., 2016; Syakur et al., 2025).
AVTI is calculated using the following formula (eq.1):

AVI = [(NIR + 1)(256 — R)(NIR — R)]s (1)
For OLIL, 256 will be 65536. AVI = 0 if, IR < R, after
normalization.

Bare Soil Index (BI): Bare soil refers to soil or sand
that is not covered by any vegetation. In areas with sparse
vegetation cover, standard vegetation indices often struggle
to accurately represent ground conditions. To obtain
more precise information about forest status and soil
characteristics, the Bare Soil Index (BI) is widely employed.
It is also useful for distinguishing between agricultural and
non-agricultural lands (Abdollahnejad et al., 2017). BI is
calculated using the following formula (eq.2):
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Scaled Vegetation Density (SVD): Vegetation density
(VD) is derived from Principal Component Analysis (PCA)
applied to the AVI and BI indices, which are significantly
negatively correlated. PCA transforms a set of correlated
variables into uncorrelated principal components, with the
first component (PC1) capturing the maximum variance in
the data (Kherif & Latypova, 2020). The VD is defined as the
score of PC1, which can be expressed as a linear combination
of the original indices (eq. 3):

VD - a. AVI + b. BI 3)
where, the coefficients a and b are the loadings from the
eigenvector corresponding to the largest eigenvalue of the
data’s covariance matrix, represent the weights determining
each index’s contribution to the new composite axis.

Since the raw VD values obtained from PCA are not
standardized and can be difficult to interpret or compare
directly, the PCA results are scaled to a range of 0 to 100,
resulting in the Scaled Vegetation Density (SVD) (eq. 4).

VD—=VDin
VDmax—VDmin

SVD = x 100 4)

This normalization makes the SVD values easily interpretable,
with 0 indicates minimal vegetation density corresponding
to bare soil, while 100 denotes the maximum vegetation
density.
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Shadow Index (SI): Forests are inherently three-
dimensional structures characterized by the horizontal and
vertical arrangement of trees, shrubs, and other vegetation
components, along with non-living elements such as soil and
terrain features (Seidler & Bawa, 2001). The SI is designed to
evaluate variations in canopy shadow patterns that influence
spectral response, which are affected by factors such as forest
structure, age, and species composition. This index is derived
by analyzing low radiance signals captured in the visible
bands (Deka & Tripathi, 2013; Mon et al., 2012). Areas with
sparse vegetation or agricultural lands tend to exhibit low
canopy shadow indices, whereas dense or medium-dense
forests display higher SI values. SI is calculated using the
following formula (eq.5):

SI = [(256 — B)(256 — G)(256 — ) (5)

For OLI surface reflectance images, 256 will be 65536.

Scaled Shadow Index (SSI): The SSI quantifies the
spectral differences associated with mature or fully developed
forests, which exhibit higher canopy shadow indices. It is
calculated through a linear transformation of the Shadow
Index (SI), with a scale ranging from 0 to 100; where 0
indicates the lowest shadow area (0%) and 100 signifies the
highest shadow area (100%).

Forest Canopy Density (FCD): FCD is derived by
integrating the SSI and Scaled Vegetation Density (SVD),
and it is expressed on a scale from 1 to 100. FCD is calculated
using the following formula (eq.6):

FCD = [(SVD x SSI) + 1]z — 1 (6)

To validate the accuracy of FCD estimates, the derived values
were compared with the MODIS Vegetation Continuous
Field (VCF) product available for the region. Approximately
100 random points were selected across the study area, and
FCD values were extracted from both datasets for subsequent
comparison and analysis.

2.3.2. Deforestation and change detection
Forested areas were delineated from the FCD map and
reclassified following FSI guidelines into four categories:
dense forest (>70%), moderately dense forest (40-70%),
open forest (10-40%), and non-forest. Change detection was
performed by comparing bi-temporal images, generating
a map with nine classes reflecting different transition
states. The map was represented by nine categories based
on forest density: dense forest to moderately dense forest,
dense forest to open forest, moderately dense forest to dense
forest, moderately dense forest to open forest, open forest to
moderately dense forest, unchanged category in three classes,
and deforestation (forest to non-forest).

2.3.3. Disturbance zone mapping

A disturbance zone map was created using Google Earth
imagery from 2020. Features such as highways, roads, railways,
industrial sites, settlements, and mining areas were manually
digitized. These features were geometrically corrected using
polynomial transformations and projected into the UTM
coordinate system to ensure spatial accuracy. To capture their
relative ecological impacts, several buffers were established
around each feature to quantify their ecological impact: 500 m
for mines (to account for excavation, dumps, and settlement
expansion), 100 m for settlements (to represent population
growth due to mining), 500 m for industrial sites (reflecting
large footprints and waste areas), 50 m for highways and
railways (acknowledging localized but comparatively smaller
effects) and 20 m for other roads. Overlapping bufters were
merged to delineate the composite disturbance area. The final
map was validated through field surveys, which confirmed
the reliability of the mapped disturbance patterns.

2.3.4. Long-term trend analysis
Forest degeneration and regeneration over a long period
can be detected by the temporal trend analysis (Eckert et
al.,2015; Vancutsem et al., 2021). Long-term trends of forest
degradation and regeneration were analyzed via temporal
trend analysis of NDVI, by using its extensive historical
record from Landsat sensors. NDVT’s consistent calculation
and widespread validation make it a robust metric for
monitoring vegetation dynamics over decades (Forkel et al.,
2013; Gillespie et al., 2018; Jamali et al., 2015; Ju & Masek,
2016; Martinez & Gilabert, 2009; Plessis, 1999; Sharma et
al,, 2021; Xiong & Wang, 2022; Zoungrana et al., 2018). The
analytical approach involved pixel-wise linear regression of
NDVI over time, treating time as the independent variable
and NDVT as the dependent variable (Tian et al., 2015). The
slope (B) of the regression line reflects the average annual
rate of NDVI change per pixel, serving as an indicator of
long-term vegetation gain or loss. A low slope indicates
minimal or no change, whereas a high positive or negative
slope indicates significant vegetation increase or decline,
respectively. This trend analysis was conducted using the R
programming language. The period analyzed spanned from
1988 to 2021, utilizing 33 annual NDVI layers. These layers
were created by generating median composites from Landsat
surface reflectance data prior to NDVI calculation, ensuring
consistency and minimizing the influence of transient
seasonal effects. The slope was spatially mapped to visualize
long-term vegetation dynamics across the study area (eq. 7).

SLOPE (B) = nYl, iximage; — (X, D)X=, image;) (7)
n¥i, i? - Bk, i)z
where n indicates the studied years; i indicates the serial
number of the year, and image i is the image (NDVI) value
of the year i.
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3. Results
3.1. Forest cover density

The comparison of the Advanced Vegetation Index (AVI)
between 1988 and 2021 reveals a significant decline in
dense vegetation cover across Keonjhar district, particularly
in its northern regions. This trend is primarily driven by
extensive mineral extraction activities, which have led to the
conversion of forested land into bare surfaces.

The Bare Land Index (BI) corroborates this observation,
showing a corresponding rise in bare land areas during the
same period, especially in zones where canopy cover has
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been markedly reduced. Concurrently, the Spectral Index (SI)
values exhibit a downward trend from 1988 to 2021, reflecting
a decline in vegetation density. The most notable decreases in
SIwere observed in grasslands, agricultural fields, and vacant
lands, compared to relatively stable or less impacted forested
zones. While the overarching trend indicates widespread
forest degradation, localized signs of regeneration are evident
in older mining sites and patches previously classified as
bare land. These areas show modest recovery, suggesting
ongoing successional processes post-disturbance. Spatial
distribution maps of AVI, BI, and SSI (Figs 3 and 4) illustrate
these temporal changes, emphasizing the spatial variability of
vegetation dynamics over the three decades.
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Figure 3. (A) AVI maps of 1988 and 2021, (B) BI maps of 1988 and 2021, (C) SSI maps of 1988 and 2021
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Quantitative analysis indicates that forest cover in
Keonjhar declined from 3,640.53 km” (44.06% of the district)
in 1988 to 3,135.73 km?* (37.95%) in 2018, representing a net
loss of approximately 504.80 km® or 6.11%. The most affected
categories were moderately dense and open forests, which
decreased by 272.12 km? (—3.29%) and 316.83 km* (—3.83%),
respectively. Interestingly, dense forest patches showed
a slight but notable increase (+56.20 km?, +0.68%), likely
reflecting the persistence of core forest areas less impacted
by anthropogenic activities. Extending the analysis to 2021
reveals that dense forest cover further declined by nearly 9%
in the Joda, Koida, and Lahunipara blocks, predominantly
due to the transformation of medium-density forests into
open forests and bare land. Additionally, approximately 15%
of the open forest along forest edges was converted into
bare land, although some areas exhibited minor recovery,
with about 6% of forest cover increasing in the Anandapur,
Harichandanpur, and Telkoi regions.

Similarly, Sundargarh district experienced deforestation,
with forest cover decreasing from 4,655.74 km” (48.05%)
in 1988 to 4,257.39 km? (43.94%) in 2018, a net loss of
398.35 km? or 4.11%. The most significant reduction
occurred in dense forests (—267.61 km?* or —2.76%), while
moderately dense forests expanded slightly (+66.84 km?
or +0.69%), possibly reflecting re-growth or regeneration
in certain zones. Open forests saw a considerable decrease
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(-195.51 km? or —2.02%) over this period. Between 1988
and 2021, medium forest cover increased by nearly 3% in
the Gurundia, Rajganjpur, and Lephripara blocks, although
other areas such as Bisra, Rajganjpur, and Lahunipara showed
pronounced forest loss. Figure 5 illustrates the changes in
forest cover at the block level.

At the broader landscape scale, the combined forest cover
across both districts diminished from 8,263.15 km? in 1988
to 7,333.90 km? in 2018, corresponding to a net loss of
929.25 km” or 5.18%. The most substantial reductions were
observed in open forests (-512.65 km?), followed by dense
(-211.56 km?) and moderately dense forests (—205.04 km?).
These changes are most pronounced in the Joda, Bansapal,
Ghatagaon, Koida, Bisra, Rajganjpur, and Lahunipara
blocks. Spatial maps of FCD (Fig. 4) and summary statistics
(Table 1) provide further insights into the extent and spatial
distribution of forest loss over this period.

Figure 6 depicts the spatial distribution of forest cover
change phenomena within the study area, while Figure 7
illustrates the corresponding percentage changes over
the period from 1988 to 2021. The analysis reveals that
approximately 42% of forested pixels experienced class
transitions during this period, highlighting significant
landscape dynamics influenced by various anthropogenic
activities, notably mining and industrial expansion. Among
these transitions, 9% of dense forest pixels shifted to
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Figure 4. (A) FCD maps of 1988 and 2021, (B) Classified FCD maps of 1988 and 2021
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Table 1. Forest and Non-forest area in Keonjhar and Sundargarh districts in the years 1988 and 2021

Dense forest Moderately dense forest Open forest Total forested area Non-forest
Area (km?) % Area (km?) % Area (km?) % Area (km?) % | Area (km?) %
1988 Keonjhar 930.88 11.27 1594.19 19.29 1115.46 13.50 3640.53 44.06 4621.96 55.94
2018 987.08 11.95 1322.07 16.00 798.63 9.67 3135.73 37.95 5126.76 62.05
Change 56.20 0.68 -272.12 3.29 -316.83 3.83 -504.80 6.11 504.80 6.11
1988 Sundargarh 1258.07 12.98 2033.81 20.99 1329.89 13.73 4655.74 48.05 5033.77 51.95
2018 990.46 10.22 2100.65 21.68 1134.38 11.71 4257.39 43.94 5432.12 56.06
Change -267.61 2.76 -66.84 0.69 -195.51 2.02 -398.35 4.11 398.35 4.11
1988 Total 2189.10 12.19 3628.39 20.21 2445.66 13.62 8263.15 46.03 9688.65 53.97
2018 1977.54 11.02 3423.35 19.07 1933.01 10.77 7333.90 40.85 | 10618.10 | 59.15
Change -211.56 1.18 -205.04 1.14 -512.65 2.86 -929.25 5.18 929.45 5.18
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Figure 7. Percentage of
changes in different forest
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moderately dense forest, predominantly in the Joda, Banspal,
Lahunipara, Koida, Bisra, Lathikata, Gurundia, Hemgir,
and Rajganjpur blocks. These regions are characterized by
intensive mining operations and industrial development,
which have substantially altered the forest structure.
Previous studies (Krishna et al., 2020) have linked such
land use changes to the proliferation of steel and sponge
iron industries concentrated in Joda and Koida, emphasizing
the profound impact of industrialization on forest dynamics.
Additionally, about 8% of moderately dense forest pixels
degraded into open forest, indicating ongoing forest thinning
and land degradation across the study area. Interestingly,
localized regeneration activities were observed in specific
regions: portions of moderately dense and open forests in
the Telkoi, Anandpur, Harichandanpur, and Ghatagaon
forest ranges exhibited signs of recovery, primarily driven by
reforestation initiatives and plantation efforts. These positive
trends suggest the potential for ecological restoration in areas
where conservation measures are actively implemented.

TForest types
I Dense forest
Land use types
-Mining area A Industrial zone M Settlement

Moderately dense forest

— Roads == National highway === Railway

0 40 80

Open forest

Opverall, deforestation accounted for approximately 6%
of the total forest area, with the most significant losses
occurring within Keonjhar district—particularly in Joda
and Banspal blocks—and Sundargarh district, especially
in Koida, Lahunipara, Balisankar, and Hemgiri blocks. In
Sundargarh, industrial expansion has played a crucial role
in driving forest loss, especially in the Rajganjpur, Lathikata,
and Bisra blocks, which have experienced notable increases
in mining activity (Kumar et al., 2012; Lohchab & Saini,
2018). Figure 8 illustrates the distribution of disturbance
zones within the study area, highlighting regions of intense
anthropogenic pressure. Areas with negative slope values in
the terrain correspond to zones of forest disturbance, where
rapid land cover transformation is evident.

3.2. Trend analysis

In Keonjhar, the Joda and Bansapal blocks exhibit the highest
negative slope trends, reflecting ongoing deforestation driven

Figure 8. Human interferences in the forested areas of Sundargarh and Keonjhar districts
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by extensive mining activities. Joda, a highly urbanized and
industrialized city,is a prominent hub for iron and manganese
mining, with suburban and urban expansion contributing
to forest clearing. Despite ongoing deforestation, traces of
reforestation and afforestation efforts are observable due
to planned urban development strategies. Bansapal and
Kendujhargarh also show negative trends, attributable to
mining and urbanization. Conversely, regions such as Telkoi,
Anandpur, and Harichandanpur reveal positive slope trends
consistent with successful reforestation and plantation
initiatives aimed at ecological restoration. In Sundargarh
district, multiple blocks including Koida, Lahunipara, Kutra,
Hemgiri, Gurundia, Kuanrmunda, Nuagaon, Rajagangapur,
and Bisra exhibit negative slope trends, mainly due to
extensive mining and industrial activities. Koida stands out
with over 100 active mining sites for iron and manganese
ores and hosts major industrial groups such as the Rungta,
S.R., and Adhunik groups, which have substantially altered

Slope
I Greatest disturbance | Disturbance
[ stability Il Recovery

80
km

0 40

the landscape. Lahunipara and Gurundia also contain
significant mineral deposits, including iron and manganese,
contributing to ongoing land degradation. Additionally,
limestone deposits in Nuagaon, Rajagangapur, Kutra, and
Kuanrmunda, along with coal mines in Hemgiri, further
intensify land use changes. Urbanization has accelerated in
Bisra in recent years, further exacerbating forest loss. Figures
9 and 10 provide a detailed visualization of the NDVTI trend
analysis from 1988 to 2021 and the block-wise distribution
of slope values, respectively. The NDVI analysis depicts areas
of persistent vegetation decline, especially in mineral-rich
zones, whereas the slope map highlights terrain-related
vulnerabilities to land degradation. The combined insights
emphasize the complex interplay between industrial
activities and natural land cover changes, reflecting both
the challenges and opportunities for sustainable forest
management and ecological restoration in the region.

Figure 9. Trend analysis map of NDVI from 1988 to 2021
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Figure 10. Block-wise ranges of slope value
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3.3. Comparison of the MODIS VCF product and Forest
Canopy Density map of 2021

To validate the Forest Canopy Density (FCD) model results,
we employed the MODIS Vegetation Continuous Field
(VCF) product as a reliable reference dataset. A total of 100
randomly selected points across the forested regions within
the study area were established for this purpose. The values
of canopy cover density extracted from the FCD model
were correlated with the corresponding values obtained
from the MODIS VCF product. The correlation analysis
yielded a coeflicient of determination (R?) of 0.73, which
was statistically significant at p < 0.01, indicating a robust

(a) MODIS VCF product (2021)

B rorest

0 40 80
e e | 111}

agreement between the two datasets. This high correlation
underscores the reliability of the FCD model in accurately
representing forest canopy conditions (Figs 11 and 12).

The utility of canopy cover mapping extends beyond
mere forest health assessment; it is instrumental in guiding
policy formulation and implementing forest management
programs aimed at sustainable development (Godinho et
al,, 2016; Fasil et al., 2022). Conversely, extensive canopy
cover loss poses a severe threat to ecosystem stability,
primarily driven by anthropogenic activities such as urban
expansion, industrialization, and mineral extraction (Hoang
& Kanemoto, 2021).

(b) Forest density map (2021)

Figure 11. (a) MODIS VCF product of 2021, and (b) FCD map of 2021
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4. Discussion and Conclusions
4.1. Discussion

In this study, long-term changes in canopy cover density
were analyzed over the period from 1988 to 2021, employing
the FCD model integrated with multiple spectral indices,
namely the Average Vegetation Index (AVI), Brightness
Index (BI), and Shadow Index (SI). A notable limitation of
traditional vegetation indices (VIs) is saturation in dense
forest conditions, where these indices plateau, failing to
detect additional canopy growth or decline (Gao et al.,
2023; Wang et al., 2023; Zhang et al., 2023). To overcome
this, the FCD model incorporates the Shadow Index, which
intensifies with increasing canopy density as shadows
deepen, providing a more sensitive measure of dense forest
structure (Ismail et al., 2017; Prodromou et al., 2022). This
multi-index approach enhances the robustness and reliability
of the model, particularly in densely forested regions, thus
increasing confidence in the reported temporal changes in
forest cover within Odisha.

The analysis reveals substantial forest disturbances in
two of Odisha’s key mineral-rich districts, Keonjhar and
Sundargarh. Our findings indicate that approximately
211 km? of dense forest cover was lost over the study
period, predominantly in core forest zones and their
peripheries. This loss is primarily linked to escalating mining
activities, which drive extensive clearing of forestland to
accommodate mineral extraction operations. Mining-
related processes generate considerable dust emissions,
escalate transportation infrastructure development, and
necessitate road construction, all of which contribute to
accelerated deforestation, especially at forest margins and
in surrounding landscapes.

These results are consistent with broader historical trends
of deforestation across Odisha. According to historical
records, from 1935 to 2010, the state experienced a net
decrease of approximately 40.5% in forest cover, translating
to an average annual deforestation rate of 0.69% (Sudhakar
Reddy et al., 2018). More recent satellite-based assessments
and global forest monitoring platforms indicate that
Odisha lost around 1,470 km?® of tree cover between 2001
and 2024 (https://www.globalforestwatch.org/dashboards/
country/IND/26/?category=forest-change). Specifically, in
Keonjhar district alone, the loss amounted to approximately
59.7 km? of forest cover during this period, with a recent
government report revealing that 64 mining projects
have diverted 104.51 km® of forest land over the past 38
years—the highest in any district within Odisha since
1980  (https://india.mongabay.com/2019/09/tribal-way-
of-life-hits-rock-bottom-even-as-mining-hits-new-highs-
in-odisha/). Multiple studies have further reinforced these

observations; for example, Mishra et al. (2022) reported
that between 2000 and 2018, Keonjhar experienced a loss of
111.91 km? of forest cover, while Sundargarh lost 34.87 km?
in the same timeframe. Hota and Behera (2015, 2016, 2019)
provided a comprehensive assessment of mining-induced
pressures across Odisha, highlighting that approximately
99% of the state’s mineral value is concentrated in districts
such as Angul, Jajpur, Jharsuguda, Keonjhar, Koraput, and
Sundargarh. Keonjhar alone harbors nearly one-third of
Odisha’s mineral reserves, and together with Sundargarh,
these districts contribute over 50% of the state’s total mineral
wealth. The analysis further indicates a marked increase in
the production of chromite, coal, iron ore, and bauxite over
the study period, while manganese mining showed a notable
decline (Hota & Behera, 2019). These mineral extraction
activities, in conjunction with expanding infrastructure
and urbanization, continue to exert immense pressure
on Odisha’s forests, leading to persistent degradation and
fragmentation of forest ecosystems.

Beyond the quantifiable loss of forest area, the ecological
consequences of forest fragmentation command particular
concern due to their profound impacts on biodiversity,
ecosystem stability, and resilience. Long-term landscape
analyses reveal that forest fragmentation in Odisha has
intensified markedly over the past century. Specifically,
the number of forest patches per 1,000 square kilometers
increased dramatically from 2.463 in 1935 to 15.102 in
2010, demonstrating a near sixfold rise in fragmentation.
Concurrently, the average patch size diminished substantially
from approximately 33.2 km? to a mere 3.2 km?> (Sudhakar
Reddy et al., 2018). These shifts highlight a transition towards
alandscape characterized by numerous small, isolated forest
fragments, which significantly compromises ecosystem
integrity and functions. Ecologically, fragmentation
impacts are far-reaching. A reduction in contiguous forest
habitat leads to habitat loss for wildlife species, resulting in
population declines and increased extinction risks, especially
for specialized and endemic species that depend on interior
forest conditions. Fragmentation also severs gene flow
among populations, heightening the likelihood of inbreeding
depression and reducing genetic diversity, which diminishes
overall adaptability to environmental changes (Hermes et al.,
2016; Ramsay et al., 2023). Moreover, as forests become more
fragmented, they develop increased edge habitats. These edge
zones experience altered microclimatic conditions such as
higher temperature fluctuations, increased light penetration,
and wind exposure, which favor generalist and invasive
species over native forest interior specialists (Ewers &
Banks-Leite, 2013; Magnago et al., 2015; Pfeifer et al., 2017).
This shift can lead to a decline in biodiversity and disrupt
ecosystem functions such as pollination, seed dispersal, and
nutrient cycling.
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In our current study, the loss of approximately 929.25 km*
of forest cover further illustrates the severity of ecological
decline. This numeric reduction is not merely a measure of
spatial contraction; it signifies a deterioration in ecological
health and system resilience attributed to fragmentation pro-
cesses. To reinforce these findings, Normalized Difference
Vegetation Index (NDVI)-based trend analyses were em-
ployed to assess spatial variations in forest canopy dynamics
across different administrative blocks. The resulting spatial
maps of slope values reveal that regions exhibiting negative
trends; indicative of canopy decline correlate strongly with
known hotspots of mining and industrial activity. This spatial
concordance confirms that anthropogenic pressures are pri-
marily responsible for the observed degradation rather than
natural variability. Conversely, some regions display posi-
tive NDVT trends, associated with reforestation initiatives,
afforestation, or plantation programs, thereby illustrating
potential areas of recovery. These complementary analyses
enhance the robustness of the FCD model’s ability to detect
both degradation and regeneration processes, providing vital
insights for targeted conservation efforts and adaptive forest
management.

The deterioration of forest canopy density in Keonjhar
and Sundargarh districts is attributable to an intricate
web of human activities, with mining and associated
industrialization acting as primary drivers. Mining exerts
both direct and indirect ecological pressures. Directly, it
involves the physical clearing of vast tracts of forested land
to establish pits, waste dumps, and processing facilities,
leading to permanent loss of vegetation cover. Indirectly,
mining catalyzes extensive infrastructure development,
especially road networks, which fragment forests, enabling
further encroachment for agriculture, settlement, and illegal
extraction activities. These roads facilitate human access,
exacerbate habitat disturbance, and elevate risks of human-
wildlife conflicts and vehicle collisions.

Urbanization, though often considered a secondary
driver globally, plays a significant localized role in districts
like Keonjhar and Sundargarh. Urban expansion alters
land cover, increases impervious surfaces, and modifies
hydrological regimes. Such changes intensify surface runoff,
soil erosion, and local temperature increases (urban heat
islands). Additionally, urban development often promotes
deforestation for infrastructure and housing, while diverting
agricultural lands for urban use can trigger compensatory
deforestation elsewhere, contributing further to landscape
fragmentation (Basu & Nayak, 2011; Kumar, 2014; Mishra,
2010; Mishra & Pujari,2008). The cumulative effect of mining,
industrial growth, and urban expansion creates a reinforcing
cycle that accelerates forest loss and fragmentation, thereby
undermining the ecological stability of Odisha’s resource-
rich districts.

Collectively, these findings reveal that forest degradation
in Keonjhar and Sundargarh transcends simple area
loss; it involves profound structural and functional
transformations of the forest landscape. The combined
impacts of mining-induced industrialization and localized
urban expansion in extensive deforestation,
fragmentation, and habitat degradation. These changes
threaten biodiversity through habitat loss and altered
community compositions, compromise ecosystem services,

result

including carbon sequestration, soil fertility, and water
regulation and jeopardize the long-term sustainability of
forest ecosystems. Addressing these challenges warrants
integrated land-use planning, sustainable mining practices,
and active forest restoration efforts to safeguard ecological
integrity. Importantly, the synergy of long-term remote
sensing analyses combining multi-index FCD modeling,
NDVI trend mapping, and spatial pattern analysis provides
a comprehensive framework to monitor, understand, and
mitigate ongoing forest fragmentation in Odisha, ensuring
informed conservation strategies in the face of rapid
developmental pressures.

4.2. Conclusion

Analysis of forest canopy density in Keonjhar and Sundargarh
districts from 1988 to 2021 reveals a significant decline in
forest health, primarily driven by anthropogenic pressures.
Using the Forest Cover Density (FCD) model, our results
show aloss of 416.6 km? of dense and moderately dense forest
cover over this period. Conversely, only a minimal proportion
of open and degraded forests showed signs of regeneration,
indicating that natural recovery processes are insufficient
to counterbalance ongoing loss. Notably, 211 km?® of dense
forest was lost, with the most severe impacts concentrated
around mining clusters such as Joda, Koida, Lahunipara, and
Rajagangpur. This spatial pattern aligns with the proximity
of forests to active mining leases, industrial complexes, and
related infrastructure, which our disturbance parameter
analysis confirms. A high proportion of forest pixels within
500 meters of such development shifted from denser classes
to open or bare land, underscoring mining expansion,
industrialization, road construction, and settlement growth
as primary drivers of deforestation.

These observed patterns are consistent with global trends
of increasing fragmentation and shrinking core forest
areas, as reported by Hansen et al. (2020). In Keonjhar and
Sundargarh, fragmentation has accelerated, resulting in
smaller, isolated patches that diminish habitat continuity
and resilience. Such fragmentation exacerbates edge effects,
facilitates the invasion of non-native species, and accelerates
biodiversity decline, undermining ecosystem stability.
While mining remains critical for regional development,
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its ecological impacts can be mitigated through stricter
regulatory enforcement, adoption of environmentally
sustainable technologies, and active ecological reclamation
of mined lands. Practices like concurrent reclamation,
dust suppression, water treatment, and systematic post-
mining land-use planning are vital to minimize ecological
damage while supporting resource extraction. Moreover,
sustainable forest management approaches should embody
a broader paradigm shift. Empowering local communities
via the implementation of the Forest Rights Act can bolster
conservation at grassroots levels, while integrating principles
of reconciliation ecology can help align extractive activities
with habitat preservation. Infrastructure planning should
incorporate wildlife corridors and measures to reduce habitat
fragmentation, and independent audits of afforestation and
corporate social responsibility (CSR) initiatives are essential
for accountability. Although our classification achieved
a high overall accuracy (~90%), future assessments would
benefit from finer-resolution data and explicit metrics of
fragmentation to enhance understanding of forest dynamics.
Nonetheless, this study provides compelling evidence of
substantial forest degradation in Keonjhar and Sundargarh,
primarily driven by mining-related activities. Without
transformative governance frameworks emphasizing
ecological accountability and sustainable development, the
persistence of these forests and their invaluable ecosystem
services remains increasingly at risk.
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