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Abstract. Strategic planning in developed and developing countries has significantly benefited from early 
assessment, identification and crop production monitoring. Remote sensing surveillance of crop health has 
brought significant benefits to farmers regarding early detection of latent issues, such as nutrient 
deficiencies or crop ailments, and taking remedial action. The study used geospatial techniques to monitor 
the orchards and crops of Halani in the Pakistani province of Sindh, using GeoEye and Landsat-8 satellite 
imagery. The absorbance of chlorophyll content in six fruit trees: mango (Mangifera indica L.), banana 
(Musa acuminata Colla), musambi (Citrus limetta Risso), kino (Citrus aurantium L.), lemon (Citrus limon 
(L.) Osbeck) and guava (Psidium guajava L.), as well as four crops: maise (Zea mays L.), rice (Oryza sativa 
L.), cotton (Gossypium herbaceum L.), and sugarcane (Saccharum) were recorded spectrophotometrically 
using a Beckman Coulter DU-530 single cell module spectrophotometer at 648 nm and 665 nm 
(homogenised in 100% ethanol), and non-destructive chlorophyll using a SPAD-502 portable chlorophyll 
meter (Minolta Corporation, New Jersey, USA) showed a strong positive correlation. The results of 
chlorophyll absorbance showed the same trend in crops through satellite data and laboratory analysis. 
Chlorophyll content and NDVI showed a positive correlation. The R² value for rice and banana was 0.9925 
and 0.9578, respectively, while the SPAD and chlorophyll R² for rice was 0.838 and 0.75 for banana. The 
overall results indicate high chlorophyll content in the leaves of orchards rather than crops. The study's 
outcomes show that satellite data are a potentially reliable and resourceful tool for early assessment of the 
reliability of agricultural monitoring. The health and growth of crops can be monitored with satellite data, 
which are ultimately used for yield prediction, consequently helping growers strategically harvest and 
market.  
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1. Introduction 
Primary valuation and precise monitoring of crops condition and production significantly 

deliberately assist the planning for the established and emergent nations (Sinha & Dhanalakshmi, 

2022; Wu et al., 2023). Worldwide increase in temperature, erratic patterns of rainfall, surging of 

flood levels, and drought critically affect the agriculture sector than other industries (Chandio et 

al., 2020; Ahsan et al., 2020; Ishaque et al., 2022). Climate change and urban sprawl creating 

chaotic condition and peering pressure intensify the demands of cereal crops (Chandio et al., 2023). 

Abubakar (2020) noted, increasing temperature shifted monsoon pattern in Pakistan which 

ultimately amplified manifestation of cyclones, effects critically to the agricultural sector. 

According to Ahmad et al. (2015) in vulnerable index, Pakistan ranks fifth most susceptible 

country, which is greatly affected by climate change. Over burden of population increases the 

demand for urban land creating devastating consequences in Pakistan (Anwar et al., 2020; 

Munawar et al., 2023). As economy of Pakistan depends significantly on agriculture chiefly cereal 

crops, it’s a dire need to valuate crop yield as early as possible. Hassan and Goheer (2021), applied 

multispectral vegetation indices using remote sensing and GIS techniques and predicted precise 

crop yield two months prior to harvesting. Gumma et al. (2020) calculated the aptitudes and 

parameters of mapping in the cultivated areas in the Rabi season conforming patterns of crops. 

In order to identify various crop varieties Remote sensing data plays a crucial role. In their 

recent study, Snevajs et al. (2022) anticipated a method aimed at enabling the supervised 

categorization of Sentinel-1 and Sentinel-2 data for the purpose of crop type identification. Remote 

sensing technology enables the acquisition of vast quantities of data within a condensed timeframe. 

Remote sensing techniques has distinct characteristics that enable the acquisition of geographical 

and temporal data pertaining to various regions and events in a comprehensive manner. The 

increasing need for innovative, scientific, and technical assessments has proven beneficial for 

cultivators in improving plant health, agricultural sustainability, and overall efficiency. Remote 

sensing technologies offer new possibilities for scientists to integrate biology with smart 

agriculture in order to achieve increased crop yields and reduced inputs in plantations (Ennouri & 

Kallel, 2019). 

Various satellite crop detection methods can be opted to identify diverse categories of field 

crops, thereby contributing to the development of food security. Remote Sensing technologies had 

been extensively used by various global organizations, GEO monitoring, (FAO, Food and 
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Agricultural Organization) agriculture production monitoring, and the common agriculture policy 

(Whitcraft et al., 2015; Schmedtmann & Campagnolo, 2015; Reynolds et al., 2000), along with 

local sectors such as business owners, food industries, for strategic policymaker, sustainability 

forecasting, and investment (Rembold et al., 2013). Multispectral satellite images are used for the 

recognition of crops ultimately develop Thematic maps by processing data through image 

classification, pixel based supervised classification theoretically more accurate (Jog & Dixit, 2016; 

Boori et al., 2018; Pech-May et al., 2022).  

In the agricultural sector since several decades, soil indices, water indices and vegetation 

indices derived from multispectral sensors have been extensively utilized. These indices play a 

crucial role in monitoring crop health and aiding farmers in making informed decisions. Spectral 

indices are derivative of mathematical combination of two or more spectral bands, resulting in a 

merged single value (Gu et al., 2011). Matsushita et al. (2007) proclaim that Normalized Difference 

Vegetation Index (NDVI) is commonly used indices. The Normalized Difference Vegetation Index 

(NDVI) has been found to have a positive correlation with many physiological parameters of 

plants, including photosynthetic efficiency, potassium content, phosphorous, foliar nitrogen, and 

leaf chlorophyll content (Shrestha et al., 2023). Additionally, NDVI has been associated with the 

overall greenness of vegetation (Xue et al., 2023). 

Spectroscopy is a very accurate and non-invasive methodology that provides valuable 

insights into many physiological processes occurring within plants and trees. Once incorporated 

into compact portable devices, it has the capability to deliver immediate and precise outcomes 

inside various settings such as field environments, forests, and laboratory settings. Currently, there 

is a limited amount of research conducted on the subject region utilizing GIS and spectrometer 

methodologies. The purpose of the study was to determine the agricultural fields in the designated 

study area based on the predominant crops present. Additionally, the study aimed to compare the 

chlorophyll content in various crops and orchards using satellite imagery analysis. Furthermore, 

the study sought to create a normalized difference vegetation index (NDVI) and examine its spatial 

distribution. Finally, the study aimed to establish a correlation between in-situ data and satellite 

data in order to identify the relationship between NDVI and chlorophyll values. 

 

2. Materials and methods 
2.1. Research field 
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The study region under consideration is Peer Wario, Halani, of District Naushahro Feroze in the 

province of Sindh, Pakistan. It is geographically situated at coordinates 27°05́ 11” N and 68°18 ́

47” E, as seen in Figure 1. The accurate forecasting of weather conditions in a given region 

significantly influences agricultural productivity. The climatic conditions in District are conducive 

to the cultivation of various crops including as maize, wheat, rice, and orchard fruits including 

mango, orange, and guava, among others. According to Brewer et al. (2022), the summer season 

experiences temperatures reaching as high as 45℃, while the winter season sees temperatures 

dropping as low as 5℃. The annual precipitation levels are consistently low, with an average 

rainfall of 45 mm during the summer season.  

The region exhibits a combination of mechanized agricultural practices alongside the 

utilization of traditional ways. The farmers employed a weekly irrigation method called "Wara 

Bandi" to hydrate their fields using canal water. The implementation of an unlined irrigation 

system resulted in a detrimental scenario for the farmed land, leading to the transformation of the 

area into a saline environment. Farmers are adapting the issue of waterlogged areas by 

transforming them into fish farms. Therefore, these regions are exhibiting a notable attraction for 

avian species native to Siberia. Salinity is a global concern, resulting in the transformation of vast 

expanses of land into barren terrain. 
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Figure 1. Study area 

 

2.2. Data collection 

A GPS-coordinated survey was conducted to collect samples of leaves from the fields containing 

maize (Zea mays L.), kino (Citrus aurantium L.), cotton (Gossypium herbaceum L.), mango 

(Mangifera indica L.), rice (Oryza sativa L.), lemon (Citrus limon (L.) Osbeck), musambi (Citrus 

limetta Risso), sugarcane (Saccharum), banana (Musa acuminata Colla) and guava (Psidium 

guajava L.). The botanical nomenclature of the studied plants is given according to World Flora 

Online (WFO, 2023).  

Satellite data of Landsat-8 was attained in 2014 from the USGS-Earth Explorer. The cartographic 

representation of the study area has been obtained from the Pakistan Bureau of Statistics. Scanned 

image has been georeferenced and digitized through ArcGIS 10.3.1. 

 

2.3. Quantification of chlorophyll using the SPAD method 
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Portable Chlorophyll meter SPAD-502 (obtained data in arbitrary units) was used to estimate 

chlorophyll content. The quantification of chlorophyll content in wheat and orchard leaf samples 

was conducted using a conventional methodology. 

 

2.4. Quantification of chlorophyll content using a spectrophotometer 

The leaf chlorophyll concentration of various plant species, was determined through extraction 

from a 95% ethanol solution and subsequent spectrophotometric analysis. The Beckman Coulter 

DU-530 single cell module Spectrophotometer was employed for this purpose, following the 

methodology outlined by Ritchie (2006). The leaves were carefully weighed and thereafter placed 

into 2 ml Eppendorf tubes that were pre-filled with a solution of 95% ethanol. Please ensure that 

all Eppendorf tubes are thoroughly mixed using a Vortex meter 300. To mitigate evaporation, it is 

advisable to employ aluminum foil to cover the tubes. Subject the individual to a period of sensory 

deprivation lasting for a duration of three consecutive days. The chlorophyll extract was poured 

into a test tube and left undisturbed for a duration of three days, resulting in the collection of a 

total volume of 3 milliliters. Measuring of optical density through spectrophotometer at 

wavelengths of 664.2 nm and 648.6 nm, as described by Gitelson et al. (2003). The determination 

of chlorophyll content in leaves is precisely assessed by the method, an extraction procedure with 

an organic solvent ethanol (Sumanta et al., 2014). The obtained values are then translated to 

chlorophyll content utilizing Equation 1. 

The equation (1) can be expressed as  

                                       Chl(a+b) = 5.24A664.2 + 22.24A648.6,  

where A represents the absorbance. 

2.5. The normalized difference vegetation index (NDVI) 

The NDVI is extensively used remote sensing technique that computes the vegetation’s existence 

and health. This vegetative Index, Al-lami et al. (2021), efficiently discriminates green vegetation 

from the adjacent soil background (Fig. 2). The image was clipped using ArcGIS 10.3.1 software. 

Subsequently, through Raster Calculator tool the NDVI of Landsat 8 calculated using the, Equation 

2: 

                              NDVI = (Band5- Band4) / (Band5 + Band4) 

http://researcherslinks.com/current-issues/An-Evaluation-Study-for-Chlorophyll-Estimation-Techniques/14/1/4316/SJA_37_4_1458-1465.html#_idTextAnchor034
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The Band-5 also known as Near Infrared Band (NIR) and Band-4 the Red Band are specific 

spectral bands of Landsat-8. NDVI values range from +1 to -1, where -1 is typically water and +1 

is characteristically dense, lavish vegetation. Consequently, NDVI can indicate healthy vegetation. 

Formally, NDVI was given by Braun and Herold (2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Normalize difference vegetation index 

 

2.6. Determination of chlorophyll concentration 

The determination of chlorophyll concentration was performed by employing the specific 

absorption coefficients for chlorophyll a and b as published by Fassnacht et al. (2012). A random 

sampling technique was employed to obtain representative samples from each crop field, which 
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were then geographically coordinated using GPS technology. The quantities of chlorophyll a, 

chlorophyll b, and carotenoids have been found to be positively associated with a plant's 

photosynthetic potential and can provide insights on the physiological condition of the plant 

(Falcioni et al., 2023; Strzałka et al., 2003). The primary factor influencing chlorophyll 

concentration is nitrogen availability, as indicated by (Hill et al., 2016; Wang et al., 2023). The 

chlorophyll content can be determined using raster data with the Raster Calculator of Map Algebra, 

as described in Equation 3. 

The equation (3) can be expressed as            y = a + b * x. 

In this study, the variables are defined as follows: y represents the chlorophyll content on 

a raster cell, while a and b represent the total chlorophyll values at wavelengths 665 nm and 648 

nm, respectively. Lastly, x denotes the Normalized Difference Vegetation Index (NDVI). 

 

2.7. The image classification 

The supervised classification is principal method for (LULC, Land use land cover) wherein the 

experts classify homogeneous pixels of the areas of interest within the image. According to Luo 

(2021), images transmit a lot of data and perform chief role, as it’s important to get valuable picture 

info within real time. In this process, classification algorithm is used to regulate the classes of 

image. The image classification’s core progression is image feature extraction, image 

preprocessing and classifier design. Selected samples are commonly denoted as training regions. 

The choice of training locations is determined by the performer's level of acquaintance with the 

geographical region and their understanding of the specific surface cover types depicted in the 

image. Therefore, the analyst is overseeing the process of categorizing distinct classes. All the 

sample with same pixels merged into one class as the system is trained to recognize spectrally 

comparable areas. In the context of supervised classification, the initial step involves the 

identification of information classes, which are subsequently utilized to derive the corresponding 

spectral classes. 

2.8. Spectral Reflectance 

In order to measure the leaves spectral reflectance seven samples of individuals per species, 

randomly chosen. Spectral reflectance of leaves measurements through Field Spec AVASPEC-

2048-3-DT Avantes. The laboratory conducts spectral measurements within a spectral range 

spanning from 200 to 1100 nm. The acquisition of the leaf's reflectance spectra can be achieved 
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by calculating the ratio between a reflective white standard and the spectral radiance. Rosevear et 

al. (2001) elaborate that the pigments present in leaves have the ability to absorb light within the 

wavelength range of 400-700 nm, resulting in a decrease in the reflection of (PAR, 

Photosynthetically Active Radiation). The absorption pattern of the pigment plays a crucial role in 

governing the unique reflectance signatures exhibited by leaves. At the level of the canopy, the 

reflectance is influenced by the reflectance of individual leaves and their texture, whereas the 

determination of leaf reflectance is based on the chemical composition (El-Hendawy et al., 2022). 

Various reflectance indices can be employed to calculate biophysical factors, including biomass, 

photosynthetic size, radiation use efficiency, and water content, based on reflectance spectra. 

3. Results and discussion 
Significant relationships were observed between the SPAD (Non-destructive) measurements and 

the laboratory chlorophyll content (Destructive) in the study. The R² values for the different crops, 

namely maize, guava, cotton, sugarcane, mango, lemon, kino, musambi, rice, and banana, are as 

follows: cotton (R²=0.93), guava (R²=1), maize (R²=1), lemon (R²=0.91), sugarcane (R=0.92), 

kino (R²=0.99), mango (R²=0.94), musambi (R²=0.84), banana (R²=0.75) and rice (R²=0.84). 

These results are illustrated in Figure 3. Though the destructive technique is more precise as 

compare to the nondestructive technique, study shows no significant variation which, may 

associated to the genetic properties of plant (Ali et al., 2021).  

In their study, Zhu et al. (2012) conducted a comparison between SPAD measurements and 

laboratory leaf chlorophyll values for several crop species. The findings of their investigation 

revealed robust relationships between laboratory leaf chlorophyll content and SPAD 

measurements. The utilization of remotely sensed data is a common practice in several applications 

such as LCLU mapping, evaluation of resources, management of land, vegetation mapping and 

modelling (Booth & Tueller, 2003; Hosseini et al., 2004; Henebry, 2011). The correlation among 

satellite images and ground-based data is contingent upon several aspects, including the time of 

recording, the level of precision in the imagery, as well as both biological and non-biological 

elements (Huang et al., 2002; Wang et al., 2006; Soudani et al., 2012).  

The normalized difference vegetation index (NDVI) is widely recognized as the most 

commonly employed vegetation index. The utilization of Landsat satellite data is widespread in 

the computation of vegetation indices such as NDVI (Fig. 2). Additionally, it serves as a means to 

https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
https://en.wikipedia.org/wiki/Photosynthetically_active_radiation
http://researcherslinks.com/current-issues/An-Evaluation-Study-for-Chlorophyll-Estimation-Techniques/14/1/4316/SJA_37_4_1458-1465.html#_idTextAnchor011
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monitor the status of both cultivated and natural vegetation, as well as to identify occurrences of 

desertification, drought, and deforestation (Zhang et al., 2022). 

 

Figure 2. Relationship of total Chl(a+b) and SPAD 

The coefficients of determination for NDVI and Chlorophyll revealed that normalize difference 

vegetation index exhibited a strong positive correlation with laboratory measurements of 

chlorophyll concentration in both rice (R²=0.99) and guava (R²=0.99). Conversely, mango 

(R²=0.88), lemon (R²=0.82) and banana (R²=0.96), displayed significant negative correlations with 

NDVI respectively. In contrast, the estimation of chlorophyll concentration exhibited a weak 
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correlation with NDVI in sugarcane (R²=0.15), cotton (R²=0.10), kino (R²=0.30), musambi 

(R²=0.37), and indicating a non-significant association. On the other hand, maize has no 

correlation whatsoever (R²=0) as depicted in Figure 4. According to Jones et al. (2007), the 

multispectral imaging system demonstrated sensitivity to variations in chlorophyll and biomass 

output as observed through the analysis of NDVI data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship among NDVI and Chl (a+b) 

A correlation analysis was conducted to ascertain the correlation coefficient (r) amongst the 

reflectance and chlorophyll content. According to Davies (2009), chlorophyll a and chlorophyll b 

are the foremost types of chlorophyll found in plants having properties of absorbing red and blue 

light. Chl a and Chl b exhibit distinct absorption points crucial for photosynthesis, occurring at 

wavelengths of 663 nm and 426 nm for chlorophyll a, and 645 nm and 455 nm for chlorophyll b, 

http://researcherslinks.com/current-issues/An-Evaluation-Study-for-Chlorophyll-Estimation-Techniques/14/1/4316/SJA_37_4_1458-1465.html#_idTextAnchor014
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respectively. In the regression analysis of the chlorophyll model based on NDVI, the NDVI 

readings were designated as the independent variable, while the ethanol-extracted chlorophyll was 

designated as the dependent variable. The data was organized into a tabulated format and 

afterwards transformed into a raster image. The map illustrates that chlorophyll levels are 

significantly higher, specifically at a value of 16.11, in cultivated regions, whereas they are 

comparatively lower, with a value of 18.86, in barren land and water bodies (Fig. 5). 

The region of interest depicted in (Fig. 6), demonstrates that the study area exhibits a high level of 

productivity in terms of crop and orchard production. The findings of this study demonstrate that 

supervised image classification has successfully recognized six distinct categories, including 

orchards, crops, barren terrain, salty pond, fresh water, and residential area. This identification 

process was facilitated using interactive image classification, which also enabled the calculation 

of the relevant areas for each category.  
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Figure 5. Chlorophyll extraction 
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Figure 6. Land use classification 

The detection of plant species by satellite remote sensing poses challenges, as it is a complex task. 

In order to identify plant species without causing any harm to them, it becomes imperative to 

develop a spectral profile for each individual species. The spectral characteristics of plant leaves 

exhibit a higher degree of sensitivity towards variations in chlorophyll concentration as opposed 

to the Normalized Difference Vegetation Index (NDVI). Indices in higher plants serve as 

indicators of disease, stress, and senescence. Narmilan et al. (2022) stated that ratio vegetation 
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index (RVI), and difference vegetation index (DVI) showed a strong and positive association with 

the greenery content of sugarcane crops. 

 The data in Figure 7 displays the spectrum reflectance patterns of cotton, maize, rice, 

guava, mango, and banana. The regions of maximal sensitivity for chlorophyll concentration are 

observed at wavelengths of 550 nm and 750 nm. The spectrum reflections of a plant vary 

depending on factors such as plant kind, age, development stage, percentage of coverage, biomass, 

and water content within the cell (Coops et al., 2003; Jeganathan et al., 2010). The primary function 

of chlorophyll is to contribute to the spectral reflections of organisms. Noda et al. (2021) through 

modeling analyze that the seasonal variations in chlorophyll content of the species leads to a 

seasonal variation in the optical properties of leaf.  
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Figure 7. Spectral signature of orchards and crops 

The data in Figure 7 demonstrates the spectrum responses of the ground based multiple samples 

of guava, cotton, mango, musambi, banana, kino, maize, and rice, recorded by using 

spectroradiometer. The reflectance of leaves exhibits a decrease in the visible range of the 
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electromagnetic spectrum, specifically between 330 and 530 nm. Notably, there is a discernible 

fluctuation in reflectance, with a maximum value occurring about 400 nm, which corresponds to 

the green region. The pigmentation of a plant determines the visible part of the spectrum in green 

plants. The infrared reflectance within the wavelength range of 600 nanometers. Tesfaye and 

Awoke (2021) indicated that different feature selection methods for the prediction of chlorophyll 

to find the best prototype model.  

 

4. Conclusions and recomendations 
There is a strong positive correlation observed between the SPAD values and the combined 

chlorophyll (a+b) content, as determined using regression analysis. The R² value in cereal crops 

and orchards exceeds 80%, providing evidence that the use of the SPAD nondestructive method is 

preferable to the time-consuming non-destructive chlorophyll extraction method. The scatter 

diagram demonstrates a positive correlation between chlorophyll concentration and NDVI. The 

laboratory study of chlorophyll content and the utilization of satellite data to measure chlorophyll 

levels demonstrate a predominantly consistent pattern in agricultural crops. The reliability of 

satellite data for monitoring crops and orchards, specifically for the acquisition of chlorophyll 

content, has been determined to be a viable alternative to the labor-intensive procedures often 

conducted in laboratories. The utilization of Landsat-8, does not incur any financial expenses. The 

identification of crops and orchards can also be accomplished by examining the texture and canopy 

characteristics of trees. 

A more extensive analysis might be conducted by accessing more advanced multispectral 

satellite data. The resolution of Landsat data is comparatively lower, specifically 30 meters, when 

compared to satellite data from spot, quick bird, planet, and sentinel. The study findings indicate 

a positive correlation between chlorophyll content and NDVI as observed in the scatter diagram. 

However, it is challenging to accurately identify individual crops or orchards using Landsat data. 

It is advisable to employ a high-resolution drone for the purpose of quickly visualizing and 

interpreting the canopy and texture of orchards and crops throughout all seasons of the year. This 

study provides an overview of the initial and fundamental ideas about the prediction of chlorophyll 

levels using multispectral data. The potentials of these methods are examined in relation to 

estimating chlorophyll content in crops and orchards within the specified study area. The 

chlorophyll concentration inside canopies exhibits temporal and spatial variations, necessitating a 
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wide range of dynamic capabilities for chlorophyll evaluation in remote sensing approaches. This 

study has the potential to provide valuable insights for the advancement of precision agriculture 

practices, ultimately contributing to the enhancement and upliftment of the rural population in this 

region. 
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