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Abstract. Strategic planning in developed and developing countries has significantly benefited from early assessment, identification and crop 
production monitoring. Remote sensing surveillance of crop health has brought significant benefits to farmers regarding early detection of 
latent issues, such as nutrient deficiencies or crop ailments, and taking remedial action. The study used geospatial techniques to monitor the 
orchards and crops of Halani in the Pakistani province of Sindh, using GeoEye and Landsat-8 satellite imagery. The absorbance of chlorophyll 
content in six fruit trees: mango (Mangifera indica L.), banana (Musa acuminata Colla), musambi (Citrus limetta Risso), kino (Citrus 
aurantium L.), lemon (Citrus limon (L.) Osbeck) and guava (Psidium guajava L.), as well as four crops: maise (Zea mays L.), rice (Oryza 
sativa L.), cotton (Gossypium herbaceum L.), and sugarcane (Saccharum) were recorded spectrophotometrically using a Beckman Coulter 
DU-530 single cell module spectrophotometer at 648 nm and 665 nm (homogenised in 100% ethanol), and non-destructive chlorophyll using 
a SPAD-502 portable chlorophyll meter (Minolta Corporation, New Jersey, USA) showed a strong positive correlation. The results of chlorophyll 
absorbance showed the same trend in crops through satellite data and laboratory analysis. Chlorophyll content and NDVI showed a positive 
correlation. The R² value for rice and banana was 0.9925 and 0.9578, respectively, while the SPAD and chlorophyll R² for rice was 0.838 and 
0.75 for banana. The overall results indicate high chlorophyll content in the leaves of orchards rather than crops. The study’s outcomes show 
that satellite data are a potentially reliable and resourceful tool for early assessment of the reliability of agricultural monitoring. The health 
and growth of crops can be monitored with satellite data, which are ultimately used for yield prediction, consequently helping growers 
strategically harvest and market.
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1. Introduction

Primary valuation and precise monitoring of crops 
condition and production significantly deliberately assist 
the planning for the established and emergent nations 
(Sinha & Dhanalakshmi, 2022; Wu et al., 2023). Worldwide 
increase in temperature, erratic patterns of rainfall, surging 
of flood levels, and drought critically affect the agriculture 
sector than other industries (Chandio et al., 2020; Ahsan et 
al., 2020; Ishaque et al., 2022). Climate change and urban 
sprawl creating chaotic condition and peering pressure 
intensify the demands of cereal crops (Chandio et al., 2023). 
Abubakar (2020) noted, increasing temperature shifted 
monsoon pattern in Pakistan which ultimately amplified 
manifestation of cyclones, effects critically to the agricultural 
sector. According to Ahmad et al. (2015) in vulnerable index, 
Pakistan ranks fifth most susceptible country, which is greatly 
affected by climate change. Over burden of population 
increases the demand for urban land creating devastating 
consequences in Pakistan (Anwar et al., 2020; Munawar et 
al., 2023). As economy of Pakistan depends significantly on 
agriculture chiefly cereal crops, it’s a dire need to valuate crop 
yield as early as possible. Hassan and Goheer (2021), applied 
multispectral vegetation indices using remote sensing and 
GIS techniques and predicted precise crop yield two months 
prior to harvesting. Gumma et al. (2020) calculated the 
aptitudes and parameters of mapping in the cultivated areas 
in the Rabi season conforming patterns of crops.

In order to identify various crop varieties Remote sensing 
data plays a crucial role. In their recent study, Snevajs et 
al. (2022) anticipated a  method aimed at enabling the 
supervised categorization of Sentinel-1 and Sentinel-2 data 
for the purpose of crop type identification. Remote sensing 
technology enables the acquisition of vast quantities of data 
within a condensed timeframe. Remote sensing techniques 
has distinct characteristics that enable the acquisition of 
geographical and temporal data pertaining to various regions 
and events in a comprehensive manner. The increasing need 
for innovative, scientific, and technical assessments has 
proven beneficial for cultivators in improving plant health, 
agricultural sustainability, and overall efficiency. Remote 
sensing technologies offer new possibilities for scientists to 
integrate biology with smart agriculture in order to achieve 
increased crop yields and reduced inputs in plantations 
(Ennouri & Kallel, 2019).

Various satellite crop detection methods can be opted 
to identify diverse categories of field crops, thereby 
contributing to the development of food security. Remote 
Sensing technologies had been extensively used by various 
global organizations, GEO monitoring, (FAO, Food 
and Agricultural Organization) agriculture production 
monitoring, and the common agriculture policy (Whitcraft 

et al., 2015; Schmedtmann & Campagnolo, 2015; Reynolds 
et al., 2000), along with local sectors such as business owners, 
food industries, for strategic policymaker, sustainability 
forecasting, and investment (Rembold et al., 2013). 
Multispectral satellite images are used for the recognition 
of crops ultimately develop Thematic maps by processing 
data through image classification, pixel based supervised 
classification theoretically more accurate (Jog & Dixit, 2016; 
Boori et al., 2018; Pech-May et al., 2022).

In the agricultural sector since several decades, soil 
indices, water indices and vegetation indices derived from 
multispectral sensors have been extensively utilized. These 
indices play a crucial role in monitoring crop health and 
aiding farmers in making informed decisions. Spectral 
indices are derivative of mathematical combination of two or 
more spectral bands, resulting in a merged single value (Gu et 
al., 2011). Matsushita et al. (2007) proclaim that Normalized 
Difference Vegetation Index (NDVI) is commonly used 
indices. The Normalized Difference Vegetation Index 
(NDVI) has been found to have a  positive correlation 
with many physiological parameters of plants, including 
photosynthetic efficiency, potassium content, phosphorous, 
foliar nitrogen, and leaf chlorophyll content (Shrestha et 
al., 2023). Additionally, NDVI has been associated with the 
overall greenness of vegetation (Xue et al., 2023).

Spectroscopy is a  very accurate and non-invasive 
methodology that provides valuable insights into many 
physiological processes occurring within plants and trees. 
Once incorporated into compact portable devices, it has the 
capability to deliver immediate and precise outcomes inside 
various settings such as field environments, forests, and 
laboratory settings. Currently, there is a limited amount of 
research conducted on the subject region utilizing GIS and 
spectrometer methodologies. The purpose of the study was 
to determine the agricultural fields in the designated study 
area based on the predominant crops present. Additionally, 
the study aimed to compare the chlorophyll content in 
various crops and orchards using satellite imagery analysis. 
Furthermore, the study sought to create a  normalized 
difference vegetation index (NDVI) and examine its spatial 
distribution. Finally, the study aimed to establish a correlation 
between in-situ data and satellite data in order to identify the 
relationship between NDVI and chlorophyll values.

2. Materials and methods

2.1. Research field

The study region under consideration is Peer Wario, 
Halani, of District Naushahro Feroze in the province of 
Sindh, Pakistan. It is geographically situated at coordinates 
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27°05 ́ 11” N and 68°18 ́ 47” E, as seen in Figure 1. The 
accurate forecasting of weather conditions in a  given 
region significantly influences agricultural productivity. 
The climatic conditions in District are conducive to the 
cultivation of various crops including as maize, wheat, 
rice, and orchard fruits including mango, orange, and 
guava, among others. According to Brewer et al. (2022), 
the summer season experiences temperatures reaching as 
high as 45℃, while the winter season sees temperatures 
dropping as low as 5℃. The annual precipitation levels are 
consistently low, with an average rainfall of 45 mm during 
the summer season.

The region exhibits a  combination of mechanized 
agricultural practices alongside the utilization of traditional 
ways. The farmers employed a weekly irrigation method 
called „Wara Bandi” to hydrate their fields using canal 
water. The implementation of an unlined irrigation system 
resulted in a  detrimental scenario for the farmed land, 
leading to the transformation of the area into a  saline 
environment. Farmers are adapting the issue of waterlogged 
areas by transforming them into fish farms. Therefore, these 
regions are exhibiting a notable attraction for avian species 
native to Siberia. Salinity is a global concern, resulting in 
the transformation of vast expanses of land into barren 
terrain.

2.2. Data collection

A GPS-coordinated survey was conducted to collect samples 
of leaves from the fields containing maize (Zea mays L.), kino 
(Citrus aurantium L.), cotton (Gossypium herbaceum L.), 
mango (Mangifera indica L.), rice (Oryza sativa L.), lemon 
(Citrus limon (L.) Osbeck), musambi (Citrus limetta Risso), 
sugarcane (Saccharum), banana (Musa acuminata Colla) and 
guava (Psidium guajava L.). The botanical nomenclature of 
the studied plants is given according to World Flora Online 
(WFO, 2023).

Satellite data of Landsat-8 was attained in 2014 from the 
USGS-Earth Explorer. The cartographic representation of 
the study area has been obtained from the Pakistan Bureau 
of Statistics. Scanned image has been georeferenced and 
digitized through ArcGIS 10.3.1.

2.3. Quantification of chlorophyll using the SPAD 
method

Portable Chlorophyll meter SPAD-502 (obtained data in 
arbitrary units) was used to estimate chlorophyll content. 
The quantification of chlorophyll content in wheat and 
orchard leaf samples was conducted using a conventional 
methodology.

Figure 1. Study area
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2.4. Quantification of chlorophyll content using 
a spectrophotometer

The leaf chlorophyll concentration of various plant 
species, was determined through extraction from a  95% 
ethanol solution and subsequent spectrophotometric 
analysis. The Beckman Coulter DU-530 single cell module 
Spectrophotometer was employed for this purpose, following 
the methodology outlined by Ritchie (2006). The leaves were 
carefully weighed and thereafter placed into 2 ml Eppendorf 
tubes that were pre-filled with a solution of 95% ethanol. 
Please ensure that all Eppendorf tubes are thoroughly mixed 
using a  Vortex meter 300. To mitigate evaporation, it is 
advisable to employ aluminum foil to cover the tubes. Subject 
the individual to a period of sensory deprivation lasting 
for a duration of three consecutive days. The chlorophyll 
extract was poured into a test tube and left undisturbed for 
a duration of three days, resulting in the collection of a total 
volume of 3 milliliters. Measuring of optical density through 
spectrophotometer at wavelengths of 664.2 nm and 648.6 
nm, as described by Gitelson et al. (2003). The determination 
of chlorophyll content in leaves is precisely assessed by the 
method, an extraction procedure with an organic solvent 

ethanol (Sumanta et al., 2014). The obtained values are then 
translated to chlorophyll content utilizing Equation 1.

The equation (1) can be expressed as

Chl(a+b) = 5.24A664.2 + 22.24A648.6,

where A represents the absorbance.

2.5. The normalized difference vegetation  
index (NDVI)

The NDVI is extensively used remote sensing technique 
that computes the vegetation’s existence and health. This 
vegetative Index, Al-lami et al. (2021), efficiently discriminates 
green vegetation from the adjacent soil background (Fig. 
2). The image was clipped using ArcGIS 10.3.1 software. 
Subsequently, through Raster Calculator tool the NDVI of 
Landsat 8 calculated using the, Equation 2:

NDVI = (Band5- Band4) / (Band5 + Band4)

The Band-5 also known as Near Infrared Band (NIR) 
and Band-4 the Red Band are specific spectral bands of 
Landsat-8. NDVI values range from +1 to -1, where -1 is 
typically water and +1 is characteristically dense, lavish 

Figure 2. Normalize difference vegetation index
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vegetation. Consequently, NDVI can indicate healthy veg-
etation. Formally, NDVI was given by Braun and Herold 
(2004).

2.6. Determination of chlorophyll concentration

The determination of chlorophyll concentration was 
performed by employing the specific absorption coefficients 
for chlorophyll a and b as published by Fassnacht et al. (2012). 
A  random sampling technique was employed to obtain 
representative samples from each crop field, which were 
then geographically coordinated using GPS technology. The 
quantities of chlorophyll a, chlorophyll b, and carotenoids 
have been found to be positively associated with a plant’s 
photosynthetic potential and can provide insights on the 
physiological condition of the plant (Falcioni et al., 2023; 
Strzałka et al., 2003). The primary factor influencing 
chlorophyll concentration is nitrogen availability, as indicated 
by (Hill et al., 2016; Wang et al., 2023). The chlorophyll 
content can be determined using raster data with the Raster 
Calculator of Map Algebra, as described in Equation 3.

The equation (3) can be expressed as y = a + b * x.

In this study, the variables are defined as follows: 
y represents the chlorophyll content on a raster cell, while 
a and b represent the total chlorophyll values at wavelengths 
665 nm and 648 nm, respectively. Lastly, x denotes the 
Normalized Difference Vegetation Index (NDVI).

2.7. The image classification

The supervised classification is principal method for 
(LULC, Land use land cover) wherein the experts classify 
homogeneous pixels of the areas of interest within the 
image. According to Luo (2021), images transmit a  lot 
of data and perform chief role, as it’s important to get 
valuable picture info within real time. In this process, 
classification algorithm is used to regulate the classes of 
image. The image classification’s core progression is image 
feature extraction, image preprocessing and classifier 
design. Selected samples are commonly denoted as training 
regions. The choice of training locations is determined by 
the performer’s level of acquaintance with the geographical 
region and their understanding of the specific surface 
cover types depicted in the image. Therefore, the analyst is 
overseeing the process of categorizing distinct classes. All 
the sample with same pixels merged into one class as the 
system is trained to recognize spectrally comparable areas. 
In the context of supervised classification, the initial step 
involves the identification of information classes, which are 
subsequently utilized to derive the corresponding spectral 
classes.

2.8. Spectral Reflectance

In order to measure the leaves spectral reflectance seven 
samples of individuals per species, randomly chosen. 
Spectral reflectance of leaves measurements through 
Field Spec AVASPEC-2048-3-DT Avantes. The laboratory 
conducts spectral measurements within a  spectral range 
spanning from 200 to 1100 nm. The acquisition of the 
leaf ’s reflectance spectra can be achieved by calculating the 
ratio between a reflective white standard and the spectral 
radiance. Rosevear et al. (2001) elaborate that the pigments 
present in leaves have the ability to absorb light within the 
wavelength range of 400-700 nm, resulting in a decrease in 
the reflection of (PAR, Photosynthetically Active Radiation). 
The absorption pattern of the pigment plays a crucial role 
in governing the unique reflectance signatures exhibited by 
leaves. At the level of the canopy, the reflectance is influenced 
by the reflectance of individual leaves and their texture, 
whereas the determination of leaf reflectance is based on 
the chemical composition (El-Hendawy et al., 2022). Various 
reflectance indices can be employed to calculate biophysical 
factors, including biomass, photosynthetic size, radiation use 
efficiency, and water content, based on reflectance spectra.

3. Results and discussion

Significant relationships were observed between the SPAD 
(Non-destructive) measurements and the laboratory 
chlorophyll content (Destructive) in the study. The R² 
values for the different crops, namely maize, guava, cotton, 
sugarcane, mango, lemon, kino, musambi, rice, and banana, 
are as follows: cotton (R²=0.93), guava (R²=1), maize (R²=1), 
lemon (R²=0.91), sugarcane (R=0.92), kino (R²=0.99), 
mango (R²=0.94), musambi (R²=0.84), banana (R²=0.75) 
and rice (R²=0.84). These results are illustrated in Figure 3. 
Though the destructive technique is more precise as compare 
to the nondestructive technique, study shows no significant 
variation which, may associated to the genetic properties of 
plant (Ali et al., 2021).

In their study, Zhu et al. (2012) conducted a comparison 
between SPAD measurements and laboratory leaf 
chlorophyll values for several crop species. The findings of 
their investigation revealed robust relationships between 
laboratory leaf chlorophyll content and SPAD measurements. 
The utilization of remotely sensed data is a common practice 
in several applications such as LCLU mapping, evaluation 
of resources, management of land, vegetation mapping and 
modelling (Booth & Tueller, 2003; Hosseini et al., 2004; 
Henebry, 2011). The correlation among satellite images 
and ground-based data is contingent upon several aspects, 
including the time of recording, the level of precision in 
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the imagery, as well as both biological and non-biological 
elements (Huang et al., 2002; Wang et al., 2006; Soudani et 
al., 2012).

The normalized difference vegetation index (NDVI) 
is widely recognized as the most commonly employed 
vegetation index. The utilization of Landsat satellite data is 

widespread in the computation of vegetation indices such as 
NDVI (Fig. 2). Additionally, it serves as a means to monitor 
the status of both cultivated and natural vegetation, as well 
as to identify occurrences of desertification, drought, and 
deforestation (Zhang et al., 2022).

Figure 3. Relationship of total Chl(a+b) and SPAD
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The coefficients of determination for NDVI and 
Chlorophyll revealed that normalize difference vegetation 
index exhibited a strong positive correlation with laboratory 
measurements of chlorophyll concentration in both 
rice (R²=0.99) and guava (R²=0.99). Conversely, mango 
(R²=0.88), lemon (R²=0.82) and banana (R²=0.96), displayed 
significant negative correlations with NDVI respectively. 
In contrast, the estimation of chlorophyll concentration 

exhibited a  weak correlation with NDVI in sugarcane 
(R²=0.15), cotton (R²=0.10), kino (R²=0.30), musambi 
(R²=0.37), and indicating a non-significant association. On 
the other hand, maize has no correlation whatsoever (R²=0) 
as depicted in Figure 4. According to Jones et al. (2007), the 
multispectral imaging system demonstrated sensitivity to 
variations in chlorophyll and biomass output as observed 
through the analysis of NDVI data.

Figure 4. Relationship among NDVI and Chl (a+b)
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A correlation analysis was conducted to ascertain the 
correlation coefficient (r) amongst the reflectance and 
chlorophyll content. According to Davies (2009), chlorophyll 
a and chlorophyll b are the foremost types of chlorophyll 
found in plants having properties of absorbing red and blue 
light. Chl a  and Chl b exhibit distinct absorption points 
crucial for photosynthesis, occurring at wavelengths of 
663 nm and 426 nm for chlorophyll a, and 645 nm and 
455 nm for chlorophyll b, respectively. In the regression 
analysis of the chlorophyll model based on NDVI, the NDVI 
readings were designated as the independent variable, while 
the ethanol-extracted chlorophyll was designated as the 
dependent variable. The data was organized into a tabulated 
format and afterwards transformed into a raster image. The 
map illustrates that chlorophyll levels are significantly higher, 

specifically at a value of 16.11, in cultivated regions, whereas 
they are comparatively lower, with a value of 18.86, in barren 
land and water bodies (Fig. 5).

The region of interest depicted in (Fig. 6), demonstrates 
that the study area exhibits a high level of productivity in 
terms of crop and orchard production. The findings of this 
study demonstrate that supervised image classification has 
successfully recognized six distinct categories, including 
orchards, crops, barren terrain, salty pond, fresh water, and 
residential area. This identification process was facilitated 
using interactive image classification, which also enabled the 
calculation of the relevant areas for each category.

The detection of plant species by satellite remote 
sensing poses challenges, as it is a complex task. In order 
to identify plant species without causing any harm to 

Figure 5. Chlorophyll extraction
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them, it becomes imperative to develop a spectral profile 
for each individual species. The spectral characteristics of 
plant leaves exhibit a higher degree of sensitivity towards 
variations in chlorophyll concentration as opposed to the 
Normalized Difference Vegetation Index (NDVI). Indices 
in higher plants serve as indicators of disease, stress, and 
senescence. Narmilan et al. (2022) stated that ratio vegetation 
index (RVI), and difference vegetation index (DVI) showed 
a strong and positive association with the greenery content 
of sugarcane crops.

The data in Figure 7 displays the spectrum reflectance 
patterns of cotton, maize, rice, guava, mango, and banana. The 
regions of maximal sensitivity for chlorophyll concentration 
are observed at wavelengths of 550 nm and 750 nm. The 
spectrum reflections of a plant vary depending on factors 

such as plant kind, age, development stage, percentage of 
coverage, biomass, and water content within the cell (Coops 
et al., 2003; Jeganathan et al., 2010). The primary function 
of chlorophyll is to contribute to the spectral reflections of 
organisms. Noda et al. (2021) through modeling analyze that 
the seasonal variations in chlorophyll content of the species 
leads to a seasonal variation in the optical properties of leaf.

The data in Figure 7 demonstrates the spectrum 
responses of the ground based multiple samples of guava, 
cotton, mango, musambi, banana, kino, maize, and rice, 
recorded by using spectroradiometer. The reflectance 
of leaves exhibits a  decrease in the visible range of the 
electromagnetic spectrum, specifically between 330 and 530 
nm. Notably, there is a discernible fluctuation in reflectance, 
with a  maximum value occurring about 400 nm, which 

Figure 6. Land use classification
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corresponds to the green region. The pigmentation of a plant 
determines the visible part of the spectrum in green plants. 
The infrared reflectance within the wavelength range of 
600 nanometers. Tesfaye and Awoke (2021) indicated that 
different feature selection methods for the prediction of 
chlorophyll to find the best prototype model.

4. Conclusions and recomendations

There is a strong positive correlation observed between the 
SPAD values and the combined chlorophyll (a+b) content, as 
determined using regression analysis. The R² value in cereal 
crops and orchards exceeds 80%, providing evidence that 
the use of the SPAD nondestructive method is preferable 

Figure 7. Spectral signature of orchards and crops
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to the time-consuming non-destructive chlorophyll 
extraction method. The scatter diagram demonstrates 
a positive correlation between chlorophyll concentration 
and NDVI.  The laboratory study of chlorophyll content 
and the utilization of satellite data to measure chlorophyll 
levels demonstrate a  predominantly consistent pattern 
in agricultural crops. The reliability of satellite data 
for monitoring crops and orchards, specifically for the 
acquisition of chlorophyll content, has been determined to 
be a viable alternative to the labor-intensive procedures often 
conducted in laboratories. The utilization of Landsat-8, does 
not incur any financial expenses. The identification of crops 
and orchards can also be accomplished by examining the 
texture and canopy characteristics of trees.

A more extensive analysis might be conducted by access-
ing more advanced multispectral satellite data. The resolu-
tion of Landsat data is comparatively lower, specifically 30 
meters, when compared to satellite data from spot, quick 
bird, planet, and sentinel. The study findings indicate a pos-
itive correlation between chlorophyll content and NDVI as 
observed in the scatter diagram. However, it is challenging 
to accurately identify individual crops or orchards using 
Landsat data. It is advisable to employ a high-resolution 
drone for the purpose of quickly visualizing and interpreting 
the canopy and texture of orchards and crops throughout 
all seasons of the year. This study provides an overview of 
the initial and fundamental ideas about the prediction of 
chlorophyll levels using multispectral data. The potentials of 
these methods are examined in relation to estimating chlo-
rophyll content in crops and orchards within the specified 
study area. The chlorophyll concentration inside canopies 
exhibits temporal and spatial variations, necessitating a wide 
range of dynamic capabilities for chlorophyll evaluation in 
remote sensing approaches. This study has the potential to 
provide valuable insights for the advancement of precision 
agriculture practices, ultimately contributing to the enhance-
ment and upliftment of the rural population in this region.
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